HomeSort by relevance Sort by last modified time
    Searched full:transpose (Results 26 - 50 of 692) sorted by null

12 3 4 5 6 7 8 91011>>

  /external/eigen/doc/snippets/
MatrixBase_all.cpp 4 cout << "Is (" << p0.transpose() << ") inside the box: "
6 cout << "Is (" << p1.transpose() << ") inside the box: "
HouseholderSequence_HouseholderSequence.cpp 6 cout << "The first Householder vector is: v_0 = " << v0.transpose() << endl;
8 cout << "The second Householder vector is: v_1 = " << v1.transpose() << endl;
10 cout << "The third Householder vector is: v_2 = " << v2.transpose() << endl;
13 cout << "The Householder coefficients are: h = " << h.transpose() << endl;
MatrixBase_set.cpp 11 m2 << v1.transpose(), 16,
SelfAdjointEigenSolver_operatorSqrt.cpp 2 MatrixXd A = X * X.transpose();
Tridiagonalization_householderCoefficients.cpp 2 Matrix4d A = X + X.transpose();
tut_arithmetic_transpose_conjugate.cpp 4 cout << "Here is the matrix a^T\n" << a.transpose() << endl;
SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.cpp 2 MatrixXd A = X + X.transpose();
5 MatrixXd B = X * X.transpose();
HessenbergDecomposition_matrixH.cpp 8 cout << "Q H Q^T is:" << endl << Q * H * Q.transpose() << endl;
RealSchur_RealSchur_MatrixType.cpp 10 cout << "U * T * U^T = " << endl << U * T * U.transpose() << endl;
SelfAdjointEigenSolver_operatorInverseSqrt.cpp 2 MatrixXd A = X * X.transpose();
Tridiagonalization_compute.cpp 3 MatrixXf A = X + X.transpose();
Tridiagonalization_decomposeInPlace.cpp 2 MatrixXd A = X + X.transpose();
Tridiagonalization_packedMatrix.cpp 2 Matrix4d A = X + X.transpose();
  /external/eigen/unsupported/doc/examples/
PolynomialUtils1.cpp 10 cout << "Roots: " << roots.transpose() << endl;
19 cout << "Evaluation of the polynomial at the roots: " << evaluation.transpose();
PolynomialSolver1.cpp 13 cout << "Roots: " << roots.transpose() << endl;
18 cout << "Complex roots: " << psolve.roots().transpose() << endl;
23 cout << "Real roots: " << mapRR.transpose() << endl;
31 cout << "Hard case polynomial defined by floats: " << hardCase_polynomial.transpose() << endl;
33 cout << "Complex roots: " << psolvef.roots().transpose() << endl;
36 cout << "Norms of the evaluations of the polynomial at the roots: " << evals.transpose() << endl << endl;
41 cout << "Complex roots: " << psolve6d.roots().transpose() << endl;
47 cout << "Norms of the evaluations of the polynomial at the roots: " << evals.transpose() << endl << endl;
  /external/eigen/test/
product_trsolve.cpp 23 (TRI).transpose().template solveInPlace<OnTheRight>(XB.transpose()); \
24 VERIFY_IS_APPROX((XB).transpose() * (TRI).transpose().toDenseMatrix(), ref.transpose()); \
26 (XB).transpose() = (TRI).transpose().template solve<OnTheRight>(XB.transpose()); \
27 VERIFY_IS_APPROX((XB).transpose() * (TRI).transpose().toDenseMatrix(), ref.transpose());
    [all...]
product_small.cpp 21 matAstatic.cwiseProduct(matBstatic.transpose()).sum() );
28 matAdynamic.cwiseProduct(matBdynamic.transpose()).sum() );
47 VERIFY_IS_APPROX( (v * v.transpose()) * v, (v * v.transpose()).eval() * v);
geo_homogeneous.cpp 42 hm0 << m0, ones.transpose();
58 VERIFY_IS_APPROX((v0.transpose().rowwise().homogeneous().eval()) * t2,
59 v0.transpose().rowwise().homogeneous() * t2);
60 m0.transpose().rowwise().homogeneous().eval();
61 VERIFY_IS_APPROX((m0.transpose().rowwise().homogeneous().eval()) * t2,
62 m0.transpose().rowwise().homogeneous() * t2);
65 VERIFY_IS_APPROX((v0.transpose().rowwise().homogeneous().eval()) * t3,
66 v0.transpose().rowwise().homogeneous() * t3);
67 VERIFY_IS_APPROX((m0.transpose().rowwise().homogeneous().eval()) * t3,
68 m0.transpose().rowwise().homogeneous() * t3)
    [all...]
  /external/eigen/test/eigen2/
eigen2_bug_132.cpp 17 VectorXd y = A.transpose() * (b-c); // bug 132: infinite recursion in coeffRef
18 VectorXd z = (b-c).transpose() * A; // bug 132: infinite recursion in coeffRef
24 VectorXd z = (b-c).transpose() * A.transpose();
eigen2_triangular.cpp 45 VERIFY(m2up.transpose().isLowerTriangular());
49 // VERIFY_IS_APPROX(m1up.transpose() * m2, m1.upper().transpose().lower() * m2);
60 m1.template part<Eigen::UpperTriangular>() = (m2.transpose() * m2).lazy();
61 m3 = m2.transpose() * m2;
62 VERIFY_IS_APPROX(m3.template part<Eigen::LowerTriangular>().transpose(), m1);
66 m1.template part<Eigen::LowerTriangular>() = (m2.transpose() * m2).lazy();
75 Transpose<MatrixType> trm4(m4);
79 VERIFY(m3.transpose().template marked<Eigen::UpperTriangular>()
80 .solveTriangular(m3.transpose()).cwise().abs().isIdentity(test_precision<RealScalar>()))
    [all...]
  /external/eigen/Eigen/src/Core/
Transpose.h 16 /** \class Transpose
19 * \brief Expression of the transpose of a matrix
21 * \param MatrixType the type of the object of which we are taking the transpose
23 * This class represents an expression of the transpose of a matrix.
24 * It is the return type of MatrixBase::transpose() and MatrixBase::adjoint()
27 * \sa MatrixBase::transpose(), MatrixBase::adjoint()
32 struct traits<Transpose<MatrixType> > : traits<MatrixType>
57 template<typename MatrixType> class Transpose
63 EIGEN_GENERIC_PUBLIC_INTERFACE(Transpose)
65 inline Transpose(MatrixType& matrix) : m_matrix(matrix) {
198 DenseBase<Derived>::transpose() function in class:Eigen::DenseBase
210 DenseBase<Derived>::transpose() const function in class:Eigen::DenseBase
    [all...]
  /external/chromium_org/third_party/mesa/src/src/glsl/builtins/tools/
generate_transposeGLSL.py 9 print trantype + " transpose(" + origtype + " m)\n{"
12 # The obvious implementation of transpose
  /external/mesa3d/src/glsl/builtins/tools/
generate_transposeGLSL.py 9 print trantype + " transpose(" + origtype + " m)\n{"
12 # The obvious implementation of transpose
  /external/eigen/doc/examples/
Tutorial_BlockOperations_corner.cpp 15 m.topLeftCorner(1,3) = m.bottomRightCorner(3,1).transpose();
Tutorial_ReductionsVisitorsBroadcasting_broadcast_simple_rowwise.cpp 16 mat.rowwise() += v.transpose();

Completed in 519 milliseconds

12 3 4 5 6 7 8 91011>>