/external/eigen/Eigen/ |
Cholesky | 15 * - MatrixBase::ldlt() 24 #include "src/Cholesky/LDLT.h"
|
PaStiXSupport | 25 * - class PastixLDLT: a supernodal, parallel LDLt Cholesky factorization.
|
/external/eigen/test/eigen2/ |
eigen2_cholesky.cpp | 22 LLT.h LDLT.h 69 LDLT<SquareMatrixType> ldlt(symm); 70 VERIFY(ldlt.isPositiveDefinite()); 71 // in eigen3, LDLT is pivoting 72 //VERIFY_IS_APPROX(symm, ldlt.matrixL() * ldlt.vectorD().asDiagonal() * ldlt.matrixL().adjoint()); 73 ldlt.solve(vecB, &vecX); 75 ldlt.solve(matB, &matX) [all...] |
eigen2_sparse_solvers.cpp | 112 // test LDLT 127 refMat2.ldlt().solve(b, &refX); 130 SparseLDLT<SparseSelfAdjointMatrix> ldlt(m2); 131 if (ldlt.succeeded()) 132 ldlt.solveInPlace(x); 133 VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: default");
|
/external/eigen/doc/examples/ |
TutorialLinAlgExSolveLDLT.cpp | 14 Matrix2f x = A.ldlt().solve(b);
|
/external/eigen/Eigen/src/Cholesky/ |
LDLT.h | 24 * \class LDLT 43 * \sa MatrixBase::ldlt(), class LLT 45 template<typename _MatrixType, int _UpLo> class LDLT 70 * perform decompositions via LDLT::compute(const MatrixType&). 72 LDLT() : m_matrix(), m_transpositions(), m_isInitialized(false) {} 78 * \sa LDLT() 80 LDLT(Index size) 90 * \sa LDLT(Index size) 92 LDLT(const MatrixType& matrix) 112 eigen_assert(m_isInitialized && "LDLT is not initialized.") 575 SelfAdjointView<MatrixType, UpLo>::ldlt() const function in class:Eigen::SelfAdjointView 585 MatrixBase<Derived>::ldlt() const function in class:Eigen::MatrixBase [all...] |
LLT.h | 38 * use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations 44 * \sa MatrixBase::llt(), class LDLT 46 /* HEY THIS DOX IS DISABLED BECAUSE THERE's A BUG EITHER HERE OR IN LDLT ABOUT THAT (OR BOTH)
|
/external/eigen/test/ |
cholesky.cpp | 65 LLT.h LDLT.h 119 // LDLT 131 LDLT<SquareMatrixType,Lower> ldltlo(symmLo); 138 LDLT<SquareMatrixType,Upper> ldltup(symmUp); 187 CALL_SUBTEST(( test_chol_update<SquareMatrixType,LDLT>(symm) )); 229 // LDLT 240 LDLT<RealMatrixType,Lower> ldltlo(symmLo); 261 VectorType vecX = matA.ldlt().solve(vecB); 275 LDLT<MatrixType> ldlt; local [all...] |
nomalloc.cpp | 128 Eigen::LDLT<Matrix> LDLT; LDLT.compute(A); 129 X = LDLT.solve(B); 130 x = LDLT.solve(b);
|
/external/eigen/bench/spbench/ |
spbenchsolver.h | 95 string LUlist =" ", LLTlist = "<TH > LLT", LDLTlist = "<TH > LDLT "; 105 LDLTlist += "<TH>CHOLMOD LDLT"; 110 LDLTlist += "<TH > PARDISO LDLT"; 115 LDLTlist += "<TH > PASTIX LDLT"; 374 cout << "\nSolving with Simplicial LDLT ... \n"; 383 cout << "\nSolving with CHOLMOD LDLT ... \n"; 394 cout << "\nSolving with PASTIX LDLT ... \n"; 404 cout << "\nSolving with PARDISO LDLT ... \n";
|
/external/eigen/doc/ |
C06_TutorialLinearAlgebra.dox | 102 <td>LDLT</td> 103 <td>ldlt()</td> 113 choice is then the LDLT decomposition. Here's an example, also demonstrating that using a general 194 Another way, potentially faster but less reliable, is to use a LDLT decomposition
|
A05_PortingFrom2To3.dox | 235 <tr><td>\code A.ldlt().solve(B,&X);\endcode</td> 236 <td>\code X = A.ldlt().solve(B); 237 X = A.selfadjointView<Lower>.ldlt().solve(B); 238 X = A.selfadjointView<Upper>.ldlt().solve(B);\endcode</td>
|
TopicLinearAlgebraDecompositions.dox | 101 <td>LDLT</td> 228 <li><a name="note1">\b 1: </a>There exist two variants of the LDLT algorithm. Eigen's one produces a pure diagonal D matrix, and therefore it cannot handle indefinite matrices, unlike Lapack's one which produces a block diagonal D matrix.</li>
|
AsciiQuickReference.txt | 154 solved = A.ldlt().solve(b, &x)); // A sym. p.s.d. #include <Eigen/Cholesky> 159 // .ldlt() -> .matrixL() and .matrixD()
|
I11_Aliasing.dox | 122 <tr> <td> LDLT::solve() </td> <td> LDLT::solveInPlace() </td> </tr>
|
C09_TutorialSparse.dox | 29 <tr><td>\link SparseCholesky_Module SparseCholesky \endlink</td><td>\code#include <Eigen/SparseCholesky>\endcode</td><td>Direct sparse LLT and LDLT Cholesky factorization to solve sparse self-adjoint positive definite problems</td></tr> 118 Since the resulting matrix \c A is symmetric by construction, we can perform a direct Cholesky factorization via the SimplicialLDLT class which behaves like its LDLT counterpart for dense objects. 255 <tr><td>SimplicialLDLT </td><td>\link SparseCholesky_Module SparseCholesky \endlink</td><td>Direct LDLt factorization</td><td>SPD</td><td>Fill-in reducing</td> 266 <tr><td>PastixLLT \n PastixLDLT \n PastixLU</td><td>\link PaStiXSupport_Module PaStiXSupport \endlink</td><td>Direct LLt, LDLt, LU factorizations</td><td>SPD \n SPD \n Square</td><td>Fill-in reducing, Leverage fast dense algebra, Multithreading</td>
|
A10_Eigen2SupportModes.dox | 49 \li Certain fine details of linear algebraic decompositions. For example, LDLT decomposition is now pivoting in Eigen 3 whereas it wasn't in Eigen 2, so code that was relying on its underlying matrix structure will break.
|
/external/ceres-solver/internal/ceres/ |
dense_normal_cholesky_solver.h | 73 // This class uses the LDLT factorization routines from the Eigen
|
/external/eigen/bench/ |
benchCholesky.cpp | 59 LDLT<SquareMatrixType> cholnosqrt(covMat);
|
/external/eigen/Eigen/src/SparseCholesky/ |
SimplicialCholesky.h | 129 eigen_assert(m_isInitialized && "Simplicial LLT or LDLT is not initialized."); 143 eigen_assert(m_isInitialized && "Simplicial LLT or LDLT is not initialized."); 294 VectorType m_diag; // the diagonal coefficients (LDLT mode) 434 * \brief A direct sparse LDLT Cholesky factorizations without square root. 474 eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized"); 479 eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized"); 485 eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized");
|
/external/eigen/Eigen/src/Core/ |
SelfAdjointView.h | 153 const LDLT<PlainObject, UpLo> ldlt() const;
|
MatrixBase.h | 365 const LDLT<PlainObject> ldlt() const;
|
/external/eigen/Eigen/src/Core/util/ |
Constants.h | 315 /** \internal Not used (meant for LDLT?). */ 317 /** \internal Not used (meant for LDLT?). */
|
ForwardDeclarations.h | 227 template<typename MatrixType, int UpLo = Lower> class LDLT;
|
/external/eigen/Eigen/src/CholmodSupport/ |
CholmodSupport.h | 386 * \brief A simplicial direct Cholesky (LDLT) factorization and solver based on Cholmod
|