| /external/eigen/doc/snippets/ |
| MatrixBase_all.cpp | 4 cout << "Is (" << p0.transpose() << ") inside the box: " 6 cout << "Is (" << p1.transpose() << ") inside the box: "
|
| HouseholderSequence_HouseholderSequence.cpp | 6 cout << "The first Householder vector is: v_0 = " << v0.transpose() << endl; 8 cout << "The second Householder vector is: v_1 = " << v1.transpose() << endl; 10 cout << "The third Householder vector is: v_2 = " << v2.transpose() << endl; 13 cout << "The Householder coefficients are: h = " << h.transpose() << endl;
|
| MatrixBase_set.cpp | 11 m2 << v1.transpose(), 16,
|
| SelfAdjointEigenSolver_operatorSqrt.cpp | 2 MatrixXd A = X * X.transpose();
|
| Tridiagonalization_householderCoefficients.cpp | 2 Matrix4d A = X + X.transpose();
|
| tut_arithmetic_transpose_conjugate.cpp | 4 cout << "Here is the matrix a^T\n" << a.transpose() << endl;
|
| SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.cpp | 2 MatrixXd A = X + X.transpose(); 5 MatrixXd B = X * X.transpose();
|
| HessenbergDecomposition_matrixH.cpp | 8 cout << "Q H Q^T is:" << endl << Q * H * Q.transpose() << endl;
|
| RealSchur_RealSchur_MatrixType.cpp | 10 cout << "U * T * U^T = " << endl << U * T * U.transpose() << endl;
|
| SelfAdjointEigenSolver_operatorInverseSqrt.cpp | 2 MatrixXd A = X * X.transpose();
|
| Tridiagonalization_compute.cpp | 3 MatrixXf A = X + X.transpose();
|
| Tridiagonalization_decomposeInPlace.cpp | 2 MatrixXd A = X + X.transpose();
|
| Tridiagonalization_packedMatrix.cpp | 2 Matrix4d A = X + X.transpose();
|
| /external/eigen/unsupported/doc/examples/ |
| PolynomialUtils1.cpp | 10 cout << "Roots: " << roots.transpose() << endl; 19 cout << "Evaluation of the polynomial at the roots: " << evaluation.transpose();
|
| PolynomialSolver1.cpp | 13 cout << "Roots: " << roots.transpose() << endl; 18 cout << "Complex roots: " << psolve.roots().transpose() << endl; 23 cout << "Real roots: " << mapRR.transpose() << endl; 31 cout << "Hard case polynomial defined by floats: " << hardCase_polynomial.transpose() << endl; 33 cout << "Complex roots: " << psolvef.roots().transpose() << endl; 36 cout << "Norms of the evaluations of the polynomial at the roots: " << evals.transpose() << endl << endl; 41 cout << "Complex roots: " << psolve6d.roots().transpose() << endl; 47 cout << "Norms of the evaluations of the polynomial at the roots: " << evals.transpose() << endl << endl;
|
| /external/eigen/test/ |
| product_trsolve.cpp | 23 (TRI).transpose().template solveInPlace<OnTheRight>(XB.transpose()); \ 24 VERIFY_IS_APPROX((XB).transpose() * (TRI).transpose().toDenseMatrix(), ref.transpose()); \ 26 (XB).transpose() = (TRI).transpose().template solve<OnTheRight>(XB.transpose()); \ 27 VERIFY_IS_APPROX((XB).transpose() * (TRI).transpose().toDenseMatrix(), ref.transpose()); [all...] |
| product_small.cpp | 21 matAstatic.cwiseProduct(matBstatic.transpose()).sum() ); 28 matAdynamic.cwiseProduct(matBdynamic.transpose()).sum() ); 47 VERIFY_IS_APPROX( (v * v.transpose()) * v, (v * v.transpose()).eval() * v);
|
| geo_homogeneous.cpp | 42 hm0 << m0, ones.transpose(); 58 VERIFY_IS_APPROX((v0.transpose().rowwise().homogeneous().eval()) * t2, 59 v0.transpose().rowwise().homogeneous() * t2); 60 m0.transpose().rowwise().homogeneous().eval(); 61 VERIFY_IS_APPROX((m0.transpose().rowwise().homogeneous().eval()) * t2, 62 m0.transpose().rowwise().homogeneous() * t2); 65 VERIFY_IS_APPROX((v0.transpose().rowwise().homogeneous().eval()) * t3, 66 v0.transpose().rowwise().homogeneous() * t3); 67 VERIFY_IS_APPROX((m0.transpose().rowwise().homogeneous().eval()) * t3, 68 m0.transpose().rowwise().homogeneous() * t3) [all...] |
| /external/eigen/test/eigen2/ |
| eigen2_bug_132.cpp | 17 VectorXd y = A.transpose() * (b-c); // bug 132: infinite recursion in coeffRef 18 VectorXd z = (b-c).transpose() * A; // bug 132: infinite recursion in coeffRef 24 VectorXd z = (b-c).transpose() * A.transpose();
|
| eigen2_triangular.cpp | 45 VERIFY(m2up.transpose().isLowerTriangular()); 49 // VERIFY_IS_APPROX(m1up.transpose() * m2, m1.upper().transpose().lower() * m2); 60 m1.template part<Eigen::UpperTriangular>() = (m2.transpose() * m2).lazy(); 61 m3 = m2.transpose() * m2; 62 VERIFY_IS_APPROX(m3.template part<Eigen::LowerTriangular>().transpose(), m1); 66 m1.template part<Eigen::LowerTriangular>() = (m2.transpose() * m2).lazy(); 75 Transpose<MatrixType> trm4(m4); 79 VERIFY(m3.transpose().template marked<Eigen::UpperTriangular>() 80 .solveTriangular(m3.transpose()).cwise().abs().isIdentity(test_precision<RealScalar>())) [all...] |
| /external/eigen/Eigen/src/Core/ |
| Transpose.h | 16 /** \class Transpose 19 * \brief Expression of the transpose of a matrix 21 * \param MatrixType the type of the object of which we are taking the transpose 23 * This class represents an expression of the transpose of a matrix. 24 * It is the return type of MatrixBase::transpose() and MatrixBase::adjoint() 27 * \sa MatrixBase::transpose(), MatrixBase::adjoint() 32 struct traits<Transpose<MatrixType> > : traits<MatrixType> 57 template<typename MatrixType> class Transpose 63 EIGEN_GENERIC_PUBLIC_INTERFACE(Transpose) 65 inline Transpose(MatrixType& matrix) : m_matrix(matrix) { 198 DenseBase<Derived>::transpose() function in class:Eigen::DenseBase 210 DenseBase<Derived>::transpose() const function in class:Eigen::DenseBase [all...] |
| /external/chromium_org/third_party/mesa/src/src/glsl/builtins/tools/ |
| generate_transposeGLSL.py | 9 print trantype + " transpose(" + origtype + " m)\n{" 12 # The obvious implementation of transpose
|
| /external/mesa3d/src/glsl/builtins/tools/ |
| generate_transposeGLSL.py | 9 print trantype + " transpose(" + origtype + " m)\n{" 12 # The obvious implementation of transpose
|
| /external/eigen/doc/examples/ |
| Tutorial_BlockOperations_corner.cpp | 15 m.topLeftCorner(1,3) = m.bottomRightCorner(3,1).transpose();
|
| Tutorial_ReductionsVisitorsBroadcasting_broadcast_simple_rowwise.cpp | 16 mat.rowwise() += v.transpose();
|