HomeSort by relevance Sort by last modified time
    Searched refs:squaredNorm (Results 1 - 25 of 46) sorted by null

1 2

  /external/eigen/doc/snippets/
PartialRedux_squaredNorm.cpp 3 cout << "Here is the square norm of each row:" << endl << m.rowwise().squaredNorm() << endl;
Tutorial_Map_using.cpp 15 cout << "Squared euclidean distance: " << (m1-m2).squaredNorm() << endl;
17 (m1-m2map).squaredNorm() << endl;
  /external/eigen/doc/examples/
Tutorial_ReductionsVisitorsBroadcasting_reductions_norm.cpp 18 cout << "v.squaredNorm() = " << v.squaredNorm() << endl;
24 cout << "m.squaredNorm() = " << m.squaredNorm() << endl;
Tutorial_ReductionsVisitorsBroadcasting_broadcast_1nn.cpp 20 (m.colwise() - v).colwise().squaredNorm().minCoeff(&index);
  /external/ceres-solver/internal/ceres/
normal_prior_test.cc 78 (residuals - A * (VectorRef(x, num_cols) - b)).squaredNorm();
117 (residuals - A * (VectorRef(x, num_cols) - b)).squaredNorm();
123 (residuals - A * (VectorRef(x, num_cols) - b)).squaredNorm();
low_rank_inverse_hessian.cc 85 delta_x_dot_delta_gradient / delta_gradient.squaredNorm();
dogleg_strategy.cc 186 alpha_ = gradient_.squaredNorm() / Jg.squaredNorm();
425 polynomial(2) = r2 * (trB * trB + 2.0 * detB) - subspace_g_.squaredNorm();
428 polynomial(4) = r2 * detB * detB - (B_adj * subspace_g_).squaredNorm();
  /external/eigen/unsupported/Eigen/src/IterativeSolvers/
IterationController.h 137 { return converged(v.squaredNorm()); }
151 { return finished(double(v.squaredNorm())); }
  /external/eigen/Eigen/src/Core/
Dot.h 58 * \sa squaredNorm(), norm()
113 EIGEN_STRONG_INLINE typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::squaredNorm() const
122 * \sa dot(), squaredNorm()
127 return internal::sqrt(squaredNorm());
230 return internal::abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm();
250 if(!internal::isApprox(nested.col(i).squaredNorm(), static_cast<RealScalar>(1), prec))
  /external/eigen/Eigen/src/SparseCore/
SparseDot.h 80 SparseMatrixBase<Derived>::squaredNorm() const
89 return internal::sqrt(squaredNorm());
  /external/eigen/Eigen/src/IterativeLinearSolvers/
BiCGSTAB.h 45 RealScalar r0_sqnorm = r0.squaredNorm();
59 while ( r.squaredNorm()/r0_sqnorm > tol2 && i<maxIters )
78 w = t.dot(s) / t.squaredNorm();
83 tol_error = sqrt(r.squaredNorm()/r0_sqnorm);
ConjugateGradient.h 50 RealScalar rhsNorm2 = rhs.squaredNorm();
62 residualNorm2 = residual.squaredNorm();
  /external/eigen/test/eigen2/
eigen2_adjoint.cpp 56 VERIFY_IS_APPROX(ei_real(v1.eigen2_dot(v1)), v1.squaredNorm());
58 VERIFY_IS_APPROX(v1.squaredNorm(), v1.norm() * v1.norm());
  /external/eigen/test/
sparse_vector.cpp 79 VERIFY_IS_APPROX(v1.squaredNorm(), refV1.squaredNorm());
adjoint.cpp 55 VERIFY_IS_APPROX(internal::real(v1.dot(v1)), v1.squaredNorm());
57 VERIFY_IS_APPROX(v1.squaredNorm(), v1.norm() * v1.norm());
geo_alignedbox.cpp 111 VERIFY_IS_APPROX( 53.0f, box.diagonal().squaredNorm() );
138 VERIFY_IS_APPROX( 62, box.diagonal().squaredNorm() );
stable_norm.cpp 80 VERIFY_IS_NOT_APPROX(internal::sqrt(copy(vbig.squaredNorm())), internal::abs(internal::sqrt(size)*big)); // here the default norm must fail
87 VERIFY_IS_NOT_APPROX(internal::sqrt(copy(vsmall.squaredNorm())), internal::abs(internal::sqrt(size)*small)); // here the default norm must fail
  /external/eigen/unsupported/doc/examples/
BVH_Example.cpp 22 double minimumOnObjectObject(const Vector2d &v1, const Vector2d &v2) { ++calls; return (v1 - v2).squaredNorm(); }
  /external/eigen/unsupported/test/
mpreal_support.cpp 31 VERIFY(Eigen::internal::isApprox(A.array().abs2().sum(), A.squaredNorm()));
NonLinearOptimization.cpp 689 VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.1304802941E+02);
710 VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.1304802941E+02);
769 VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.2455138894E-01);
786 VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.2455138894E-01);
855 VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.5324382854E+00);
877 VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.5324382854E+00);
941 VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.6419295283E-02);
958 VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.6419295283E-02);
    [all...]
BVH.cpp 55 if((b.center - p).squaredNorm() < SQR(b.radius))
72 if((b.center - v).squaredNorm() < SQR(b.radius))
78 double minimumOnObject(const BallType &b) { ++calls; return (std::max)(0., (b.center - p).squaredNorm() - SQR(b.radius)); }
  /external/eigen/Eigen/src/Eigenvalues/
SelfAdjointEigenSolver.h 583 n = (cross = tmp.row(0).cross(tmp.row(1))).squaredNorm();
589 n = (cross = tmp.row(0).cross(tmp.row(2))).squaredNorm();
595 n = (cross = tmp.row(1).cross(tmp.row(2))).squaredNorm();
621 n = (cross = eivecs.col(k).cross(tmp.row(0).normalized())).squaredNorm();
626 n = (cross = eivecs.col(k).cross(tmp.row(1))).squaredNorm();
631 n = (cross = eivecs.col(k).cross(tmp.row(2))).squaredNorm();
  /external/eigen/Eigen/src/Eigen2Support/Geometry/
ParametrizedLine.h 74 return (diff - diff.eigen2_dot(direction())* direction()).squaredNorm();
Quaternion.h 140 * \sa Quaternion::norm(), MatrixBase::squaredNorm()
142 inline Scalar squaredNorm() const { return m_coeffs.squaredNorm(); }
145 * \sa Quaternion::squaredNorm(), MatrixBase::norm()
378 Scalar n2 = this->squaredNorm();
  /external/eigen/Eigen/src/Householder/
Householder.h 73 RealScalar tailSqNorm = size()==1 ? RealScalar(0) : tail.squaredNorm();

Completed in 654 milliseconds

1 2