HomeSort by relevance Sort by last modified time
    Searched refs:eigenvectors (Results 1 - 25 of 27) sorted by null

1 2

  /external/eigen/doc/snippets/
ComplexEigenSolver_eigenvectors.cpp 4 << endl << ces.eigenvectors().col(1) << endl;
EigenSolver_eigenvectors.cpp 4 << endl << es.eigenvectors().col(1) << endl;
SelfAdjointEigenSolver_eigenvectors.cpp 4 << endl << es.eigenvectors().col(1) << endl;
ComplexEigenSolver_compute.cpp 7 cout << "The matrix of eigenvectors, V, is:" << endl << ces.eigenvectors() << endl << endl;
11 VectorXcf v = ces.eigenvectors().col(0);
16 << ces.eigenvectors() * ces.eigenvalues().asDiagonal() * ces.eigenvectors().inverse() << endl;
EigenSolver_EigenSolver_MatrixType.cpp 6 cout << "The matrix of eigenvectors, V, is:" << endl << es.eigenvectors() << endl << endl;
10 VectorXcd v = es.eigenvectors().col(0);
15 MatrixXcd V = es.eigenvectors();
SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp 7 cout << "The matrix of eigenvectors, V, is:" << endl << es.eigenvectors() << endl << endl;
11 VectorXd v = es.eigenvectors().col(0);
16 MatrixXd V = es.eigenvectors();
SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.cpp 10 cout << "The matrix of eigenvectors, V, is:" << endl << es.eigenvectors() << endl << endl;
14 VectorXd v = es.eigenvectors().col(0);
  /external/eigen/doc/examples/
TutorialLinAlgSelfAdjointEigenSolver.cpp 15 cout << "Here's a matrix whose columns are eigenvectors of A \n"
17 << eigensolver.eigenvectors() << endl;
  /external/eigen/test/
eigensolver_selfadjoint.cpp 49 VERIFY((symmA.template selfadjointView<Lower>() * eiSymm.eigenvectors()).isApprox(
50 eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps));
54 VERIFY((symmA.template selfadjointView<Lower>() * eiDirect.eigenvectors()).isApprox(
55 eiDirect.eigenvectors() * eiDirect.eigenvalues().asDiagonal(), largerEps));
65 VERIFY((symmA.template selfadjointView<Lower>() * eiSymmGen.eigenvectors()).isApprox(
66 symmB.template selfadjointView<Lower>() * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
71 VERIFY((symmB.template selfadjointView<Lower>() * (symmA.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox(
72 (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
77 VERIFY((symmA.template selfadjointView<Lower>() * (symmB.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox(
78 (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps))
    [all...]
eigensolver_complex.cpp 53 VERIFY_IS_APPROX(symmA * ei0.eigenvectors(), ei0.eigenvectors() * ei0.eigenvalues().asDiagonal());
57 VERIFY_IS_APPROX(a * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
86 VERIFY_RAISES_ASSERT(eig.eigenvectors());
91 VERIFY_RAISES_ASSERT(eig.eigenvectors());
eigensolver_generic.cpp 43 VERIFY_IS_APPROX(a.template cast<Complex>() * ei1.eigenvectors(),
44 ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
45 VERIFY_IS_APPROX(ei1.eigenvectors().colwise().norm(), RealVectorType::Ones(rows).transpose());
68 VERIFY_RAISES_ASSERT(eig.eigenvectors());
75 VERIFY_RAISES_ASSERT(eig.eigenvectors());
110 V(0,0) = solver.eigenvectors()(0,0).real();
  /external/chromium_org/ui/gfx/
matrix3_unittest.cc 104 Matrix3F eigenvectors = Matrix3F::Zeros(); local
105 Vector3dF eigenvals = matrix.SolveEigenproblem(&eigenvectors);
108 EXPECT_EQ(Vector3dF(0.0f, 0.0f, 1.0f), eigenvectors.get_column(0));
109 EXPECT_EQ(Vector3dF(1.0f, 0.0f, 0.0f), eigenvectors.get_column(1));
110 EXPECT_EQ(Vector3dF(0.0f, 1.0f, 0.0f), eigenvectors.get_column(2));
114 // This block tests computation of eigenvectors of a matrix where nice
120 Matrix3F eigenvectors = Matrix3F::Zeros(); local
121 Vector3dF eigenvals = matrix.SolveEigenproblem(&eigenvectors);
126 (expected_principal - eigenvectors.get_column(0)).Length(),
131 // This block tests computation of eigenvectors of a matrix where outpu
134 Matrix3F eigenvectors = Matrix3F::Zeros(); local
    [all...]
matrix3_f.cc 124 Vector3dF Matrix3F::SolveEigenproblem(Matrix3F* eigenvectors) const {
192 if (eigenvectors != NULL && diagonal) {
193 // Eigenvectors are e-vectors, just need to be sorted accordingly.
194 *eigenvectors = Zeros();
196 eigenvectors->set(indices[i], i, 1.0f);
197 } else if (eigenvectors != NULL) {
230 eigenvectors->set_column(i, eigvec);
matrix3_f.h 76 // Compute eigenvalues and (optionally) normalized eigenvectors of
77 // a positive defnite matrix *this. Eigenvectors are computed only if
78 // non-null |eigenvectors| matrix is passed. If it is NULL, the routine
79 // will not attempt to compute eigenvectors but will still return eigenvalues
83 // only needs to be symmetric while eigenvectors require it to be
86 // Eigenvectors are placed as column in |eigenvectors| in order corresponding
88 Vector3dF SolveEigenproblem(Matrix3F* eigenvectors) const;
color_analysis.cc 555 gfx::Matrix3F eigenvectors = gfx::Matrix3F::Zeros(); local
556 gfx::Vector3dF eigenvals = covariance.SolveEigenproblem(&eigenvectors);
557 gfx::Vector3dF principal = eigenvectors.get_column(0);
  /external/eigen/test/eigen2/
eigen2_eigensolver.cpp 67 VERIFY_IS_APPROX(_evec.cwise().abs(), eiSymm.eigenvectors().cwise().abs());
77 MatrixType normalized_eivec = eiSymmGen.eigenvectors()*eiSymmGen.eigenvectors().colwise().norm().asDiagonal().inverse();
88 VERIFY((symmA * eiSymm.eigenvectors()).isApprox(
89 eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps));
92 VERIFY((symmA * eiSymmGen.eigenvectors()).isApprox(
93 symmB * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
127 VERIFY_IS_APPROX(a.template cast<Complex>() * ei1.eigenvectors(),
128 ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
  /external/eigen/unsupported/test/
matrix_square_root.cpp 29 result = (es.eigenvectors() * eivals.asDiagonal() * es.eigenvectors().inverse()).real();
mpreal_support.cpp 49 VERIFY_IS_APPROX((S.selfadjointView<Lower>() * eig.eigenvectors()),
50 eig.eigenvectors() * eig.eigenvalues().asDiagonal());
  /external/eigen/lapack/
eigenvalues.cpp 76 matrix(a,*n,*n,*lda) = eig.eigenvectors();
  /external/eigen/Eigen/src/Eigen2Support/
LeastSquares.h 159 result->normal() = eig.eigenvectors().col(0);
  /external/eigen/bench/
benchEigenSolver.cpp 61 acc += ei.eigenvectors().coeff(r,c);
75 acc += ei.eigenvectors().coeff(r,c);
eig33.cpp 193 if(evecs.col(k).dot(eig.eigenvectors().col(k))<0)
195 std::cerr << evecs - eig.eigenvectors() << "\n\n";
  /external/eigen/Eigen/src/Eigenvalues/
ComplexEigenSolver.h 24 * \brief Computes eigenvalues and eigenvectors of general complex matrices
30 * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars
33 * the diagonal, and \f$ V \f$ is a matrix with the eigenvectors as
39 * eigenvalues and eigenvectors of a given function. The
80 /** \brief Type for matrix of eigenvectors as returned by eigenvectors().
119 * \param[in] computeEigenvectors If true, both the eigenvectors and the
136 /** \brief Returns the eigenvectors of given matrix.
138 * \returns A const reference to the matrix whose columns are the eigenvectors.
146 * This function returns a matrix whose columns are the eigenvectors. Colum
156 const EigenvectorType& eigenvectors() const function in class:Eigen::ComplexEigenSolver
    [all...]
EigenSolver.h 23 * \brief Computes eigenvalues and eigenvectors of general matrices
29 * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars
32 * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V =
36 * The eigenvalues and eigenvectors of a matrix may be complex, even when the
46 * Call the function compute() to compute the eigenvalues and eigenvectors of
49 * eigenvalues and eigenvectors at construction time. Once the eigenvalue and
50 * eigenvectors are computed, they can be retrieved with the eigenvalues() and
51 * eigenvectors() functions. The pseudoEigenvalueMatrix() and
99 /** \brief Type for matrix of eigenvectors as returned by eigenvectors().
320 typename EigenSolver<MatrixType>::EigenvectorsType EigenSolver<MatrixType>::eigenvectors() const function in class:Eigen::EigenSolver
    [all...]
  /external/opencv/cv/src/
cvshapedescr.cpp 788 double eigenvalues[6], eigenvectors[36]; local
797 CvMat _EIGVECS = cvMat(6,6,CV_64F,eigenvectors), _EIGVALS = cvMat(6,1,CV_64F,eigenvalues);
858 eigenvectors[i*6 + j] *= a;
890 _EIGVECS = cvMat( 6, 1, CV_64F, eigenvectors + 6*i );
958 _EIGVECS = cvMat( 2, 2, CV_64F, eigenvectors );
962 // exteract axis length from eigenvectors
967 box->angle = (float)(180 - atan2(eigenvectors[2], eigenvectors[3])*180/CV_PI);
    [all...]

Completed in 1204 milliseconds

1 2