Home | History | Annotate | Download | only in IterativeLinearSolvers
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2012 Dsir Nuentsa-Wakam <desire.nuentsa_wakam (at) inria.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #ifndef EIGEN_INCOMPLETE_LUT_H
     11 #define EIGEN_INCOMPLETE_LUT_H
     12 
     13 namespace Eigen {
     14 
     15 /**
     16  * \brief Incomplete LU factorization with dual-threshold strategy
     17  * During the numerical factorization, two dropping rules are used :
     18  *  1) any element whose magnitude is less than some tolerance is dropped.
     19  *    This tolerance is obtained by multiplying the input tolerance @p droptol
     20  *    by the average magnitude of all the original elements in the current row.
     21  *  2) After the elimination of the row, only the @p fill largest elements in
     22  *    the L part and the @p fill largest elements in the U part are kept
     23  *    (in addition to the diagonal element ). Note that @p fill is computed from
     24  *    the input parameter @p fillfactor which is used the ratio to control the fill_in
     25  *    relatively to the initial number of nonzero elements.
     26  *
     27  * The two extreme cases are when @p droptol=0 (to keep all the @p fill*2 largest elements)
     28  * and when @p fill=n/2 with @p droptol being different to zero.
     29  *
     30  * References : Yousef Saad, ILUT: A dual threshold incomplete LU factorization,
     31  *              Numerical Linear Algebra with Applications, 1(4), pp 387-402, 1994.
     32  *
     33  * NOTE : The following implementation is derived from the ILUT implementation
     34  * in the SPARSKIT package, Copyright (C) 2005, the Regents of the University of Minnesota
     35  *  released under the terms of the GNU LGPL:
     36  *    http://www-users.cs.umn.edu/~saad/software/SPARSKIT/README
     37  * However, Yousef Saad gave us permission to relicense his ILUT code to MPL2.
     38  * See the Eigen mailing list archive, thread: ILUT, date: July 8, 2012:
     39  *   http://listengine.tuxfamily.org/lists.tuxfamily.org/eigen/2012/07/msg00064.html
     40  * alternatively, on GMANE:
     41  *   http://comments.gmane.org/gmane.comp.lib.eigen/3302
     42  */
     43 template <typename _Scalar>
     44 class IncompleteLUT : internal::noncopyable
     45 {
     46     typedef _Scalar Scalar;
     47     typedef typename NumTraits<Scalar>::Real RealScalar;
     48     typedef Matrix<Scalar,Dynamic,1> Vector;
     49     typedef SparseMatrix<Scalar,RowMajor> FactorType;
     50     typedef SparseMatrix<Scalar,ColMajor> PermutType;
     51     typedef typename FactorType::Index Index;
     52 
     53   public:
     54     typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
     55 
     56     IncompleteLUT()
     57       : m_droptol(NumTraits<Scalar>::dummy_precision()), m_fillfactor(10),
     58         m_analysisIsOk(false), m_factorizationIsOk(false), m_isInitialized(false)
     59     {}
     60 
     61     template<typename MatrixType>
     62     IncompleteLUT(const MatrixType& mat, RealScalar droptol=NumTraits<Scalar>::dummy_precision(), int fillfactor = 10)
     63       : m_droptol(droptol),m_fillfactor(fillfactor),
     64         m_analysisIsOk(false),m_factorizationIsOk(false),m_isInitialized(false)
     65     {
     66       eigen_assert(fillfactor != 0);
     67       compute(mat);
     68     }
     69 
     70     Index rows() const { return m_lu.rows(); }
     71 
     72     Index cols() const { return m_lu.cols(); }
     73 
     74     /** \brief Reports whether previous computation was successful.
     75       *
     76       * \returns \c Success if computation was succesful,
     77       *          \c NumericalIssue if the matrix.appears to be negative.
     78       */
     79     ComputationInfo info() const
     80     {
     81       eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
     82       return m_info;
     83     }
     84 
     85     template<typename MatrixType>
     86     void analyzePattern(const MatrixType& amat);
     87 
     88     template<typename MatrixType>
     89     void factorize(const MatrixType& amat);
     90 
     91     /**
     92       * Compute an incomplete LU factorization with dual threshold on the matrix mat
     93       * No pivoting is done in this version
     94       *
     95       **/
     96     template<typename MatrixType>
     97     IncompleteLUT<Scalar>& compute(const MatrixType& amat)
     98     {
     99       analyzePattern(amat);
    100       factorize(amat);
    101       eigen_assert(m_factorizationIsOk == true);
    102       m_isInitialized = true;
    103       return *this;
    104     }
    105 
    106     void setDroptol(RealScalar droptol);
    107     void setFillfactor(int fillfactor);
    108 
    109     template<typename Rhs, typename Dest>
    110     void _solve(const Rhs& b, Dest& x) const
    111     {
    112       x = m_Pinv * b;
    113       x = m_lu.template triangularView<UnitLower>().solve(x);
    114       x = m_lu.template triangularView<Upper>().solve(x);
    115       x = m_P * x;
    116     }
    117 
    118     template<typename Rhs> inline const internal::solve_retval<IncompleteLUT, Rhs>
    119      solve(const MatrixBase<Rhs>& b) const
    120     {
    121       eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
    122       eigen_assert(cols()==b.rows()
    123                 && "IncompleteLUT::solve(): invalid number of rows of the right hand side matrix b");
    124       return internal::solve_retval<IncompleteLUT, Rhs>(*this, b.derived());
    125     }
    126 
    127 protected:
    128 
    129     template <typename VectorV, typename VectorI>
    130     int QuickSplit(VectorV &row, VectorI &ind, int ncut);
    131 
    132 
    133     /** keeps off-diagonal entries; drops diagonal entries */
    134     struct keep_diag {
    135       inline bool operator() (const Index& row, const Index& col, const Scalar&) const
    136       {
    137         return row!=col;
    138       }
    139     };
    140 
    141 protected:
    142 
    143     FactorType m_lu;
    144     RealScalar m_droptol;
    145     int m_fillfactor;
    146     bool m_analysisIsOk;
    147     bool m_factorizationIsOk;
    148     bool m_isInitialized;
    149     ComputationInfo m_info;
    150     PermutationMatrix<Dynamic,Dynamic,Index> m_P;     // Fill-reducing permutation
    151     PermutationMatrix<Dynamic,Dynamic,Index> m_Pinv;  // Inverse permutation
    152 };
    153 
    154 /**
    155  * Set control parameter droptol
    156  *  \param droptol   Drop any element whose magnitude is less than this tolerance
    157  **/
    158 template<typename Scalar>
    159 void IncompleteLUT<Scalar>::setDroptol(RealScalar droptol)
    160 {
    161   this->m_droptol = droptol;
    162 }
    163 
    164 /**
    165  * Set control parameter fillfactor
    166  * \param fillfactor  This is used to compute the  number @p fill_in of largest elements to keep on each row.
    167  **/
    168 template<typename Scalar>
    169 void IncompleteLUT<Scalar>::setFillfactor(int fillfactor)
    170 {
    171   this->m_fillfactor = fillfactor;
    172 }
    173 
    174 
    175 /**
    176  * Compute a quick-sort split of a vector
    177  * On output, the vector row is permuted such that its elements satisfy
    178  * abs(row(i)) >= abs(row(ncut)) if i<ncut
    179  * abs(row(i)) <= abs(row(ncut)) if i>ncut
    180  * \param row The vector of values
    181  * \param ind The array of index for the elements in @p row
    182  * \param ncut  The number of largest elements to keep
    183  **/
    184 template <typename Scalar>
    185 template <typename VectorV, typename VectorI>
    186 int IncompleteLUT<Scalar>::QuickSplit(VectorV &row, VectorI &ind, int ncut)
    187 {
    188   using std::swap;
    189   int mid;
    190   int n = row.size(); /* length of the vector */
    191   int first, last ;
    192 
    193   ncut--; /* to fit the zero-based indices */
    194   first = 0;
    195   last = n-1;
    196   if (ncut < first || ncut > last ) return 0;
    197 
    198   do {
    199     mid = first;
    200     RealScalar abskey = std::abs(row(mid));
    201     for (int j = first + 1; j <= last; j++) {
    202       if ( std::abs(row(j)) > abskey) {
    203         ++mid;
    204         swap(row(mid), row(j));
    205         swap(ind(mid), ind(j));
    206       }
    207     }
    208     /* Interchange for the pivot element */
    209     swap(row(mid), row(first));
    210     swap(ind(mid), ind(first));
    211 
    212     if (mid > ncut) last = mid - 1;
    213     else if (mid < ncut ) first = mid + 1;
    214   } while (mid != ncut );
    215 
    216   return 0; /* mid is equal to ncut */
    217 }
    218 
    219 template <typename Scalar>
    220 template<typename _MatrixType>
    221 void IncompleteLUT<Scalar>::analyzePattern(const _MatrixType& amat)
    222 {
    223   // Compute the Fill-reducing permutation
    224   SparseMatrix<Scalar,ColMajor, Index> mat1 = amat;
    225   SparseMatrix<Scalar,ColMajor, Index> mat2 = amat.transpose();
    226   // Symmetrize the pattern
    227   // FIXME for a matrix with nearly symmetric pattern, mat2+mat1 is the appropriate choice.
    228   //       on the other hand for a really non-symmetric pattern, mat2*mat1 should be prefered...
    229   SparseMatrix<Scalar,ColMajor, Index> AtA = mat2 + mat1;
    230   AtA.prune(keep_diag());
    231   internal::minimum_degree_ordering<Scalar, Index>(AtA, m_P);  // Then compute the AMD ordering...
    232 
    233   m_Pinv  = m_P.inverse(); // ... and the inverse permutation
    234 
    235   m_analysisIsOk = true;
    236 }
    237 
    238 template <typename Scalar>
    239 template<typename _MatrixType>
    240 void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
    241 {
    242   using std::sqrt;
    243   using std::swap;
    244   using std::abs;
    245 
    246   eigen_assert((amat.rows() == amat.cols()) && "The factorization should be done on a square matrix");
    247   int n = amat.cols();  // Size of the matrix
    248   m_lu.resize(n,n);
    249   // Declare Working vectors and variables
    250   Vector u(n) ;     // real values of the row -- maximum size is n --
    251   VectorXi ju(n);   // column position of the values in u -- maximum size  is n
    252   VectorXi jr(n);   // Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1
    253 
    254   // Apply the fill-reducing permutation
    255   eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
    256   SparseMatrix<Scalar,RowMajor, Index> mat;
    257   mat = amat.twistedBy(m_Pinv);
    258 
    259   // Initialization
    260   jr.fill(-1);
    261   ju.fill(0);
    262   u.fill(0);
    263 
    264   // number of largest elements to keep in each row:
    265   int fill_in =   static_cast<int> (amat.nonZeros()*m_fillfactor)/n+1;
    266   if (fill_in > n) fill_in = n;
    267 
    268   // number of largest nonzero elements to keep in the L and the U part of the current row:
    269   int nnzL = fill_in/2;
    270   int nnzU = nnzL;
    271   m_lu.reserve(n * (nnzL + nnzU + 1));
    272 
    273   // global loop over the rows of the sparse matrix
    274   for (int ii = 0; ii < n; ii++)
    275   {
    276     // 1 - copy the lower and the upper part of the row i of mat in the working vector u
    277 
    278     int sizeu = 1; // number of nonzero elements in the upper part of the current row
    279     int sizel = 0; // number of nonzero elements in the lower part of the current row
    280     ju(ii)    = ii;
    281     u(ii)     = 0;
    282     jr(ii)    = ii;
    283     RealScalar rownorm = 0;
    284 
    285     typename FactorType::InnerIterator j_it(mat, ii); // Iterate through the current row ii
    286     for (; j_it; ++j_it)
    287     {
    288       int k = j_it.index();
    289       if (k < ii)
    290       {
    291         // copy the lower part
    292         ju(sizel) = k;
    293         u(sizel) = j_it.value();
    294         jr(k) = sizel;
    295         ++sizel;
    296       }
    297       else if (k == ii)
    298       {
    299         u(ii) = j_it.value();
    300       }
    301       else
    302       {
    303         // copy the upper part
    304         int jpos = ii + sizeu;
    305         ju(jpos) = k;
    306         u(jpos) = j_it.value();
    307         jr(k) = jpos;
    308         ++sizeu;
    309       }
    310       rownorm += internal::abs2(j_it.value());
    311     }
    312 
    313     // 2 - detect possible zero row
    314     if(rownorm==0)
    315     {
    316       m_info = NumericalIssue;
    317       return;
    318     }
    319     // Take the 2-norm of the current row as a relative tolerance
    320     rownorm = sqrt(rownorm);
    321 
    322     // 3 - eliminate the previous nonzero rows
    323     int jj = 0;
    324     int len = 0;
    325     while (jj < sizel)
    326     {
    327       // In order to eliminate in the correct order,
    328       // we must select first the smallest column index among  ju(jj:sizel)
    329       int k;
    330       int minrow = ju.segment(jj,sizel-jj).minCoeff(&k); // k is relative to the segment
    331       k += jj;
    332       if (minrow != ju(jj))
    333       {
    334         // swap the two locations
    335         int j = ju(jj);
    336         swap(ju(jj), ju(k));
    337         jr(minrow) = jj;   jr(j) = k;
    338         swap(u(jj), u(k));
    339       }
    340       // Reset this location
    341       jr(minrow) = -1;
    342 
    343       // Start elimination
    344       typename FactorType::InnerIterator ki_it(m_lu, minrow);
    345       while (ki_it && ki_it.index() < minrow) ++ki_it;
    346       eigen_internal_assert(ki_it && ki_it.col()==minrow);
    347       Scalar fact = u(jj) / ki_it.value();
    348 
    349       // drop too small elements
    350       if(abs(fact) <= m_droptol)
    351       {
    352         jj++;
    353         continue;
    354       }
    355 
    356       // linear combination of the current row ii and the row minrow
    357       ++ki_it;
    358       for (; ki_it; ++ki_it)
    359       {
    360         Scalar prod = fact * ki_it.value();
    361         int j       = ki_it.index();
    362         int jpos    = jr(j);
    363         if (jpos == -1) // fill-in element
    364         {
    365           int newpos;
    366           if (j >= ii) // dealing with the upper part
    367           {
    368             newpos = ii + sizeu;
    369             sizeu++;
    370             eigen_internal_assert(sizeu<=n);
    371           }
    372           else // dealing with the lower part
    373           {
    374             newpos = sizel;
    375             sizel++;
    376             eigen_internal_assert(sizel<=ii);
    377           }
    378           ju(newpos) = j;
    379           u(newpos) = -prod;
    380           jr(j) = newpos;
    381         }
    382         else
    383           u(jpos) -= prod;
    384       }
    385       // store the pivot element
    386       u(len) = fact;
    387       ju(len) = minrow;
    388       ++len;
    389 
    390       jj++;
    391     } // end of the elimination on the row ii
    392 
    393     // reset the upper part of the pointer jr to zero
    394     for(int k = 0; k <sizeu; k++) jr(ju(ii+k)) = -1;
    395 
    396     // 4 - partially sort and insert the elements in the m_lu matrix
    397 
    398     // sort the L-part of the row
    399     sizel = len;
    400     len = (std::min)(sizel, nnzL);
    401     typename Vector::SegmentReturnType ul(u.segment(0, sizel));
    402     typename VectorXi::SegmentReturnType jul(ju.segment(0, sizel));
    403     QuickSplit(ul, jul, len);
    404 
    405     // store the largest m_fill elements of the L part
    406     m_lu.startVec(ii);
    407     for(int k = 0; k < len; k++)
    408       m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
    409 
    410     // store the diagonal element
    411     // apply a shifting rule to avoid zero pivots (we are doing an incomplete factorization)
    412     if (u(ii) == Scalar(0))
    413       u(ii) = sqrt(m_droptol) * rownorm;
    414     m_lu.insertBackByOuterInnerUnordered(ii, ii) = u(ii);
    415 
    416     // sort the U-part of the row
    417     // apply the dropping rule first
    418     len = 0;
    419     for(int k = 1; k < sizeu; k++)
    420     {
    421       if(abs(u(ii+k)) > m_droptol * rownorm )
    422       {
    423         ++len;
    424         u(ii + len)  = u(ii + k);
    425         ju(ii + len) = ju(ii + k);
    426       }
    427     }
    428     sizeu = len + 1; // +1 to take into account the diagonal element
    429     len = (std::min)(sizeu, nnzU);
    430     typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1));
    431     typename VectorXi::SegmentReturnType juu(ju.segment(ii+1, sizeu-1));
    432     QuickSplit(uu, juu, len);
    433 
    434     // store the largest elements of the U part
    435     for(int k = ii + 1; k < ii + len; k++)
    436       m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
    437   }
    438 
    439   m_lu.finalize();
    440   m_lu.makeCompressed();
    441 
    442   m_factorizationIsOk = true;
    443   m_info = Success;
    444 }
    445 
    446 namespace internal {
    447 
    448 template<typename _MatrixType, typename Rhs>
    449 struct solve_retval<IncompleteLUT<_MatrixType>, Rhs>
    450   : solve_retval_base<IncompleteLUT<_MatrixType>, Rhs>
    451 {
    452   typedef IncompleteLUT<_MatrixType> Dec;
    453   EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
    454 
    455   template<typename Dest> void evalTo(Dest& dst) const
    456   {
    457     dec()._solve(rhs(),dst);
    458   }
    459 };
    460 
    461 } // end namespace internal
    462 
    463 } // end namespace Eigen
    464 
    465 #endif // EIGEN_INCOMPLETE_LUT_H
    466 
    467