HomeSort by relevance Sort by last modified time
    Searched full:roots (Results 1 - 25 of 577) sorted by null

1 2 3 4 5 6 7 8 91011>>

  /external/eigen/unsupported/doc/examples/
PolynomialUtils1.cpp 9 Vector4d roots = Vector4d::Random(); local
10 cout << "Roots: " << roots.transpose() << endl;
12 roots_to_monicPolynomial( roots, polynomial );
18 evaluation[i] = poly_eval( polynomial, roots[i] ); }
19 cout << "Evaluation of the polynomial at the roots: " << evaluation.transpose();
PolynomialSolver1.cpp 12 Vector5d roots = Vector5d::Random(); local
13 cout << "Roots: " << roots.transpose() << endl;
15 roots_to_monicPolynomial( roots, polynomial );
18 cout << "Complex roots: " << psolve.roots().transpose() << endl;
23 cout << "Real roots: " << mapRR.transpose() << endl;
33 cout << "Complex roots: " << psolvef.roots().transpose() << endl;
35 for( int i=0; i<6; ++i ){ evals[i] = std::abs( poly_eval( hardCase_polynomial, psolvef.roots()[i] ) );
    [all...]
  /external/smali/util/src/test/java/org/jf/util/
PathUtilTest.java 39 File[] roots = File.listRoots(); local
41 if (roots.length > 1) {
42 File basePath = new File(roots[0] + "some" + File.separatorChar + "dir" + File.separatorChar + "test.txt");
43 File relativePath = new File(roots[1] + "some" + File.separatorChar + "dir" + File.separatorChar + "test.txt");
53 File[] roots = File.listRoots(); local
55 File basePath = new File(roots[0] + "some" + File.separatorChar + "dir" + File.separatorChar + "test.txt");
56 File relativePath = new File(roots[0] + "some" + File.separatorChar + "dir" + File.separatorChar + "test.txt");
68 File[] roots = File.listRoots(); local
70 File basePath = new File(roots[0] + "some" + File.separatorChar + "dir" + File.separatorChar);
71 File relativePath = new File(roots[0] + "some" + File.separatorChar + "dir" + File.separatorChar)
80 File[] roots = File.listRoots(); local
92 File[] roots = File.listRoots(); local
104 File[] roots = File.listRoots(); local
116 File[] roots = File.listRoots(); local
128 File[] roots = File.listRoots(); local
140 File[] roots = File.listRoots(); local
152 File[] roots = File.listRoots(); local
164 File[] roots = File.listRoots(); local
176 File[] roots = File.listRoots(); local
188 File[] roots = File.listRoots(); local
200 File[] roots = File.listRoots(); local
212 File[] roots = File.listRoots(); local
224 File[] roots = File.listRoots(); local
236 File[] roots = File.listRoots(); local
248 File[] roots = File.listRoots(); local
260 File[] roots = File.listRoots(); local
    [all...]
  /packages/apps/Camera/jni/feature_stab/db_vlvm/
db_utilities_poly.cpp 28 void db_SolveCubic(double *roots,int *nr_roots,double a,double b,double c,double d)
35 /*For nondegenerate cubics with three roots
40 if(a==0.0) db_SolveQuadratic(roots,nr_roots,b,c,d);
68 roots[0]= -2.0*srq*cos_theta_through3-bp_through3;
69 roots[1]=srq*min2_cos_theta_plu-bp_through3;
70 roots[2]=srq*min2_cos_theta_min-bp_through3;
77 if(A!=0.0) roots[0]=A+q/A-bp_through3;
78 else roots[0]= -bp_through3;
87 roots[0]= -2.0*si_r_srq-bp_through3;
89 roots[1]=si_r_srq-bp_through3
    [all...]
  /packages/apps/Camera2/jni/feature_stab/db_vlvm/
db_utilities_poly.cpp 28 void db_SolveCubic(double *roots,int *nr_roots,double a,double b,double c,double d)
35 /*For nondegenerate cubics with three roots
40 if(a==0.0) db_SolveQuadratic(roots,nr_roots,b,c,d);
68 roots[0]= -2.0*srq*cos_theta_through3-bp_through3;
69 roots[1]=srq*min2_cos_theta_plu-bp_through3;
70 roots[2]=srq*min2_cos_theta_min-bp_through3;
77 if(A!=0.0) roots[0]=A+q/A-bp_through3;
78 else roots[0]= -bp_through3;
87 roots[0]= -2.0*si_r_srq-bp_through3;
89 roots[1]=si_r_srq-bp_through3
    [all...]
  /packages/apps/LegacyCamera/jni/feature_stab/db_vlvm/
db_utilities_poly.cpp 28 void db_SolveCubic(double *roots,int *nr_roots,double a,double b,double c,double d)
35 /*For nondegenerate cubics with three roots
40 if(a==0.0) db_SolveQuadratic(roots,nr_roots,b,c,d);
68 roots[0]= -2.0*srq*cos_theta_through3-bp_through3;
69 roots[1]=srq*min2_cos_theta_plu-bp_through3;
70 roots[2]=srq*min2_cos_theta_min-bp_through3;
77 if(A!=0.0) roots[0]=A+q/A-bp_through3;
78 else roots[0]= -bp_through3;
87 roots[0]= -2.0*si_r_srq-bp_through3;
89 roots[1]=si_r_srq-bp_through3
    [all...]
  /external/chromium_org/third_party/skia/src/pathops/
SkPathOpsRect.cpp 21 int roots = 0; local
23 roots = SkDQuad::FindExtrema(quad[0].fX, quad[1].fX, quad[2].fX, tValues);
26 roots += SkDQuad::FindExtrema(quad[0].fY, quad[1].fY, quad[2].fY, &tValues[roots]);
28 for (int x = 0; x < roots; ++x) {
48 int roots = 0; local
50 roots = SkDCubic::FindExtrema(c[0].fX, c[1].fX, c[2].fX, c[3].fX, tValues);
53 roots += SkDCubic::FindExtrema(c[0].fY, c[1].fY, c[2].fY, c[3].fY, &tValues[roots]);
55 for (int x = 0; x < roots; ++x)
    [all...]
SkQuarticRoot.cpp 5 * Utility functions to find cubic and quartic roots,
10 * The functions return the number of non-complex roots and
24 * correct but multiple roots might be reported more
33 const double t0, const bool oneHint, double roots[4]) {
54 return SkDQuad::RootsReal(t2, t1, t0, roots);
57 return SkDCubic::RootsReal(t3, t2, t1, t0, roots);
64 int num = SkDCubic::RootsReal(t4, t3, t2, t1, roots);
66 if (approximately_zero(roots[i])) {
70 roots[num++] = 0;
76 int num = SkDCubic::RootsReal(t4, t4 + t3, -(t1 + t0), -t0, roots);
111 int roots = SkDCubic::RootsReal(1, -p \/ 2, -r, r * p \/ 2 - q * q \/ 8, cubicRoots); local
    [all...]
  /external/eigen/unsupported/test/
polynomialutils.cpp 36 EvalRootsType roots = EvalRootsType::Random(deg); local
37 roots_to_monicPolynomial( roots, pols );
40 for( int i=0; i<roots.size(); ++i ){
41 evr[i] = std::abs( poly_eval( pols, roots[i] ) ); }
74 EvalRootsType roots = EvalRootsType::Random(deg); local
75 roots_to_monicPolynomial( roots, pols );
78 _Scalar Max = roots.array().abs().maxCoeff();
79 _Scalar min = roots.array().abs().minCoeff();
83 cerr << "Roots: " << roots << endl
    [all...]
polynomialsolver.cpp 42 const RootsType& roots( psolve.roots() );
44 for( int i=0; i<roots.size(); ++i ){
45 evr[i] = std::abs( poly_eval( pols, roots[i] ) ); }
52 cerr << "Roots found: " << roots.transpose() << endl;
53 cerr << "Abs value of the polynomial at the roots: " << evr.transpose() << endl;
57 std::vector<Scalar> rootModuli( roots.size() );
58 Map< EvalRootsType > aux( &rootModuli[0], roots.size() );
59 aux = roots.array().abs()
    [all...]
  /external/skia/src/pathops/
SkPathOpsRect.cpp 21 int roots = 0; local
23 roots = SkDQuad::FindExtrema(quad[0].fX, quad[1].fX, quad[2].fX, tValues);
26 roots += SkDQuad::FindExtrema(quad[0].fY, quad[1].fY, quad[2].fY, &tValues[roots]);
28 for (int x = 0; x < roots; ++x) {
48 int roots = 0; local
50 roots = SkDCubic::FindExtrema(c[0].fX, c[1].fX, c[2].fX, c[3].fX, tValues);
53 roots += SkDCubic::FindExtrema(c[0].fY, c[1].fY, c[2].fY, c[3].fY, &tValues[roots]);
55 for (int x = 0; x < roots; ++x)
    [all...]
SkQuarticRoot.cpp 5 * Utility functions to find cubic and quartic roots,
10 * The functions return the number of non-complex roots and
24 * correct but multiple roots might be reported more
33 const double t0, const bool oneHint, double roots[4]) {
54 return SkDQuad::RootsReal(t2, t1, t0, roots);
57 return SkDCubic::RootsReal(t3, t2, t1, t0, roots);
64 int num = SkDCubic::RootsReal(t4, t3, t2, t1, roots);
66 if (approximately_zero(roots[i])) {
70 roots[num++] = 0;
76 int num = SkDCubic::RootsReal(t4, t4 + t3, -(t1 + t0), -t0, roots);
111 int roots = SkDCubic::RootsReal(1, -p \/ 2, -r, r * p \/ 2 - q * q \/ 8, cubicRoots); local
    [all...]
  /external/chromium_org/tools/deep_memory_profiler/visualizer/testdata/
error_sample.json 2 "roots": [
sample.json 3 "roots": [
  /frameworks/base/packages/DocumentsUI/src/com/android/documentsui/
RootsCache.java 58 * Cache of known storage backends and their roots.
64 "content://com.android.documentsui.roots/");
94 if (LOGD) Log.d(TAG, "Updating roots due to change at " + uri);
100 * Gather roots from all known storage providers.
115 * Gather roots from storage providers belonging to given package name.
125 * Gather roots from storage providers belonging to given authority.
146 * Load roots from authorities that are in stopped state. Normal
167 * Update all roots.
174 * Only update roots belonging to given package name. Other roots wil
250 final List<RootInfo> roots = Lists.newArrayList(); local
    [all...]
  /external/chromium_org/chrome/browser/
memory_details_android.cc 71 const std::set<ProcessId>& roots,
73 *out = roots;
76 for (std::set<ProcessId>::const_iterator i = roots.begin(); i != roots.end();
119 std::set<ProcessId> roots; local
120 roots.insert(base::GetCurrentProcId());
123 roots.insert(i->pid);
127 GetAllChildren(processes, roots, &current_browser_processes);
  /external/eigen/bench/
eig33.cpp 48 template<typename Matrix, typename Roots>
49 inline void computeRoots(const Matrix& m, Roots& roots)
56 // eigenvalues are the roots to this equation, all guaranteed to be
62 // Construct the parameters used in classifying the roots of the equation
63 // and in solving the equation for the roots in closed form.
75 // Compute the eigenvalues by solving for the roots of the polynomial.
80 roots(0) = c2_over_3 + Scalar(2)*rho*cos_theta;
81 roots(1) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta);
82 roots(2) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta)
    [all...]
  /external/clang/test/Analysis/
null-deref-ps-region.c 6 // also be live roots.
  /external/eigen/unsupported/Eigen/src/Polynomials/
PolynomialSolver.h 20 * - real roots,
21 * - greatest, smallest complex roots,
22 * - real roots with greatest, smallest absolute real value,
23 * - greatest, smallest real roots.
25 * It stores the set of roots as a vector of complexes.
54 /** \returns the complex roots of the polynomial */
55 inline const RootsType& roots() const { return m_roots; } function in class:Eigen::PolynomialSolverBase
58 /** Clear and fills the back insertion sequence with the real roots of the polynomial
59 * i.e. the real part of the complex roots that have an imaginary part which
304 * Computes the complex roots of a real polynomial
    [all...]
  /external/chromium_org/third_party/WebKit/Source/core/dom/
ContainerNodeAlgorithms.cpp 59 ShadowRootVector roots(shadow);
60 for (size_t i = 0; i < roots.size(); ++i) {
61 if (node.inDocument() && roots[i]->host() == node)
62 notifyNodeInsertedIntoDocument(*roots[i]);
96 ShadowRootVector roots(shadow);
97 for (size_t i = 0; i < roots.size(); ++i) {
98 if (!node.inDocument() && roots[i]->host() == node)
99 notifyNodeRemovedFromDocument(*roots[i]);
115 ShadowRootVector roots(shadow);
116 for (size_t i = 0; i < roots.size(); ++i
    [all...]
  /external/ceres-solver/internal/ceres/
polynomial_test.cc 78 // Needed because the roots are not returned in sorted order.
85 // Run a test with the polynomial defined by the N real roots in roots_real.
141 const double roots[1] = { 42.42 }; local
142 RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
146 const double roots[1] = { -42.42 }; local
147 RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
151 const double roots[2] = { 1.0, 42.42 }; local
152 RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
156 const double roots[2] = { -42.42, 1.0 }; local
157 RunPolynomialTestRealRoots(roots, true, true, kEpsilon)
161 const double roots[2] = { -42.42, -1.0 }; local
166 const double roots[2] = { 42.42, 42.43 }; local
189 const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 }; local
194 const double roots[4] = { 1.23e-1, 2.46e-1, 1.23e+5, 2.46e+5 }; local
199 const double roots[4] = { -42.42, 0.0, 0.0, 42.42 }; local
204 const double roots[4] = { 0.0, 0.0, 0.0, 0.0 }; local
209 const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 }; local
214 const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 }; local
219 const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 }; local
    [all...]
  /external/llvm/include/llvm/CodeGen/
GCMetadata.h 19 // - Stack offsets for GC roots, as specified by calls to llvm.gcroot
21 // As a refinement, liveness analysis calculates the set of live roots at each
23 // generator, so all roots are assumed live.
93 std::vector<GCRoot> Roots;
103 // The bit vector is the more compact representation where >3.2% of roots
122 Roots.push_back(GCRoot(Num, Metadata));
127 return Roots.erase(position);
148 /// roots_begin/roots_end - Iterators for all roots in the function.
150 roots_iterator roots_begin() { return Roots.begin(); }
151 roots_iterator roots_end () { return Roots.end();
    [all...]
  /build/tools/
fileslist.py 26 roots = argv[1:]
27 for root in roots:
  /external/chromium_org/chrome/test/pyautolib/
bookmark_model.py 29 return self.bookdict['roots']['bookmark_bar']
33 return self.bookdict['roots']['other']
45 for x in self.bookdict['roots'].values()])
64 nodes = self.bookdict['roots'].values()
88 nodes = self.bookdict['roots'].values()
  /external/eigen/unsupported/Eigen/
Polynomials 56 where \f$ p \f$ is known through its roots i.e. \f$ p(x) = (x-r_1)(x-r_2)...(x-r_n) \f$.
65 The following code: first computes the coefficients in the monomial basis of the monic polynomial that has the provided roots;
94 Computes the complex roots of a polynomial by computing the eigenvalues of the associated companion matrix with the QR algorithm.
96 The roots of \f$ p(x) = a_0 + a_1 x + a_2 x^2 + a_{3} x^3 + x^4 \f$ are the eigenvalues of
109 Therefore the current polynomial solver is guaranteed to provide a correct result only when the complex roots \f$r_1,r_2,...,r_d\f$ have distinct moduli i.e.
122 -# the accuracy problem with the QR algorithm is presented: a polynomial with almost conjugate roots is provided to the solver.
123 Those roots have almost same module therefore the QR algorithm failed to converge: the accuracy

Completed in 471 milliseconds

1 2 3 4 5 6 7 8 91011>>