OpenGrok
Home
Sort by relevance
Sort by last modified time
Full Search
Definition
Symbol
File Path
History
|
|
Help
Searched
full:ieee_sin
(Results
1 - 11
of
11
) sorted by null
/external/fdlibm/
k_sin.c
21
* 1. Since
ieee_sin
(-x) = -
ieee_sin
(x), we need only to consider positive x.
23
* 3.
ieee_sin
(x) is approximated by a polynomial of degree 13 on
29
* |
ieee_sin
(x) 2 4 6 8 10 12 | -58
33
* 4.
ieee_sin
(x+y) =
ieee_sin
(x) + sin'(x')*y
34
* ~
ieee_sin
(x) + (1-x*x/2)*y
s_sin.c
14
/*
ieee_sin
(x)
28
* n
ieee_sin
(x) ieee_cos(x) ieee_tan(x)
48
double
ieee_sin
(double x)
function
50
double
ieee_sin
(x)
64
/*
ieee_sin
(Inf or NaN) is NaN */
e_jn.c
88
* Yn(x) =
ieee_sin
(x-(2n+1)*pi/4)*ieee_sqrt(2/x*pi)
89
* Let s=
ieee_sin
(x), c=ieee_cos(x),
100
case 0: temp = ieee_cos(x)+
ieee_sin
(x); break;
101
case 1: temp = -ieee_cos(x)+
ieee_sin
(x); break;
102
case 2: temp = -ieee_cos(x)-
ieee_sin
(x); break;
103
case 3: temp = ieee_cos(x)-
ieee_sin
(x); break;
243
* Yn(x) =
ieee_sin
(x-(2n+1)*pi/4)*ieee_sqrt(2/x*pi)
244
* Let s=
ieee_sin
(x), c=ieee_cos(x),
255
case 0: temp =
ieee_sin
(x)-ieee_cos(x); break;
256
case 1: temp = -
ieee_sin
(x)-ieee_cos(x); break
[
all
...]
e_j1.c
23
* j1(x) = ieee_sqrt(2/(pi*x))*(p1(x)*ieee_cos(x1)-q1(x)*
ieee_sin
(x1))
24
* y1(x) = ieee_sqrt(2/(pi*x))*(p1(x)*
ieee_sin
(x1)+q1(x)*ieee_cos(x1))
25
* where x1 = x-3*pi/4. It is better to compute
ieee_sin
(x1),cos(x1)
27
* cos(x1) = ieee_cos(x)cos(3pi/4)+
ieee_sin
(x)sin(3pi/4)
28
* = 1/ieee_sqrt(2) * (
ieee_sin
(x) - ieee_cos(x))
29
* sin(x1) =
ieee_sin
(x)cos(3pi/4)-ieee_cos(x)sin(3pi/4)
30
* = -1/ieee_sqrt(2) * (
ieee_sin
(x) + ieee_cos(x))
32
* sin(x) +- ieee_cos(x) = -ieee_cos(2x)/(
ieee_sin
(x) -+ ieee_cos(x))
54
* y1(x) = ieee_sqrt(2/(pi*x))*(p1(x)*
ieee_sin
(x1)+q1(x)*ieee_cos(x1))
55
* where x1 = x-3*pi/4. It is better to compute
ieee_sin
(x1),cos(x1
[
all
...]
e_j0.c
23
* j0(x) = ieee_sqrt(2/(pi*x))*(p0(x)*ieee_cos(x0)-q0(x)*
ieee_sin
(x0))
24
* where x0 = x-pi/4. It is better to compute
ieee_sin
(x0),cos(x0)
26
* cos(x0) = ieee_cos(x)cos(pi/4)+
ieee_sin
(x)sin(pi/4)
27
* = 1/ieee_sqrt(2) * (ieee_cos(x) +
ieee_sin
(x))
28
* sin(x0) =
ieee_sin
(x)cos(pi/4)-ieee_cos(x)sin(pi/4)
29
* = 1/ieee_sqrt(2) * (
ieee_sin
(x) - ieee_cos(x))
31
* sin(x) +- ieee_cos(x) = -ieee_cos(2x)/(
ieee_sin
(x) -+ ieee_cos(x))
53
* y0(x) = ieee_sqrt(2/(pi*x))*(p0(x)*ieee_cos(x0)+q0(x)*
ieee_sin
(x0))
54
* where x0 = x-pi/4. It is better to compute
ieee_sin
(x0),cos(x0)
103
s =
ieee_sin
(x)
[
all
...]
e_lgamma_r.c
63
* -x*G(-x)*G(x) = pi/
ieee_sin
(pi*x),
65
* G(x) = pi/(
ieee_sin
(pi*x)*(-x)*G(-x))
66
* since G(-x) is positive, sign(G(x)) = sign(
ieee_sin
(pi*x)) for x<0
67
* Hence, for x<0, signgam = sign(
ieee_sin
(pi*x)) and
69
* = ieee_log(pi/(|x*
ieee_sin
(pi*x)|)) - ieee_lgamma(-x);
71
* computation of
ieee_sin
(pi*(-x)).
s_cos.c
28
* n
ieee_sin
(x) ieee_cos(x) ieee_tan(x)
s_tan.c
27
* n
ieee_sin
(x) ieee_cos(x) ieee_tan(x)
fdlibm.h
107
extern double
ieee_sin
__P((double));
k_cos.c
36
* since ieee_cos(x+y) ~ ieee_cos(x) -
ieee_sin
(x)*y
/libcore/luni/src/main/native/
java_lang_StrictMath.cpp
26
return
ieee_sin
(a);
Completed in 1054 milliseconds