HomeSort by relevance Sort by last modified time
    Searched full:ldlt (Results 1 - 25 of 34) sorted by null

1 2

  /external/eigen/Eigen/
Cholesky 15 * - MatrixBase::ldlt()
24 #include "src/Cholesky/LDLT.h"
PaStiXSupport 25 * - class PastixLDLT: a supernodal, parallel LDLt Cholesky factorization.
  /external/eigen/test/eigen2/
eigen2_cholesky.cpp 22 LLT.h LDLT.h
69 LDLT<SquareMatrixType> ldlt(symm);
70 VERIFY(ldlt.isPositiveDefinite());
71 // in eigen3, LDLT is pivoting
72 //VERIFY_IS_APPROX(symm, ldlt.matrixL() * ldlt.vectorD().asDiagonal() * ldlt.matrixL().adjoint());
73 ldlt.solve(vecB, &vecX);
75 ldlt.solve(matB, &matX)
    [all...]
eigen2_sparse_solvers.cpp 112 // test LDLT
127 refMat2.ldlt().solve(b, &refX);
130 SparseLDLT<SparseSelfAdjointMatrix> ldlt(m2);
131 if (ldlt.succeeded())
132 ldlt.solveInPlace(x);
133 VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: default");
  /external/eigen/doc/examples/
TutorialLinAlgExSolveLDLT.cpp 14 Matrix2f x = A.ldlt().solve(b);
  /external/eigen/Eigen/src/Cholesky/
LDLT.h 24 * \class LDLT
43 * \sa MatrixBase::ldlt(), class LLT
45 template<typename _MatrixType, int _UpLo> class LDLT
70 * perform decompositions via LDLT::compute(const MatrixType&).
72 LDLT() : m_matrix(), m_transpositions(), m_isInitialized(false) {}
78 * \sa LDLT()
80 LDLT(Index size)
90 * \sa LDLT(Index size)
92 LDLT(const MatrixType& matrix)
112 eigen_assert(m_isInitialized && "LDLT is not initialized.")
575 SelfAdjointView<MatrixType, UpLo>::ldlt() const function in class:Eigen::SelfAdjointView
585 MatrixBase<Derived>::ldlt() const function in class:Eigen::MatrixBase
    [all...]
LLT.h 38 * use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations
44 * \sa MatrixBase::llt(), class LDLT
46 /* HEY THIS DOX IS DISABLED BECAUSE THERE's A BUG EITHER HERE OR IN LDLT ABOUT THAT (OR BOTH)
  /external/eigen/test/
cholesky.cpp 65 LLT.h LDLT.h
119 // LDLT
131 LDLT<SquareMatrixType,Lower> ldltlo(symmLo);
138 LDLT<SquareMatrixType,Upper> ldltup(symmUp);
187 CALL_SUBTEST(( test_chol_update<SquareMatrixType,LDLT>(symm) ));
229 // LDLT
240 LDLT<RealMatrixType,Lower> ldltlo(symmLo);
261 VectorType vecX = matA.ldlt().solve(vecB);
275 LDLT<MatrixType> ldlt; local
    [all...]
nomalloc.cpp 128 Eigen::LDLT<Matrix> LDLT; LDLT.compute(A);
129 X = LDLT.solve(B);
130 x = LDLT.solve(b);
  /external/eigen/bench/spbench/
spbenchsolver.h 95 string LUlist =" ", LLTlist = "<TH > LLT", LDLTlist = "<TH > LDLT ";
105 LDLTlist += "<TH>CHOLMOD LDLT";
110 LDLTlist += "<TH > PARDISO LDLT";
115 LDLTlist += "<TH > PASTIX LDLT";
374 cout << "\nSolving with Simplicial LDLT ... \n";
383 cout << "\nSolving with CHOLMOD LDLT ... \n";
394 cout << "\nSolving with PASTIX LDLT ... \n";
404 cout << "\nSolving with PARDISO LDLT ... \n";
  /external/eigen/doc/
C06_TutorialLinearAlgebra.dox 102 <td>LDLT</td>
103 <td>ldlt()</td>
113 choice is then the LDLT decomposition. Here's an example, also demonstrating that using a general
194 Another way, potentially faster but less reliable, is to use a LDLT decomposition
A05_PortingFrom2To3.dox 235 <tr><td>\code A.ldlt().solve(B,&X);\endcode</td>
236 <td>\code X = A.ldlt().solve(B);
237 X = A.selfadjointView<Lower>.ldlt().solve(B);
238 X = A.selfadjointView<Upper>.ldlt().solve(B);\endcode</td>
TopicLinearAlgebraDecompositions.dox 101 <td>LDLT</td>
228 <li><a name="note1">\b 1: </a>There exist two variants of the LDLT algorithm. Eigen's one produces a pure diagonal D matrix, and therefore it cannot handle indefinite matrices, unlike Lapack's one which produces a block diagonal D matrix.</li>
AsciiQuickReference.txt 154 solved = A.ldlt().solve(b, &x)); // A sym. p.s.d. #include <Eigen/Cholesky>
159 // .ldlt() -> .matrixL() and .matrixD()
I11_Aliasing.dox 122 <tr> <td> LDLT::solve() </td> <td> LDLT::solveInPlace() </td> </tr>
C09_TutorialSparse.dox 29 <tr><td>\link SparseCholesky_Module SparseCholesky \endlink</td><td>\code#include <Eigen/SparseCholesky>\endcode</td><td>Direct sparse LLT and LDLT Cholesky factorization to solve sparse self-adjoint positive definite problems</td></tr>
118 Since the resulting matrix \c A is symmetric by construction, we can perform a direct Cholesky factorization via the SimplicialLDLT class which behaves like its LDLT counterpart for dense objects.
255 <tr><td>SimplicialLDLT </td><td>\link SparseCholesky_Module SparseCholesky \endlink</td><td>Direct LDLt factorization</td><td>SPD</td><td>Fill-in reducing</td>
266 <tr><td>PastixLLT \n PastixLDLT \n PastixLU</td><td>\link PaStiXSupport_Module PaStiXSupport \endlink</td><td>Direct LLt, LDLt, LU factorizations</td><td>SPD \n SPD \n Square</td><td>Fill-in reducing, Leverage fast dense algebra, Multithreading</td>
A10_Eigen2SupportModes.dox 49 \li Certain fine details of linear algebraic decompositions. For example, LDLT decomposition is now pivoting in Eigen 3 whereas it wasn't in Eigen 2, so code that was relying on its underlying matrix structure will break.
  /external/ceres-solver/internal/ceres/
dense_normal_cholesky_solver.h 73 // This class uses the LDLT factorization routines from the Eigen
  /external/eigen/bench/
benchCholesky.cpp 59 LDLT<SquareMatrixType> cholnosqrt(covMat);
  /external/eigen/Eigen/src/SparseCholesky/
SimplicialCholesky.h 129 eigen_assert(m_isInitialized && "Simplicial LLT or LDLT is not initialized.");
143 eigen_assert(m_isInitialized && "Simplicial LLT or LDLT is not initialized.");
294 VectorType m_diag; // the diagonal coefficients (LDLT mode)
434 * \brief A direct sparse LDLT Cholesky factorizations without square root.
474 eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized");
479 eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized");
485 eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized");
  /external/eigen/Eigen/src/Core/
SelfAdjointView.h 153 const LDLT<PlainObject, UpLo> ldlt() const;
MatrixBase.h 365 const LDLT<PlainObject> ldlt() const;
  /external/eigen/Eigen/src/Core/util/
Constants.h 315 /** \internal Not used (meant for LDLT?). */
317 /** \internal Not used (meant for LDLT?). */
ForwardDeclarations.h 227 template<typename MatrixType, int UpLo = Lower> class LDLT;
  /external/eigen/Eigen/src/CholmodSupport/
CholmodSupport.h 386 * \brief A simplicial direct Cholesky (LDLT) factorization and solver based on Cholmod

Completed in 2645 milliseconds

1 2