/external/eigen/doc/snippets/ |
ComplexEigenSolver_eigenvectors.cpp | 4 << endl << ces.eigenvectors().col(1) << endl;
|
EigenSolver_eigenvectors.cpp | 4 << endl << es.eigenvectors().col(1) << endl;
|
SelfAdjointEigenSolver_eigenvectors.cpp | 4 << endl << es.eigenvectors().col(1) << endl;
|
ComplexEigenSolver_compute.cpp | 7 cout << "The matrix of eigenvectors, V, is:" << endl << ces.eigenvectors() << endl << endl; 11 VectorXcf v = ces.eigenvectors().col(0); 16 << ces.eigenvectors() * ces.eigenvalues().asDiagonal() * ces.eigenvectors().inverse() << endl;
|
EigenSolver_EigenSolver_MatrixType.cpp | 6 cout << "The matrix of eigenvectors, V, is:" << endl << es.eigenvectors() << endl << endl; 10 VectorXcd v = es.eigenvectors().col(0); 15 MatrixXcd V = es.eigenvectors();
|
SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp | 7 cout << "The matrix of eigenvectors, V, is:" << endl << es.eigenvectors() << endl << endl; 11 VectorXd v = es.eigenvectors().col(0); 16 MatrixXd V = es.eigenvectors();
|
SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.cpp | 10 cout << "The matrix of eigenvectors, V, is:" << endl << es.eigenvectors() << endl << endl; 14 VectorXd v = es.eigenvectors().col(0);
|
/external/eigen/doc/examples/ |
TutorialLinAlgSelfAdjointEigenSolver.cpp | 15 cout << "Here's a matrix whose columns are eigenvectors of A \n" 17 << eigensolver.eigenvectors() << endl;
|
/external/eigen/test/ |
eigensolver_selfadjoint.cpp | 49 VERIFY((symmA.template selfadjointView<Lower>() * eiSymm.eigenvectors()).isApprox( 50 eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps)); 54 VERIFY((symmA.template selfadjointView<Lower>() * eiDirect.eigenvectors()).isApprox( 55 eiDirect.eigenvectors() * eiDirect.eigenvalues().asDiagonal(), largerEps)); 65 VERIFY((symmA.template selfadjointView<Lower>() * eiSymmGen.eigenvectors()).isApprox( 66 symmB.template selfadjointView<Lower>() * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); 71 VERIFY((symmB.template selfadjointView<Lower>() * (symmA.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox( 72 (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); 77 VERIFY((symmA.template selfadjointView<Lower>() * (symmB.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox( 78 (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)) [all...] |
eigensolver_complex.cpp | 53 VERIFY_IS_APPROX(symmA * ei0.eigenvectors(), ei0.eigenvectors() * ei0.eigenvalues().asDiagonal()); 57 VERIFY_IS_APPROX(a * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); 86 VERIFY_RAISES_ASSERT(eig.eigenvectors()); 91 VERIFY_RAISES_ASSERT(eig.eigenvectors());
|
eigensolver_generic.cpp | 43 VERIFY_IS_APPROX(a.template cast<Complex>() * ei1.eigenvectors(), 44 ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); 45 VERIFY_IS_APPROX(ei1.eigenvectors().colwise().norm(), RealVectorType::Ones(rows).transpose()); 68 VERIFY_RAISES_ASSERT(eig.eigenvectors()); 75 VERIFY_RAISES_ASSERT(eig.eigenvectors()); 110 V(0,0) = solver.eigenvectors()(0,0).real();
|
/external/chromium_org/ui/gfx/ |
matrix3_unittest.cc | 104 Matrix3F eigenvectors = Matrix3F::Zeros(); local 105 Vector3dF eigenvals = matrix.SolveEigenproblem(&eigenvectors); 108 EXPECT_EQ(Vector3dF(0.0f, 0.0f, 1.0f), eigenvectors.get_column(0)); 109 EXPECT_EQ(Vector3dF(1.0f, 0.0f, 0.0f), eigenvectors.get_column(1)); 110 EXPECT_EQ(Vector3dF(0.0f, 1.0f, 0.0f), eigenvectors.get_column(2)); 114 // This block tests computation of eigenvectors of a matrix where nice 120 Matrix3F eigenvectors = Matrix3F::Zeros(); local 121 Vector3dF eigenvals = matrix.SolveEigenproblem(&eigenvectors); 126 (expected_principal - eigenvectors.get_column(0)).Length(), 131 // This block tests computation of eigenvectors of a matrix where outpu 134 Matrix3F eigenvectors = Matrix3F::Zeros(); local [all...] |
matrix3_f.cc | 124 Vector3dF Matrix3F::SolveEigenproblem(Matrix3F* eigenvectors) const { 192 if (eigenvectors != NULL && diagonal) { 193 // Eigenvectors are e-vectors, just need to be sorted accordingly. 194 *eigenvectors = Zeros(); 196 eigenvectors->set(indices[i], i, 1.0f); 197 } else if (eigenvectors != NULL) { 230 eigenvectors->set_column(i, eigvec);
|
matrix3_f.h | 76 // Compute eigenvalues and (optionally) normalized eigenvectors of 77 // a positive defnite matrix *this. Eigenvectors are computed only if 78 // non-null |eigenvectors| matrix is passed. If it is NULL, the routine 79 // will not attempt to compute eigenvectors but will still return eigenvalues 83 // only needs to be symmetric while eigenvectors require it to be 86 // Eigenvectors are placed as column in |eigenvectors| in order corresponding 88 Vector3dF SolveEigenproblem(Matrix3F* eigenvectors) const;
|
color_analysis.cc | 555 gfx::Matrix3F eigenvectors = gfx::Matrix3F::Zeros(); local 556 gfx::Vector3dF eigenvals = covariance.SolveEigenproblem(&eigenvectors); 557 gfx::Vector3dF principal = eigenvectors.get_column(0);
|
/external/eigen/test/eigen2/ |
eigen2_eigensolver.cpp | 67 VERIFY_IS_APPROX(_evec.cwise().abs(), eiSymm.eigenvectors().cwise().abs()); 77 MatrixType normalized_eivec = eiSymmGen.eigenvectors()*eiSymmGen.eigenvectors().colwise().norm().asDiagonal().inverse(); 88 VERIFY((symmA * eiSymm.eigenvectors()).isApprox( 89 eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps)); 92 VERIFY((symmA * eiSymmGen.eigenvectors()).isApprox( 93 symmB * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); 127 VERIFY_IS_APPROX(a.template cast<Complex>() * ei1.eigenvectors(), 128 ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
|
/external/eigen/unsupported/test/ |
matrix_square_root.cpp | 29 result = (es.eigenvectors() * eivals.asDiagonal() * es.eigenvectors().inverse()).real();
|
mpreal_support.cpp | 49 VERIFY_IS_APPROX((S.selfadjointView<Lower>() * eig.eigenvectors()), 50 eig.eigenvectors() * eig.eigenvalues().asDiagonal());
|
/external/eigen/lapack/ |
eigenvalues.cpp | 76 matrix(a,*n,*n,*lda) = eig.eigenvectors();
|
/external/eigen/Eigen/src/Eigen2Support/ |
LeastSquares.h | 159 result->normal() = eig.eigenvectors().col(0);
|
/external/eigen/bench/ |
benchEigenSolver.cpp | 61 acc += ei.eigenvectors().coeff(r,c); 75 acc += ei.eigenvectors().coeff(r,c);
|
eig33.cpp | 193 if(evecs.col(k).dot(eig.eigenvectors().col(k))<0) 195 std::cerr << evecs - eig.eigenvectors() << "\n\n";
|
/external/eigen/Eigen/src/Eigenvalues/ |
ComplexEigenSolver.h | 24 * \brief Computes eigenvalues and eigenvectors of general complex matrices 30 * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars 33 * the diagonal, and \f$ V \f$ is a matrix with the eigenvectors as 39 * eigenvalues and eigenvectors of a given function. The 80 /** \brief Type for matrix of eigenvectors as returned by eigenvectors(). 119 * \param[in] computeEigenvectors If true, both the eigenvectors and the 136 /** \brief Returns the eigenvectors of given matrix. 138 * \returns A const reference to the matrix whose columns are the eigenvectors. 146 * This function returns a matrix whose columns are the eigenvectors. Colum 156 const EigenvectorType& eigenvectors() const function in class:Eigen::ComplexEigenSolver [all...] |
EigenSolver.h | 23 * \brief Computes eigenvalues and eigenvectors of general matrices 29 * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars 32 * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V = 36 * The eigenvalues and eigenvectors of a matrix may be complex, even when the 46 * Call the function compute() to compute the eigenvalues and eigenvectors of 49 * eigenvalues and eigenvectors at construction time. Once the eigenvalue and 50 * eigenvectors are computed, they can be retrieved with the eigenvalues() and 51 * eigenvectors() functions. The pseudoEigenvalueMatrix() and 99 /** \brief Type for matrix of eigenvectors as returned by eigenvectors(). 320 typename EigenSolver<MatrixType>::EigenvectorsType EigenSolver<MatrixType>::eigenvectors() const function in class:Eigen::EigenSolver [all...] |
/external/opencv/cv/src/ |
cvshapedescr.cpp | 788 double eigenvalues[6], eigenvectors[36]; local 797 CvMat _EIGVECS = cvMat(6,6,CV_64F,eigenvectors), _EIGVALS = cvMat(6,1,CV_64F,eigenvalues); 858 eigenvectors[i*6 + j] *= a; 890 _EIGVECS = cvMat( 6, 1, CV_64F, eigenvectors + 6*i ); 958 _EIGVECS = cvMat( 2, 2, CV_64F, eigenvectors ); 962 // exteract axis length from eigenvectors 967 box->angle = (float)(180 - atan2(eigenvectors[2], eigenvectors[3])*180/CV_PI); [all...] |