1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Decl.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/StmtCXX.h" 23 #include "clang/Basic/OpenCL.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/MDBuilder.h" 29 #include "llvm/IR/Operator.h" 30 using namespace clang; 31 using namespace CodeGen; 32 33 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 34 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 35 Builder(cgm.getModule().getContext()), 36 CapturedStmtInfo(0), 37 SanitizePerformTypeCheck(CGM.getSanOpts().Null | 38 CGM.getSanOpts().Alignment | 39 CGM.getSanOpts().ObjectSize | 40 CGM.getSanOpts().Vptr), 41 SanOpts(&CGM.getSanOpts()), 42 AutoreleaseResult(false), BlockInfo(0), BlockPointer(0), 43 LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1), 44 FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0), 45 DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false), 46 IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0), 47 NumReturnExprs(0), NumSimpleReturnExprs(0), 48 CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0), 49 CXXDefaultInitExprThis(0), 50 CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0), 51 OutermostConditional(0), CurLexicalScope(0), TerminateLandingPad(0), 52 TerminateHandler(0), TrapBB(0) { 53 if (!suppressNewContext) 54 CGM.getCXXABI().getMangleContext().startNewFunction(); 55 56 llvm::FastMathFlags FMF; 57 if (CGM.getLangOpts().FastMath) 58 FMF.setUnsafeAlgebra(); 59 if (CGM.getLangOpts().FiniteMathOnly) { 60 FMF.setNoNaNs(); 61 FMF.setNoInfs(); 62 } 63 Builder.SetFastMathFlags(FMF); 64 } 65 66 CodeGenFunction::~CodeGenFunction() { 67 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 68 69 // If there are any unclaimed block infos, go ahead and destroy them 70 // now. This can happen if IR-gen gets clever and skips evaluating 71 // something. 72 if (FirstBlockInfo) 73 destroyBlockInfos(FirstBlockInfo); 74 } 75 76 77 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 78 return CGM.getTypes().ConvertTypeForMem(T); 79 } 80 81 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 82 return CGM.getTypes().ConvertType(T); 83 } 84 85 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 86 type = type.getCanonicalType(); 87 while (true) { 88 switch (type->getTypeClass()) { 89 #define TYPE(name, parent) 90 #define ABSTRACT_TYPE(name, parent) 91 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 92 #define DEPENDENT_TYPE(name, parent) case Type::name: 93 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 94 #include "clang/AST/TypeNodes.def" 95 llvm_unreachable("non-canonical or dependent type in IR-generation"); 96 97 case Type::Auto: 98 llvm_unreachable("undeduced auto type in IR-generation"); 99 100 // Various scalar types. 101 case Type::Builtin: 102 case Type::Pointer: 103 case Type::BlockPointer: 104 case Type::LValueReference: 105 case Type::RValueReference: 106 case Type::MemberPointer: 107 case Type::Vector: 108 case Type::ExtVector: 109 case Type::FunctionProto: 110 case Type::FunctionNoProto: 111 case Type::Enum: 112 case Type::ObjCObjectPointer: 113 return TEK_Scalar; 114 115 // Complexes. 116 case Type::Complex: 117 return TEK_Complex; 118 119 // Arrays, records, and Objective-C objects. 120 case Type::ConstantArray: 121 case Type::IncompleteArray: 122 case Type::VariableArray: 123 case Type::Record: 124 case Type::ObjCObject: 125 case Type::ObjCInterface: 126 return TEK_Aggregate; 127 128 // We operate on atomic values according to their underlying type. 129 case Type::Atomic: 130 type = cast<AtomicType>(type)->getValueType(); 131 continue; 132 } 133 llvm_unreachable("unknown type kind!"); 134 } 135 } 136 137 void CodeGenFunction::EmitReturnBlock() { 138 // For cleanliness, we try to avoid emitting the return block for 139 // simple cases. 140 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 141 142 if (CurBB) { 143 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 144 145 // We have a valid insert point, reuse it if it is empty or there are no 146 // explicit jumps to the return block. 147 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 148 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 149 delete ReturnBlock.getBlock(); 150 } else 151 EmitBlock(ReturnBlock.getBlock()); 152 return; 153 } 154 155 // Otherwise, if the return block is the target of a single direct 156 // branch then we can just put the code in that block instead. This 157 // cleans up functions which started with a unified return block. 158 if (ReturnBlock.getBlock()->hasOneUse()) { 159 llvm::BranchInst *BI = 160 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 161 if (BI && BI->isUnconditional() && 162 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 163 // Reset insertion point, including debug location, and delete the 164 // branch. This is really subtle and only works because the next change 165 // in location will hit the caching in CGDebugInfo::EmitLocation and not 166 // override this. 167 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 168 Builder.SetInsertPoint(BI->getParent()); 169 BI->eraseFromParent(); 170 delete ReturnBlock.getBlock(); 171 return; 172 } 173 } 174 175 // FIXME: We are at an unreachable point, there is no reason to emit the block 176 // unless it has uses. However, we still need a place to put the debug 177 // region.end for now. 178 179 EmitBlock(ReturnBlock.getBlock()); 180 } 181 182 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 183 if (!BB) return; 184 if (!BB->use_empty()) 185 return CGF.CurFn->getBasicBlockList().push_back(BB); 186 delete BB; 187 } 188 189 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 190 assert(BreakContinueStack.empty() && 191 "mismatched push/pop in break/continue stack!"); 192 193 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 194 && NumSimpleReturnExprs == NumReturnExprs 195 && ReturnBlock.getBlock()->use_empty(); 196 // Usually the return expression is evaluated before the cleanup 197 // code. If the function contains only a simple return statement, 198 // such as a constant, the location before the cleanup code becomes 199 // the last useful breakpoint in the function, because the simple 200 // return expression will be evaluated after the cleanup code. To be 201 // safe, set the debug location for cleanup code to the location of 202 // the return statement. Otherwise the cleanup code should be at the 203 // end of the function's lexical scope. 204 // 205 // If there are multiple branches to the return block, the branch 206 // instructions will get the location of the return statements and 207 // all will be fine. 208 if (CGDebugInfo *DI = getDebugInfo()) { 209 if (OnlySimpleReturnStmts) 210 DI->EmitLocation(Builder, LastStopPoint); 211 else 212 DI->EmitLocation(Builder, EndLoc); 213 } 214 215 // Pop any cleanups that might have been associated with the 216 // parameters. Do this in whatever block we're currently in; it's 217 // important to do this before we enter the return block or return 218 // edges will be *really* confused. 219 bool EmitRetDbgLoc = true; 220 if (EHStack.stable_begin() != PrologueCleanupDepth) { 221 PopCleanupBlocks(PrologueCleanupDepth); 222 223 // Make sure the line table doesn't jump back into the body for 224 // the ret after it's been at EndLoc. 225 EmitRetDbgLoc = false; 226 227 if (CGDebugInfo *DI = getDebugInfo()) 228 if (OnlySimpleReturnStmts) 229 DI->EmitLocation(Builder, EndLoc); 230 } 231 232 // Emit function epilog (to return). 233 EmitReturnBlock(); 234 235 if (ShouldInstrumentFunction()) 236 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 237 238 // Emit debug descriptor for function end. 239 if (CGDebugInfo *DI = getDebugInfo()) { 240 DI->EmitFunctionEnd(Builder); 241 } 242 243 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc); 244 EmitEndEHSpec(CurCodeDecl); 245 246 assert(EHStack.empty() && 247 "did not remove all scopes from cleanup stack!"); 248 249 // If someone did an indirect goto, emit the indirect goto block at the end of 250 // the function. 251 if (IndirectBranch) { 252 EmitBlock(IndirectBranch->getParent()); 253 Builder.ClearInsertionPoint(); 254 } 255 256 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 257 llvm::Instruction *Ptr = AllocaInsertPt; 258 AllocaInsertPt = 0; 259 Ptr->eraseFromParent(); 260 261 // If someone took the address of a label but never did an indirect goto, we 262 // made a zero entry PHI node, which is illegal, zap it now. 263 if (IndirectBranch) { 264 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 265 if (PN->getNumIncomingValues() == 0) { 266 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 267 PN->eraseFromParent(); 268 } 269 } 270 271 EmitIfUsed(*this, EHResumeBlock); 272 EmitIfUsed(*this, TerminateLandingPad); 273 EmitIfUsed(*this, TerminateHandler); 274 EmitIfUsed(*this, UnreachableBlock); 275 276 if (CGM.getCodeGenOpts().EmitDeclMetadata) 277 EmitDeclMetadata(); 278 } 279 280 /// ShouldInstrumentFunction - Return true if the current function should be 281 /// instrumented with __cyg_profile_func_* calls 282 bool CodeGenFunction::ShouldInstrumentFunction() { 283 if (!CGM.getCodeGenOpts().InstrumentFunctions) 284 return false; 285 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 286 return false; 287 return true; 288 } 289 290 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 291 /// instrumentation function with the current function and the call site, if 292 /// function instrumentation is enabled. 293 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 294 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 295 llvm::PointerType *PointerTy = Int8PtrTy; 296 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 297 llvm::FunctionType *FunctionTy = 298 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 299 300 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 301 llvm::CallInst *CallSite = Builder.CreateCall( 302 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 303 llvm::ConstantInt::get(Int32Ty, 0), 304 "callsite"); 305 306 llvm::Value *args[] = { 307 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 308 CallSite 309 }; 310 311 EmitNounwindRuntimeCall(F, args); 312 } 313 314 void CodeGenFunction::EmitMCountInstrumentation() { 315 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 316 317 llvm::Constant *MCountFn = 318 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 319 EmitNounwindRuntimeCall(MCountFn); 320 } 321 322 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 323 // information in the program executable. The argument information stored 324 // includes the argument name, its type, the address and access qualifiers used. 325 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 326 CodeGenModule &CGM,llvm::LLVMContext &Context, 327 SmallVector <llvm::Value*, 5> &kernelMDArgs, 328 CGBuilderTy& Builder, ASTContext &ASTCtx) { 329 // Create MDNodes that represent the kernel arg metadata. 330 // Each MDNode is a list in the form of "key", N number of values which is 331 // the same number of values as their are kernel arguments. 332 333 // MDNode for the kernel argument address space qualifiers. 334 SmallVector<llvm::Value*, 8> addressQuals; 335 addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space")); 336 337 // MDNode for the kernel argument access qualifiers (images only). 338 SmallVector<llvm::Value*, 8> accessQuals; 339 accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual")); 340 341 // MDNode for the kernel argument type names. 342 SmallVector<llvm::Value*, 8> argTypeNames; 343 argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type")); 344 345 // MDNode for the kernel argument type qualifiers. 346 SmallVector<llvm::Value*, 8> argTypeQuals; 347 argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual")); 348 349 // MDNode for the kernel argument names. 350 SmallVector<llvm::Value*, 8> argNames; 351 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 352 353 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 354 const ParmVarDecl *parm = FD->getParamDecl(i); 355 QualType ty = parm->getType(); 356 std::string typeQuals; 357 358 if (ty->isPointerType()) { 359 QualType pointeeTy = ty->getPointeeType(); 360 361 // Get address qualifier. 362 addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace( 363 pointeeTy.getAddressSpace()))); 364 365 // Get argument type name. 366 std::string typeName = pointeeTy.getUnqualifiedType().getAsString() + "*"; 367 368 // Turn "unsigned type" to "utype" 369 std::string::size_type pos = typeName.find("unsigned"); 370 if (pos != std::string::npos) 371 typeName.erase(pos+1, 8); 372 373 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 374 375 // Get argument type qualifiers: 376 if (ty.isRestrictQualified()) 377 typeQuals = "restrict"; 378 if (pointeeTy.isConstQualified() || 379 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 380 typeQuals += typeQuals.empty() ? "const" : " const"; 381 if (pointeeTy.isVolatileQualified()) 382 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 383 } else { 384 addressQuals.push_back(Builder.getInt32(0)); 385 386 // Get argument type name. 387 std::string typeName = ty.getUnqualifiedType().getAsString(); 388 389 // Turn "unsigned type" to "utype" 390 std::string::size_type pos = typeName.find("unsigned"); 391 if (pos != std::string::npos) 392 typeName.erase(pos+1, 8); 393 394 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 395 396 // Get argument type qualifiers: 397 if (ty.isConstQualified()) 398 typeQuals = "const"; 399 if (ty.isVolatileQualified()) 400 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 401 } 402 403 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 404 405 // Get image access qualifier: 406 if (ty->isImageType()) { 407 if (parm->hasAttr<OpenCLImageAccessAttr>() && 408 parm->getAttr<OpenCLImageAccessAttr>()->getAccess() == CLIA_write_only) 409 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 410 else 411 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 412 } else 413 accessQuals.push_back(llvm::MDString::get(Context, "none")); 414 415 // Get argument name. 416 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 417 } 418 419 kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals)); 420 kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals)); 421 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames)); 422 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals)); 423 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 424 } 425 426 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 427 llvm::Function *Fn) 428 { 429 if (!FD->hasAttr<OpenCLKernelAttr>()) 430 return; 431 432 llvm::LLVMContext &Context = getLLVMContext(); 433 434 SmallVector <llvm::Value*, 5> kernelMDArgs; 435 kernelMDArgs.push_back(Fn); 436 437 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 438 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, 439 Builder, getContext()); 440 441 if (FD->hasAttr<VecTypeHintAttr>()) { 442 VecTypeHintAttr *attr = FD->getAttr<VecTypeHintAttr>(); 443 QualType hintQTy = attr->getTypeHint(); 444 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 445 bool isSignedInteger = 446 hintQTy->isSignedIntegerType() || 447 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 448 llvm::Value *attrMDArgs[] = { 449 llvm::MDString::get(Context, "vec_type_hint"), 450 llvm::UndefValue::get(CGM.getTypes().ConvertType(attr->getTypeHint())), 451 llvm::ConstantInt::get( 452 llvm::IntegerType::get(Context, 32), 453 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))) 454 }; 455 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 456 } 457 458 if (FD->hasAttr<WorkGroupSizeHintAttr>()) { 459 WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>(); 460 llvm::Value *attrMDArgs[] = { 461 llvm::MDString::get(Context, "work_group_size_hint"), 462 Builder.getInt32(attr->getXDim()), 463 Builder.getInt32(attr->getYDim()), 464 Builder.getInt32(attr->getZDim()) 465 }; 466 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 467 } 468 469 if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) { 470 ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 471 llvm::Value *attrMDArgs[] = { 472 llvm::MDString::get(Context, "reqd_work_group_size"), 473 Builder.getInt32(attr->getXDim()), 474 Builder.getInt32(attr->getYDim()), 475 Builder.getInt32(attr->getZDim()) 476 }; 477 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 478 } 479 480 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 481 llvm::NamedMDNode *OpenCLKernelMetadata = 482 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 483 OpenCLKernelMetadata->addOperand(kernelMDNode); 484 } 485 486 void CodeGenFunction::StartFunction(GlobalDecl GD, 487 QualType RetTy, 488 llvm::Function *Fn, 489 const CGFunctionInfo &FnInfo, 490 const FunctionArgList &Args, 491 SourceLocation StartLoc) { 492 const Decl *D = GD.getDecl(); 493 494 DidCallStackSave = false; 495 CurCodeDecl = D; 496 CurFuncDecl = (D ? D->getNonClosureContext() : 0); 497 FnRetTy = RetTy; 498 CurFn = Fn; 499 CurFnInfo = &FnInfo; 500 assert(CurFn->isDeclaration() && "Function already has body?"); 501 502 if (CGM.getSanitizerBlacklist().isIn(*Fn)) { 503 SanOpts = &SanitizerOptions::Disabled; 504 SanitizePerformTypeCheck = false; 505 } 506 507 // Pass inline keyword to optimizer if it appears explicitly on any 508 // declaration. 509 if (!CGM.getCodeGenOpts().NoInline) 510 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 511 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 512 RE = FD->redecls_end(); RI != RE; ++RI) 513 if (RI->isInlineSpecified()) { 514 Fn->addFnAttr(llvm::Attribute::InlineHint); 515 break; 516 } 517 518 if (getLangOpts().OpenCL) { 519 // Add metadata for a kernel function. 520 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 521 EmitOpenCLKernelMetadata(FD, Fn); 522 } 523 524 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 525 526 // Create a marker to make it easy to insert allocas into the entryblock 527 // later. Don't create this with the builder, because we don't want it 528 // folded. 529 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 530 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 531 if (Builder.isNamePreserving()) 532 AllocaInsertPt->setName("allocapt"); 533 534 ReturnBlock = getJumpDestInCurrentScope("return"); 535 536 Builder.SetInsertPoint(EntryBB); 537 538 // Emit subprogram debug descriptor. 539 if (CGDebugInfo *DI = getDebugInfo()) { 540 SmallVector<QualType, 16> ArgTypes; 541 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 542 i != e; ++i) { 543 ArgTypes.push_back((*i)->getType()); 544 } 545 546 QualType FnType = 547 getContext().getFunctionType(RetTy, ArgTypes, 548 FunctionProtoType::ExtProtoInfo()); 549 550 DI->setLocation(StartLoc); 551 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 552 } 553 554 if (ShouldInstrumentFunction()) 555 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 556 557 if (CGM.getCodeGenOpts().InstrumentForProfiling) 558 EmitMCountInstrumentation(); 559 560 if (RetTy->isVoidType()) { 561 // Void type; nothing to return. 562 ReturnValue = 0; 563 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 564 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 565 // Indirect aggregate return; emit returned value directly into sret slot. 566 // This reduces code size, and affects correctness in C++. 567 ReturnValue = CurFn->arg_begin(); 568 } else { 569 ReturnValue = CreateIRTemp(RetTy, "retval"); 570 571 // Tell the epilog emitter to autorelease the result. We do this 572 // now so that various specialized functions can suppress it 573 // during their IR-generation. 574 if (getLangOpts().ObjCAutoRefCount && 575 !CurFnInfo->isReturnsRetained() && 576 RetTy->isObjCRetainableType()) 577 AutoreleaseResult = true; 578 } 579 580 EmitStartEHSpec(CurCodeDecl); 581 582 PrologueCleanupDepth = EHStack.stable_begin(); 583 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 584 585 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 586 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 587 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 588 if (MD->getParent()->isLambda() && 589 MD->getOverloadedOperator() == OO_Call) { 590 // We're in a lambda; figure out the captures. 591 MD->getParent()->getCaptureFields(LambdaCaptureFields, 592 LambdaThisCaptureField); 593 if (LambdaThisCaptureField) { 594 // If this lambda captures this, load it. 595 LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 596 CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal(); 597 } 598 } else { 599 // Not in a lambda; just use 'this' from the method. 600 // FIXME: Should we generate a new load for each use of 'this'? The 601 // fast register allocator would be happier... 602 CXXThisValue = CXXABIThisValue; 603 } 604 } 605 606 // If any of the arguments have a variably modified type, make sure to 607 // emit the type size. 608 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 609 i != e; ++i) { 610 const VarDecl *VD = *i; 611 612 // Dig out the type as written from ParmVarDecls; it's unclear whether 613 // the standard (C99 6.9.1p10) requires this, but we're following the 614 // precedent set by gcc. 615 QualType Ty; 616 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 617 Ty = PVD->getOriginalType(); 618 else 619 Ty = VD->getType(); 620 621 if (Ty->isVariablyModifiedType()) 622 EmitVariablyModifiedType(Ty); 623 } 624 // Emit a location at the end of the prologue. 625 if (CGDebugInfo *DI = getDebugInfo()) 626 DI->EmitLocation(Builder, StartLoc); 627 } 628 629 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) { 630 const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl()); 631 assert(FD->getBody()); 632 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(FD->getBody())) 633 EmitCompoundStmtWithoutScope(*S); 634 else 635 EmitStmt(FD->getBody()); 636 } 637 638 /// Tries to mark the given function nounwind based on the 639 /// non-existence of any throwing calls within it. We believe this is 640 /// lightweight enough to do at -O0. 641 static void TryMarkNoThrow(llvm::Function *F) { 642 // LLVM treats 'nounwind' on a function as part of the type, so we 643 // can't do this on functions that can be overwritten. 644 if (F->mayBeOverridden()) return; 645 646 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 647 for (llvm::BasicBlock::iterator 648 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 649 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 650 if (!Call->doesNotThrow()) 651 return; 652 } else if (isa<llvm::ResumeInst>(&*BI)) { 653 return; 654 } 655 F->setDoesNotThrow(); 656 } 657 658 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 659 const CGFunctionInfo &FnInfo) { 660 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 661 662 // Check if we should generate debug info for this function. 663 if (!FD->hasAttr<NoDebugAttr>()) 664 maybeInitializeDebugInfo(); 665 666 FunctionArgList Args; 667 QualType ResTy = FD->getResultType(); 668 669 CurGD = GD; 670 const CXXMethodDecl *MD; 671 if ((MD = dyn_cast<CXXMethodDecl>(FD)) && MD->isInstance()) { 672 if (CGM.getCXXABI().HasThisReturn(GD)) 673 ResTy = MD->getThisType(getContext()); 674 CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args); 675 } 676 677 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 678 Args.push_back(FD->getParamDecl(i)); 679 680 SourceRange BodyRange; 681 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 682 CurEHLocation = BodyRange.getEnd(); 683 684 // Emit the standard function prologue. 685 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin()); 686 687 // Generate the body of the function. 688 if (isa<CXXDestructorDecl>(FD)) 689 EmitDestructorBody(Args); 690 else if (isa<CXXConstructorDecl>(FD)) 691 EmitConstructorBody(Args); 692 else if (getLangOpts().CUDA && 693 !CGM.getCodeGenOpts().CUDAIsDevice && 694 FD->hasAttr<CUDAGlobalAttr>()) 695 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 696 else if (isa<CXXConversionDecl>(FD) && 697 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 698 // The lambda conversion to block pointer is special; the semantics can't be 699 // expressed in the AST, so IRGen needs to special-case it. 700 EmitLambdaToBlockPointerBody(Args); 701 } else if (isa<CXXMethodDecl>(FD) && 702 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 703 // The lambda "__invoke" function is special, because it forwards or 704 // clones the body of the function call operator (but is actually static). 705 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 706 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 707 cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator()) { 708 // Implicit copy-assignment gets the same special treatment as implicit 709 // copy-constructors. 710 emitImplicitAssignmentOperatorBody(Args); 711 } 712 else 713 EmitFunctionBody(Args); 714 715 // C++11 [stmt.return]p2: 716 // Flowing off the end of a function [...] results in undefined behavior in 717 // a value-returning function. 718 // C11 6.9.1p12: 719 // If the '}' that terminates a function is reached, and the value of the 720 // function call is used by the caller, the behavior is undefined. 721 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && 722 !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) { 723 if (SanOpts->Return) 724 EmitCheck(Builder.getFalse(), "missing_return", 725 EmitCheckSourceLocation(FD->getLocation()), 726 ArrayRef<llvm::Value *>(), CRK_Unrecoverable); 727 else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 728 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap)); 729 Builder.CreateUnreachable(); 730 Builder.ClearInsertionPoint(); 731 } 732 733 // Emit the standard function epilogue. 734 FinishFunction(BodyRange.getEnd()); 735 736 // If we haven't marked the function nothrow through other means, do 737 // a quick pass now to see if we can. 738 if (!CurFn->doesNotThrow()) 739 TryMarkNoThrow(CurFn); 740 } 741 742 /// ContainsLabel - Return true if the statement contains a label in it. If 743 /// this statement is not executed normally, it not containing a label means 744 /// that we can just remove the code. 745 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 746 // Null statement, not a label! 747 if (S == 0) return false; 748 749 // If this is a label, we have to emit the code, consider something like: 750 // if (0) { ... foo: bar(); } goto foo; 751 // 752 // TODO: If anyone cared, we could track __label__'s, since we know that you 753 // can't jump to one from outside their declared region. 754 if (isa<LabelStmt>(S)) 755 return true; 756 757 // If this is a case/default statement, and we haven't seen a switch, we have 758 // to emit the code. 759 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 760 return true; 761 762 // If this is a switch statement, we want to ignore cases below it. 763 if (isa<SwitchStmt>(S)) 764 IgnoreCaseStmts = true; 765 766 // Scan subexpressions for verboten labels. 767 for (Stmt::const_child_range I = S->children(); I; ++I) 768 if (ContainsLabel(*I, IgnoreCaseStmts)) 769 return true; 770 771 return false; 772 } 773 774 /// containsBreak - Return true if the statement contains a break out of it. 775 /// If the statement (recursively) contains a switch or loop with a break 776 /// inside of it, this is fine. 777 bool CodeGenFunction::containsBreak(const Stmt *S) { 778 // Null statement, not a label! 779 if (S == 0) return false; 780 781 // If this is a switch or loop that defines its own break scope, then we can 782 // include it and anything inside of it. 783 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 784 isa<ForStmt>(S)) 785 return false; 786 787 if (isa<BreakStmt>(S)) 788 return true; 789 790 // Scan subexpressions for verboten breaks. 791 for (Stmt::const_child_range I = S->children(); I; ++I) 792 if (containsBreak(*I)) 793 return true; 794 795 return false; 796 } 797 798 799 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 800 /// to a constant, or if it does but contains a label, return false. If it 801 /// constant folds return true and set the boolean result in Result. 802 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 803 bool &ResultBool) { 804 llvm::APSInt ResultInt; 805 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 806 return false; 807 808 ResultBool = ResultInt.getBoolValue(); 809 return true; 810 } 811 812 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 813 /// to a constant, or if it does but contains a label, return false. If it 814 /// constant folds return true and set the folded value. 815 bool CodeGenFunction:: 816 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 817 // FIXME: Rename and handle conversion of other evaluatable things 818 // to bool. 819 llvm::APSInt Int; 820 if (!Cond->EvaluateAsInt(Int, getContext())) 821 return false; // Not foldable, not integer or not fully evaluatable. 822 823 if (CodeGenFunction::ContainsLabel(Cond)) 824 return false; // Contains a label. 825 826 ResultInt = Int; 827 return true; 828 } 829 830 831 832 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 833 /// statement) to the specified blocks. Based on the condition, this might try 834 /// to simplify the codegen of the conditional based on the branch. 835 /// 836 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 837 llvm::BasicBlock *TrueBlock, 838 llvm::BasicBlock *FalseBlock) { 839 Cond = Cond->IgnoreParens(); 840 841 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 842 // Handle X && Y in a condition. 843 if (CondBOp->getOpcode() == BO_LAnd) { 844 // If we have "1 && X", simplify the code. "0 && X" would have constant 845 // folded if the case was simple enough. 846 bool ConstantBool = false; 847 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 848 ConstantBool) { 849 // br(1 && X) -> br(X). 850 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 851 } 852 853 // If we have "X && 1", simplify the code to use an uncond branch. 854 // "X && 0" would have been constant folded to 0. 855 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 856 ConstantBool) { 857 // br(X && 1) -> br(X). 858 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 859 } 860 861 // Emit the LHS as a conditional. If the LHS conditional is false, we 862 // want to jump to the FalseBlock. 863 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 864 865 ConditionalEvaluation eval(*this); 866 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 867 EmitBlock(LHSTrue); 868 869 // Any temporaries created here are conditional. 870 eval.begin(*this); 871 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 872 eval.end(*this); 873 874 return; 875 } 876 877 if (CondBOp->getOpcode() == BO_LOr) { 878 // If we have "0 || X", simplify the code. "1 || X" would have constant 879 // folded if the case was simple enough. 880 bool ConstantBool = false; 881 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 882 !ConstantBool) { 883 // br(0 || X) -> br(X). 884 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 885 } 886 887 // If we have "X || 0", simplify the code to use an uncond branch. 888 // "X || 1" would have been constant folded to 1. 889 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 890 !ConstantBool) { 891 // br(X || 0) -> br(X). 892 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 893 } 894 895 // Emit the LHS as a conditional. If the LHS conditional is true, we 896 // want to jump to the TrueBlock. 897 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 898 899 ConditionalEvaluation eval(*this); 900 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 901 EmitBlock(LHSFalse); 902 903 // Any temporaries created here are conditional. 904 eval.begin(*this); 905 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 906 eval.end(*this); 907 908 return; 909 } 910 } 911 912 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 913 // br(!x, t, f) -> br(x, f, t) 914 if (CondUOp->getOpcode() == UO_LNot) 915 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 916 } 917 918 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 919 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 920 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 921 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 922 923 ConditionalEvaluation cond(*this); 924 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 925 926 cond.begin(*this); 927 EmitBlock(LHSBlock); 928 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 929 cond.end(*this); 930 931 cond.begin(*this); 932 EmitBlock(RHSBlock); 933 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 934 cond.end(*this); 935 936 return; 937 } 938 939 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 940 // Conditional operator handling can give us a throw expression as a 941 // condition for a case like: 942 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 943 // Fold this to: 944 // br(c, throw x, br(y, t, f)) 945 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 946 return; 947 } 948 949 // Emit the code with the fully general case. 950 llvm::Value *CondV = EvaluateExprAsBool(Cond); 951 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 952 } 953 954 /// ErrorUnsupported - Print out an error that codegen doesn't support the 955 /// specified stmt yet. 956 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 957 bool OmitOnError) { 958 CGM.ErrorUnsupported(S, Type, OmitOnError); 959 } 960 961 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 962 /// variable-length array whose elements have a non-zero bit-pattern. 963 /// 964 /// \param baseType the inner-most element type of the array 965 /// \param src - a char* pointing to the bit-pattern for a single 966 /// base element of the array 967 /// \param sizeInChars - the total size of the VLA, in chars 968 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 969 llvm::Value *dest, llvm::Value *src, 970 llvm::Value *sizeInChars) { 971 std::pair<CharUnits,CharUnits> baseSizeAndAlign 972 = CGF.getContext().getTypeInfoInChars(baseType); 973 974 CGBuilderTy &Builder = CGF.Builder; 975 976 llvm::Value *baseSizeInChars 977 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 978 979 llvm::Type *i8p = Builder.getInt8PtrTy(); 980 981 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 982 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 983 984 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 985 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 986 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 987 988 // Make a loop over the VLA. C99 guarantees that the VLA element 989 // count must be nonzero. 990 CGF.EmitBlock(loopBB); 991 992 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 993 cur->addIncoming(begin, originBB); 994 995 // memcpy the individual element bit-pattern. 996 Builder.CreateMemCpy(cur, src, baseSizeInChars, 997 baseSizeAndAlign.second.getQuantity(), 998 /*volatile*/ false); 999 1000 // Go to the next element. 1001 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 1002 1003 // Leave if that's the end of the VLA. 1004 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1005 Builder.CreateCondBr(done, contBB, loopBB); 1006 cur->addIncoming(next, loopBB); 1007 1008 CGF.EmitBlock(contBB); 1009 } 1010 1011 void 1012 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 1013 // Ignore empty classes in C++. 1014 if (getLangOpts().CPlusPlus) { 1015 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1016 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1017 return; 1018 } 1019 } 1020 1021 // Cast the dest ptr to the appropriate i8 pointer type. 1022 unsigned DestAS = 1023 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 1024 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 1025 if (DestPtr->getType() != BP) 1026 DestPtr = Builder.CreateBitCast(DestPtr, BP); 1027 1028 // Get size and alignment info for this aggregate. 1029 std::pair<CharUnits, CharUnits> TypeInfo = 1030 getContext().getTypeInfoInChars(Ty); 1031 CharUnits Size = TypeInfo.first; 1032 CharUnits Align = TypeInfo.second; 1033 1034 llvm::Value *SizeVal; 1035 const VariableArrayType *vla; 1036 1037 // Don't bother emitting a zero-byte memset. 1038 if (Size.isZero()) { 1039 // But note that getTypeInfo returns 0 for a VLA. 1040 if (const VariableArrayType *vlaType = 1041 dyn_cast_or_null<VariableArrayType>( 1042 getContext().getAsArrayType(Ty))) { 1043 QualType eltType; 1044 llvm::Value *numElts; 1045 llvm::tie(numElts, eltType) = getVLASize(vlaType); 1046 1047 SizeVal = numElts; 1048 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1049 if (!eltSize.isOne()) 1050 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1051 vla = vlaType; 1052 } else { 1053 return; 1054 } 1055 } else { 1056 SizeVal = CGM.getSize(Size); 1057 vla = 0; 1058 } 1059 1060 // If the type contains a pointer to data member we can't memset it to zero. 1061 // Instead, create a null constant and copy it to the destination. 1062 // TODO: there are other patterns besides zero that we can usefully memset, 1063 // like -1, which happens to be the pattern used by member-pointers. 1064 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1065 // For a VLA, emit a single element, then splat that over the VLA. 1066 if (vla) Ty = getContext().getBaseElementType(vla); 1067 1068 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1069 1070 llvm::GlobalVariable *NullVariable = 1071 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1072 /*isConstant=*/true, 1073 llvm::GlobalVariable::PrivateLinkage, 1074 NullConstant, Twine()); 1075 llvm::Value *SrcPtr = 1076 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 1077 1078 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1079 1080 // Get and call the appropriate llvm.memcpy overload. 1081 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 1082 return; 1083 } 1084 1085 // Otherwise, just memset the whole thing to zero. This is legal 1086 // because in LLVM, all default initializers (other than the ones we just 1087 // handled above) are guaranteed to have a bit pattern of all zeros. 1088 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 1089 Align.getQuantity(), false); 1090 } 1091 1092 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1093 // Make sure that there is a block for the indirect goto. 1094 if (IndirectBranch == 0) 1095 GetIndirectGotoBlock(); 1096 1097 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1098 1099 // Make sure the indirect branch includes all of the address-taken blocks. 1100 IndirectBranch->addDestination(BB); 1101 return llvm::BlockAddress::get(CurFn, BB); 1102 } 1103 1104 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1105 // If we already made the indirect branch for indirect goto, return its block. 1106 if (IndirectBranch) return IndirectBranch->getParent(); 1107 1108 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 1109 1110 // Create the PHI node that indirect gotos will add entries to. 1111 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1112 "indirect.goto.dest"); 1113 1114 // Create the indirect branch instruction. 1115 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1116 return IndirectBranch->getParent(); 1117 } 1118 1119 /// Computes the length of an array in elements, as well as the base 1120 /// element type and a properly-typed first element pointer. 1121 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1122 QualType &baseType, 1123 llvm::Value *&addr) { 1124 const ArrayType *arrayType = origArrayType; 1125 1126 // If it's a VLA, we have to load the stored size. Note that 1127 // this is the size of the VLA in bytes, not its size in elements. 1128 llvm::Value *numVLAElements = 0; 1129 if (isa<VariableArrayType>(arrayType)) { 1130 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1131 1132 // Walk into all VLAs. This doesn't require changes to addr, 1133 // which has type T* where T is the first non-VLA element type. 1134 do { 1135 QualType elementType = arrayType->getElementType(); 1136 arrayType = getContext().getAsArrayType(elementType); 1137 1138 // If we only have VLA components, 'addr' requires no adjustment. 1139 if (!arrayType) { 1140 baseType = elementType; 1141 return numVLAElements; 1142 } 1143 } while (isa<VariableArrayType>(arrayType)); 1144 1145 // We get out here only if we find a constant array type 1146 // inside the VLA. 1147 } 1148 1149 // We have some number of constant-length arrays, so addr should 1150 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1151 // down to the first element of addr. 1152 SmallVector<llvm::Value*, 8> gepIndices; 1153 1154 // GEP down to the array type. 1155 llvm::ConstantInt *zero = Builder.getInt32(0); 1156 gepIndices.push_back(zero); 1157 1158 uint64_t countFromCLAs = 1; 1159 QualType eltType; 1160 1161 llvm::ArrayType *llvmArrayType = 1162 dyn_cast<llvm::ArrayType>( 1163 cast<llvm::PointerType>(addr->getType())->getElementType()); 1164 while (llvmArrayType) { 1165 assert(isa<ConstantArrayType>(arrayType)); 1166 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1167 == llvmArrayType->getNumElements()); 1168 1169 gepIndices.push_back(zero); 1170 countFromCLAs *= llvmArrayType->getNumElements(); 1171 eltType = arrayType->getElementType(); 1172 1173 llvmArrayType = 1174 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1175 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1176 assert((!llvmArrayType || arrayType) && 1177 "LLVM and Clang types are out-of-synch"); 1178 } 1179 1180 if (arrayType) { 1181 // From this point onwards, the Clang array type has been emitted 1182 // as some other type (probably a packed struct). Compute the array 1183 // size, and just emit the 'begin' expression as a bitcast. 1184 while (arrayType) { 1185 countFromCLAs *= 1186 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1187 eltType = arrayType->getElementType(); 1188 arrayType = getContext().getAsArrayType(eltType); 1189 } 1190 1191 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1192 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1193 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1194 } else { 1195 // Create the actual GEP. 1196 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1197 } 1198 1199 baseType = eltType; 1200 1201 llvm::Value *numElements 1202 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1203 1204 // If we had any VLA dimensions, factor them in. 1205 if (numVLAElements) 1206 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1207 1208 return numElements; 1209 } 1210 1211 std::pair<llvm::Value*, QualType> 1212 CodeGenFunction::getVLASize(QualType type) { 1213 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1214 assert(vla && "type was not a variable array type!"); 1215 return getVLASize(vla); 1216 } 1217 1218 std::pair<llvm::Value*, QualType> 1219 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1220 // The number of elements so far; always size_t. 1221 llvm::Value *numElements = 0; 1222 1223 QualType elementType; 1224 do { 1225 elementType = type->getElementType(); 1226 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1227 assert(vlaSize && "no size for VLA!"); 1228 assert(vlaSize->getType() == SizeTy); 1229 1230 if (!numElements) { 1231 numElements = vlaSize; 1232 } else { 1233 // It's undefined behavior if this wraps around, so mark it that way. 1234 // FIXME: Teach -fcatch-undefined-behavior to trap this. 1235 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1236 } 1237 } while ((type = getContext().getAsVariableArrayType(elementType))); 1238 1239 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1240 } 1241 1242 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1243 assert(type->isVariablyModifiedType() && 1244 "Must pass variably modified type to EmitVLASizes!"); 1245 1246 EnsureInsertPoint(); 1247 1248 // We're going to walk down into the type and look for VLA 1249 // expressions. 1250 do { 1251 assert(type->isVariablyModifiedType()); 1252 1253 const Type *ty = type.getTypePtr(); 1254 switch (ty->getTypeClass()) { 1255 1256 #define TYPE(Class, Base) 1257 #define ABSTRACT_TYPE(Class, Base) 1258 #define NON_CANONICAL_TYPE(Class, Base) 1259 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1260 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1261 #include "clang/AST/TypeNodes.def" 1262 llvm_unreachable("unexpected dependent type!"); 1263 1264 // These types are never variably-modified. 1265 case Type::Builtin: 1266 case Type::Complex: 1267 case Type::Vector: 1268 case Type::ExtVector: 1269 case Type::Record: 1270 case Type::Enum: 1271 case Type::Elaborated: 1272 case Type::TemplateSpecialization: 1273 case Type::ObjCObject: 1274 case Type::ObjCInterface: 1275 case Type::ObjCObjectPointer: 1276 llvm_unreachable("type class is never variably-modified!"); 1277 1278 case Type::Decayed: 1279 type = cast<DecayedType>(ty)->getPointeeType(); 1280 break; 1281 1282 case Type::Pointer: 1283 type = cast<PointerType>(ty)->getPointeeType(); 1284 break; 1285 1286 case Type::BlockPointer: 1287 type = cast<BlockPointerType>(ty)->getPointeeType(); 1288 break; 1289 1290 case Type::LValueReference: 1291 case Type::RValueReference: 1292 type = cast<ReferenceType>(ty)->getPointeeType(); 1293 break; 1294 1295 case Type::MemberPointer: 1296 type = cast<MemberPointerType>(ty)->getPointeeType(); 1297 break; 1298 1299 case Type::ConstantArray: 1300 case Type::IncompleteArray: 1301 // Losing element qualification here is fine. 1302 type = cast<ArrayType>(ty)->getElementType(); 1303 break; 1304 1305 case Type::VariableArray: { 1306 // Losing element qualification here is fine. 1307 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1308 1309 // Unknown size indication requires no size computation. 1310 // Otherwise, evaluate and record it. 1311 if (const Expr *size = vat->getSizeExpr()) { 1312 // It's possible that we might have emitted this already, 1313 // e.g. with a typedef and a pointer to it. 1314 llvm::Value *&entry = VLASizeMap[size]; 1315 if (!entry) { 1316 llvm::Value *Size = EmitScalarExpr(size); 1317 1318 // C11 6.7.6.2p5: 1319 // If the size is an expression that is not an integer constant 1320 // expression [...] each time it is evaluated it shall have a value 1321 // greater than zero. 1322 if (SanOpts->VLABound && 1323 size->getType()->isSignedIntegerType()) { 1324 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1325 llvm::Constant *StaticArgs[] = { 1326 EmitCheckSourceLocation(size->getLocStart()), 1327 EmitCheckTypeDescriptor(size->getType()) 1328 }; 1329 EmitCheck(Builder.CreateICmpSGT(Size, Zero), 1330 "vla_bound_not_positive", StaticArgs, Size, 1331 CRK_Recoverable); 1332 } 1333 1334 // Always zexting here would be wrong if it weren't 1335 // undefined behavior to have a negative bound. 1336 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1337 } 1338 } 1339 type = vat->getElementType(); 1340 break; 1341 } 1342 1343 case Type::FunctionProto: 1344 case Type::FunctionNoProto: 1345 type = cast<FunctionType>(ty)->getResultType(); 1346 break; 1347 1348 case Type::Paren: 1349 case Type::TypeOf: 1350 case Type::UnaryTransform: 1351 case Type::Attributed: 1352 case Type::SubstTemplateTypeParm: 1353 case Type::PackExpansion: 1354 // Keep walking after single level desugaring. 1355 type = type.getSingleStepDesugaredType(getContext()); 1356 break; 1357 1358 case Type::Typedef: 1359 case Type::Decltype: 1360 case Type::Auto: 1361 // Stop walking: nothing to do. 1362 return; 1363 1364 case Type::TypeOfExpr: 1365 // Stop walking: emit typeof expression. 1366 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1367 return; 1368 1369 case Type::Atomic: 1370 type = cast<AtomicType>(ty)->getValueType(); 1371 break; 1372 } 1373 } while (type->isVariablyModifiedType()); 1374 } 1375 1376 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1377 if (getContext().getBuiltinVaListType()->isArrayType()) 1378 return EmitScalarExpr(E); 1379 return EmitLValue(E).getAddress(); 1380 } 1381 1382 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1383 llvm::Constant *Init) { 1384 assert (Init && "Invalid DeclRefExpr initializer!"); 1385 if (CGDebugInfo *Dbg = getDebugInfo()) 1386 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1387 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1388 } 1389 1390 CodeGenFunction::PeepholeProtection 1391 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1392 // At the moment, the only aggressive peephole we do in IR gen 1393 // is trunc(zext) folding, but if we add more, we can easily 1394 // extend this protection. 1395 1396 if (!rvalue.isScalar()) return PeepholeProtection(); 1397 llvm::Value *value = rvalue.getScalarVal(); 1398 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1399 1400 // Just make an extra bitcast. 1401 assert(HaveInsertPoint()); 1402 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1403 Builder.GetInsertBlock()); 1404 1405 PeepholeProtection protection; 1406 protection.Inst = inst; 1407 return protection; 1408 } 1409 1410 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1411 if (!protection.Inst) return; 1412 1413 // In theory, we could try to duplicate the peepholes now, but whatever. 1414 protection.Inst->eraseFromParent(); 1415 } 1416 1417 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1418 llvm::Value *AnnotatedVal, 1419 StringRef AnnotationStr, 1420 SourceLocation Location) { 1421 llvm::Value *Args[4] = { 1422 AnnotatedVal, 1423 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1424 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1425 CGM.EmitAnnotationLineNo(Location) 1426 }; 1427 return Builder.CreateCall(AnnotationFn, Args); 1428 } 1429 1430 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1431 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1432 // FIXME We create a new bitcast for every annotation because that's what 1433 // llvm-gcc was doing. 1434 for (specific_attr_iterator<AnnotateAttr> 1435 ai = D->specific_attr_begin<AnnotateAttr>(), 1436 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1437 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1438 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1439 (*ai)->getAnnotation(), D->getLocation()); 1440 } 1441 1442 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1443 llvm::Value *V) { 1444 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1445 llvm::Type *VTy = V->getType(); 1446 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1447 CGM.Int8PtrTy); 1448 1449 for (specific_attr_iterator<AnnotateAttr> 1450 ai = D->specific_attr_begin<AnnotateAttr>(), 1451 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) { 1452 // FIXME Always emit the cast inst so we can differentiate between 1453 // annotation on the first field of a struct and annotation on the struct 1454 // itself. 1455 if (VTy != CGM.Int8PtrTy) 1456 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1457 V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation()); 1458 V = Builder.CreateBitCast(V, VTy); 1459 } 1460 1461 return V; 1462 } 1463 1464 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1465