/cts/suite/cts/deviceTests/opengl/assets/fragment/ |
blur | 19 float weights[11]; 20 weights[0] = 0.047748641153356156; 21 weights[1] = 0.05979670798364139; 22 weights[2] = 0.07123260215138659; 23 weights[3] = 0.08071711293576822; 24 weights[4] = 0.08700369673862933; 25 weights[5] = 0.08920620580763855; 26 weights[6] = 0.08700369673862933; 27 weights[7] = 0.08071711293576822; 28 weights[8] = 0.07123260215138659 [all...] |
/frameworks/base/libs/hwui/utils/ |
Blur.h | 27 static void generateGaussianWeights(float* weights, int32_t radius); 28 static void horizontal(float* weights, int32_t radius, const uint8_t* source, 30 static void vertical(float* weights, int32_t radius, const uint8_t* source,
|
Blur.cpp | 26 void Blur::generateGaussianWeights(float* weights, int32_t radius) { 27 // Compute gaussian weights for the blur 52 weights[r + radius] = coeff1 * pow(e, floatR * floatR * coeff2); 53 normalizeFactor += weights[r + radius]; 56 //Now we need to normalize the weights because all our coefficients need to add up to one 59 weights[r + radius] *= normalizeFactor; 63 void Blur::horizontal(float* weights, int32_t radius, 75 const float* gPtr = weights; 107 void Blur::vertical(float* weights, int32_t radius, 117 const float* gPtr = weights; [all...] |
/external/chromium_org/third_party/opus/src/src/ |
mlp.h | 36 const float *weights; member in struct:__anon13818
|
mlp_train.c | 58 net->weights = malloc((nbLayers-1)*sizeof(net->weights)); 59 net->best_weights = malloc((nbLayers-1)*sizeof(net->weights)); 62 net->weights[i] = malloc((topo[i]+1)*topo[i+1]*sizeof(net->weights[0][0])); 63 net->best_weights[i] = malloc((topo[i]+1)*topo[i+1]*sizeof(net->weights[0][0])); 83 net->weights[0][k*(topo[0]+1)+j+1] = randn(std); 90 sum += inMean[k]*net->weights[0][j*(topo[0]+1)+k+1]; 91 net->weights[0][j*(topo[0]+1)] = -sum; 101 net->weights[nbLayers-2][j*(topo[nbLayers-2]+1)] = mean [all...] |
/external/chromium_org/third_party/freetype/src/base/ |
ftlcdfil.c | 38 FT_Byte* weights = library->lcd_weights; local 56 fir[0] = weights[2] * val1; 57 fir[1] = weights[3] * val1; 58 fir[2] = weights[4] * val1; 63 fir[0] += weights[1] * val1; 64 fir[1] += weights[2] * val1; 65 fir[2] += weights[3] * val1; 66 fir[3] += weights[4] * val1; 74 pix = fir[0] + weights[0] * val; 75 fir[0] = fir[1] + weights[1] * val [all...] |
/external/freetype/src/base/ |
ftlcdfil.c | 38 FT_Byte* weights = library->lcd_weights; local 56 fir[0] = weights[2] * val1; 57 fir[1] = weights[3] * val1; 58 fir[2] = weights[4] * val1; 63 fir[0] += weights[1] * val1; 64 fir[1] += weights[2] * val1; 65 fir[2] += weights[3] * val1; 66 fir[3] += weights[4] * val1; 74 pix = fir[0] + weights[0] * val; 75 fir[0] = fir[1] + weights[1] * val [all...] |
/external/chromium_org/third_party/freetype/include/freetype/ |
ftlcdfil.h | 73 * weights (as given by FT_LCD_FILTER_DEFAULT) are no longer optimal, as 75 * gamma correction. To preserve color neutrality, weights for a FIR5 77 * and the FIR weights should be 83 * This formula generates equal weights for all the color primaries 85 * set of weights is 91 * where `a' has value 0x30 and `b' value 0x20. The weights in filter 209 * Use this function to override the filter weights selected by 219 * weights :: 221 * uses them to specify the filter weights. 241 unsigned char *weights ); [all...] |
/external/freetype/include/freetype/ |
ftlcdfil.h | 73 * weights (as given by FT_LCD_FILTER_DEFAULT) are no longer optimal, as 75 * gamma correction. To preserve color neutrality, weights for a FIR5 77 * and the FIR weights should be 83 * This formula generates equal weights for all the color primaries 85 * set of weights is 91 * where `a' has value 0x30 and `b' value 0x20. The weights in filter 209 * Use this function to override the filter weights selected by 219 * weights :: 221 * uses them to specify the filter weights. 241 unsigned char *weights ); [all...] |
/external/openfst/src/include/fst/script/ |
shortest-path.h | 65 vector<typename Arc::Weight> weights; local 73 ArcFilter>::Construct(ifst, &weights); 78 ShortestPath(ifst, ofst, &weights, spopts); 85 ArcFilter>::Construct(ifst, &weights); 90 ShortestPath(ifst, ofst, &weights, spopts); 97 ArcFilter >::Construct(ifst, &weights); 102 ShortestPath(ifst, ofst, &weights, spopts); 109 ArcFilter>::Construct(ifst, &weights); 114 ShortestPath(ifst, ofst, &weights, spopts); 121 ArcFilter>::Construct(ifst, &weights); [all...] |
shortest-distance.h | 95 const Fst<Arc> &fst, const vector<typename Arc::Weight> *weights) { 106 vector<typename Arc::Weight> weights; local 112 fst, &weights); 115 ShortestDistance(fst, &weights, sdopts); 122 fst, &weights); 126 ShortestDistance(fst, &weights, sdopts); 133 fst, &weights); 137 ShortestDistance(fst, &weights, sdopts); 145 fst, &weights); 149 ShortestDistance(fst, &weights, sdopts) [all...] |
/external/jmonkeyengine/engine/src/core/com/jme3/animation/ |
PoseTrack.java | 56 float[] weights; field in class:PoseTrack.PoseFrame 58 public PoseFrame(Pose[] poses, float[] weights) { 60 this.weights = weights; 71 result.weights = this.weights.clone(); 87 out.write(weights, "weights", null); 93 weights = in.readFloatArray("weights", null) [all...] |
/external/llvm/include/llvm/Analysis/ |
ProfileDataLoader.h | 78 EdgeWeights weights = EdgeInformation.find(f)->second; local 80 assert((weights.find(e) != weights.end()) 82 return weights.find(e)->second;
|
/external/jmonkeyengine/engine/src/test/jme3test/model/anim/ |
TestCustomAnim.java | 77 FloatBuffer weights = FloatBuffer.allocate( box.getVertexCount() * 4 ); local 79 weightsBuf.setupData(Usage.CpuOnly, 4, Format.Float, weights); 106 weights.array()[i+0] = 1; 107 weights.array()[i+1] = 0; 108 weights.array()[i+2] = 0; 109 weights.array()[i+3] = 0; 112 // Maximum number of weights per bone is 1
|
/frameworks/ml/bordeaux/learning/stochastic_linear_ranker/java/android/bordeaux/learning/ |
StochasticLinearRanker.java | 42 public HashMap<String, Float> weights = new HashMap<String, Float>(); field in class:StochasticLinearRanker.Model 95 slrModel.weights.put(wKeys[i], wValues[i]); 109 String[] wKeys = new String[model.weights.size()]; 110 float[] wValues = new float[model.weights.size()]; 112 for (Map.Entry<String, Float> e : model.weights.entrySet()){ 144 for (Map.Entry<String, Float> e : model.weights.entrySet()) 148 Log.i(TAG, "Weights are " + Sw);
|
/external/opencv/ml/src/ |
mlcnn.cpp | 297 // 3) Update weights by the gradient descent 635 CvMat* connect_mask, CvMat* weights ) 656 CV_CALL(layer->weights = cvCreateMat( n_output_planes, K*K+1, CV_32FC1 )); 659 if( weights ) 661 if( !ICV_IS_MAT_OF_TYPE( weights, CV_32FC1 ) ) 662 CV_ERROR( CV_StsBadSize, "Type of initial weights matrix must be CV_32FC1" ); 663 if( !CV_ARE_SIZES_EQ( weights, layer->weights ) ) 664 CV_ERROR( CV_StsBadSize, "Invalid size of initial weights matrix" ); 665 CV_CALL(cvCopy( weights, layer->weights )) [all...] |
mlboost.cpp | 185 const double* weights = ensemble->get_subtree_weights()->data.db; local 200 double w = weights[i]; 221 double w = weights[idx]; 229 double w = weights[idx]; 249 const double* weights = ensemble->get_subtree_weights()->data.db; local 252 const double* rcw0 = weights + n; 263 double w = weights[idx]; 278 double w = weights[idx], w2 = w*w; 303 double w = weights[idx]; 341 const double* weights = ensemble->get_subtree_weights()->data.db local 445 const double* weights = ensemble->get_subtree_weights()->data.db; local 493 const double* weights = ensemble->get_subtree_weights()->data.db; local 575 const double* weights = ensemble->get_subtree_weights()->data.db; local 641 const double* weights = ensemble->get_subtree_weights()->data.db; local 702 const double* weights = ensemble->get_weights()->data.db; local [all...] |
mlem.cpp | 74 means = weights = probs = inv_eigen_values = log_weight_div_det = 0; 81 means = weights = probs = inv_eigen_values = log_weight_div_det = 0; 99 cvReleaseMat( &weights ); 156 const CvMat* p = params.weights; 178 if( params.weights ) 180 const CvMat* w = params.weights; 186 CV_ERROR( CV_StsBadArg, "The array of weights must be a valid " 344 CV_CALL( weights = cvCreateMat( 1, nclusters, CV_64FC1 )); 429 if( params.weights && params.covs ) 432 cvReshape( weights, weights, 1, params.weights->rows ) [all...] |
mlann_mlp.cpp | 97 weights = 0; 110 weights = 0; 127 cvFree( &weights ); 185 double* w = weights[i]; 187 // initialize weights using Nguyen-Widrow algorithm 254 CV_CALL( weights = (double**)cvAlloc( (l_count+1)*sizeof(weights[0]) )); 256 weights[0] = wbuf->data.db; 257 weights[1] = weights[0] + l_dst[0]*2 [all...] |
/development/samples/ApiDemos/src/com/example/android/apis/graphics/ |
SensorTest.java | 44 public RunAve(float[] weights) { 45 mWeights = weights; 48 for (int i = 0; i < weights.length; i++) { 49 sum += weights[i]; 53 mDepth = weights.length;
|
/external/eigen/unsupported/Eigen/src/MatrixFunctions/ |
MatrixLogarithm.h | 247 const RealScalar weights[] = { 0.2777777777777777777777777777777778L, 0.4444444444444444444444444444444444L, local 253 result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI) 263 const RealScalar weights[] = { 0.1739274225687269286865319746109997L, 0.3260725774312730713134680253890003L, local 269 result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI) 280 const RealScalar weights[] = { 0.1184634425280945437571320203599587L, 0.2393143352496832340206457574178191L, local 287 result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI) 298 const RealScalar weights[] = { 0.0856622461895851725201480710863665L, 0.1803807865240693037849167569188581L, local 305 result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI) 317 const RealScalar weights[] = { 0.0647424830844348466353057163395410L, 0.1398526957446383339507338857118898L, local 325 result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI 337 const RealScalar weights[] = { 0.0506142681451881295762656771549811L, 0.1111905172266872352721779972131204L, local 358 const RealScalar weights[] = { 0.0406371941807872059859460790552618L, 0.0903240803474287020292360156214564L, local 380 const RealScalar weights[] = { 0.0333356721543440687967844049466659L, 0.0747256745752902965728881698288487L, local 403 const RealScalar weights[] = { 0.0278342835580868332413768602212743L, 0.0627901847324523123173471496119701L, local [all...] |
/frameworks/base/media/mca/filterpacks/java/android/filterpacks/imageproc/ |
SaturateFilter.java | 48 "uniform vec3 weights;\n" + 52 " float kv = dot(color.rgb, weights) + shift;\n" + 60 "uniform vec3 weights;\n" + 65 " float de = dot(color.rgb, weights);\n" + 145 float weights[] = { 2f/8f, 5f/8f, 1f/8f}; local 147 mBenProgram.setHostValue("weights", weights); 150 mHerfProgram.setHostValue("weights", weights);
|
SepiaFilter.java | 106 float weights[] = { 805.0f / 2048.0f, 715.0f / 2048.0f, 557.0f / 2048.0f, local 109 mProgram.setHostValue("matrix", weights);
|
/external/srec/srec/include/ |
swimodel.h | 39 const wtdata *weights; /*pointer to weights*/ member in struct:__anon26539
|
/external/jmonkeyengine/engine/src/core/com/jme3/math/ |
Spline.java | 28 private float[] weights; //weights of NURBS spline field in class:Spline 57 throw new IllegalArgumentException("To create NURBS spline use: 'public Spline(Vector3f[] controlPoints, float[] weights, float[] nurbKnots)' constructor!"); 86 throw new IllegalArgumentException("To create NURBS spline use: 'public Spline(Vector3f[] controlPoints, float[] weights, float[] nurbKnots)' constructor!"); 111 this.weights = new float[controlPoints.size()]; 113 this.basisFunctionDegree = nurbKnots.size() - weights.length; 117 this.weights[i] = controlPoint.w; 379 return knots.get(weights.length); 391 * This method returns NURBS' spline weights. 392 * @return NURBS' spline weights [all...] |