/external/eigen/unsupported/doc/examples/ |
PolynomialUtils1.cpp | 9 Vector4d roots = Vector4d::Random(); local 10 cout << "Roots: " << roots.transpose() << endl; 12 roots_to_monicPolynomial( roots, polynomial ); 18 evaluation[i] = poly_eval( polynomial, roots[i] ); } 19 cout << "Evaluation of the polynomial at the roots: " << evaluation.transpose();
|
PolynomialSolver1.cpp | 12 Vector5d roots = Vector5d::Random(); local 13 cout << "Roots: " << roots.transpose() << endl; 15 roots_to_monicPolynomial( roots, polynomial ); 18 cout << "Complex roots: " << psolve.roots().transpose() << endl; 23 cout << "Real roots: " << mapRR.transpose() << endl; 33 cout << "Complex roots: " << psolvef.roots().transpose() << endl; 35 for( int i=0; i<6; ++i ){ evals[i] = std::abs( poly_eval( hardCase_polynomial, psolvef.roots()[i] ) ); [all...] |
/external/smali/util/src/test/java/org/jf/util/ |
PathUtilTest.java | 39 File[] roots = File.listRoots(); local 41 if (roots.length > 1) { 42 File basePath = new File(roots[0] + "some" + File.separatorChar + "dir" + File.separatorChar + "test.txt"); 43 File relativePath = new File(roots[1] + "some" + File.separatorChar + "dir" + File.separatorChar + "test.txt"); 53 File[] roots = File.listRoots(); local 55 File basePath = new File(roots[0] + "some" + File.separatorChar + "dir" + File.separatorChar + "test.txt"); 56 File relativePath = new File(roots[0] + "some" + File.separatorChar + "dir" + File.separatorChar + "test.txt"); 68 File[] roots = File.listRoots(); local 70 File basePath = new File(roots[0] + "some" + File.separatorChar + "dir" + File.separatorChar); 71 File relativePath = new File(roots[0] + "some" + File.separatorChar + "dir" + File.separatorChar) 80 File[] roots = File.listRoots(); local 92 File[] roots = File.listRoots(); local 104 File[] roots = File.listRoots(); local 116 File[] roots = File.listRoots(); local 128 File[] roots = File.listRoots(); local 140 File[] roots = File.listRoots(); local 152 File[] roots = File.listRoots(); local 164 File[] roots = File.listRoots(); local 176 File[] roots = File.listRoots(); local 188 File[] roots = File.listRoots(); local 200 File[] roots = File.listRoots(); local 212 File[] roots = File.listRoots(); local 224 File[] roots = File.listRoots(); local 236 File[] roots = File.listRoots(); local 248 File[] roots = File.listRoots(); local 260 File[] roots = File.listRoots(); local [all...] |
/packages/apps/Camera/jni/feature_stab/db_vlvm/ |
db_utilities_poly.cpp | 28 void db_SolveCubic(double *roots,int *nr_roots,double a,double b,double c,double d) 35 /*For nondegenerate cubics with three roots 40 if(a==0.0) db_SolveQuadratic(roots,nr_roots,b,c,d); 68 roots[0]= -2.0*srq*cos_theta_through3-bp_through3; 69 roots[1]=srq*min2_cos_theta_plu-bp_through3; 70 roots[2]=srq*min2_cos_theta_min-bp_through3; 77 if(A!=0.0) roots[0]=A+q/A-bp_through3; 78 else roots[0]= -bp_through3; 87 roots[0]= -2.0*si_r_srq-bp_through3; 89 roots[1]=si_r_srq-bp_through3 [all...] |
/packages/apps/Camera2/jni/feature_stab/db_vlvm/ |
db_utilities_poly.cpp | 28 void db_SolveCubic(double *roots,int *nr_roots,double a,double b,double c,double d) 35 /*For nondegenerate cubics with three roots 40 if(a==0.0) db_SolveQuadratic(roots,nr_roots,b,c,d); 68 roots[0]= -2.0*srq*cos_theta_through3-bp_through3; 69 roots[1]=srq*min2_cos_theta_plu-bp_through3; 70 roots[2]=srq*min2_cos_theta_min-bp_through3; 77 if(A!=0.0) roots[0]=A+q/A-bp_through3; 78 else roots[0]= -bp_through3; 87 roots[0]= -2.0*si_r_srq-bp_through3; 89 roots[1]=si_r_srq-bp_through3 [all...] |
/packages/apps/LegacyCamera/jni/feature_stab/db_vlvm/ |
db_utilities_poly.cpp | 28 void db_SolveCubic(double *roots,int *nr_roots,double a,double b,double c,double d) 35 /*For nondegenerate cubics with three roots 40 if(a==0.0) db_SolveQuadratic(roots,nr_roots,b,c,d); 68 roots[0]= -2.0*srq*cos_theta_through3-bp_through3; 69 roots[1]=srq*min2_cos_theta_plu-bp_through3; 70 roots[2]=srq*min2_cos_theta_min-bp_through3; 77 if(A!=0.0) roots[0]=A+q/A-bp_through3; 78 else roots[0]= -bp_through3; 87 roots[0]= -2.0*si_r_srq-bp_through3; 89 roots[1]=si_r_srq-bp_through3 [all...] |
/external/chromium_org/third_party/skia/src/pathops/ |
SkPathOpsRect.cpp | 21 int roots = 0; local 23 roots = SkDQuad::FindExtrema(quad[0].fX, quad[1].fX, quad[2].fX, tValues); 26 roots += SkDQuad::FindExtrema(quad[0].fY, quad[1].fY, quad[2].fY, &tValues[roots]); 28 for (int x = 0; x < roots; ++x) { 48 int roots = 0; local 50 roots = SkDCubic::FindExtrema(c[0].fX, c[1].fX, c[2].fX, c[3].fX, tValues); 53 roots += SkDCubic::FindExtrema(c[0].fY, c[1].fY, c[2].fY, c[3].fY, &tValues[roots]); 55 for (int x = 0; x < roots; ++x) [all...] |
SkQuarticRoot.cpp | 5 * Utility functions to find cubic and quartic roots, 10 * The functions return the number of non-complex roots and 24 * correct but multiple roots might be reported more 33 const double t0, const bool oneHint, double roots[4]) { 54 return SkDQuad::RootsReal(t2, t1, t0, roots); 57 return SkDCubic::RootsReal(t3, t2, t1, t0, roots); 64 int num = SkDCubic::RootsReal(t4, t3, t2, t1, roots); 66 if (approximately_zero(roots[i])) { 70 roots[num++] = 0; 76 int num = SkDCubic::RootsReal(t4, t4 + t3, -(t1 + t0), -t0, roots); 111 int roots = SkDCubic::RootsReal(1, -p \/ 2, -r, r * p \/ 2 - q * q \/ 8, cubicRoots); local [all...] |
/external/eigen/unsupported/test/ |
polynomialutils.cpp | 36 EvalRootsType roots = EvalRootsType::Random(deg); local 37 roots_to_monicPolynomial( roots, pols ); 40 for( int i=0; i<roots.size(); ++i ){ 41 evr[i] = std::abs( poly_eval( pols, roots[i] ) ); } 74 EvalRootsType roots = EvalRootsType::Random(deg); local 75 roots_to_monicPolynomial( roots, pols ); 78 _Scalar Max = roots.array().abs().maxCoeff(); 79 _Scalar min = roots.array().abs().minCoeff(); 83 cerr << "Roots: " << roots << endl [all...] |
polynomialsolver.cpp | 42 const RootsType& roots( psolve.roots() ); 44 for( int i=0; i<roots.size(); ++i ){ 45 evr[i] = std::abs( poly_eval( pols, roots[i] ) ); } 52 cerr << "Roots found: " << roots.transpose() << endl; 53 cerr << "Abs value of the polynomial at the roots: " << evr.transpose() << endl; 57 std::vector<Scalar> rootModuli( roots.size() ); 58 Map< EvalRootsType > aux( &rootModuli[0], roots.size() ); 59 aux = roots.array().abs() [all...] |
/external/skia/src/pathops/ |
SkPathOpsRect.cpp | 21 int roots = 0; local 23 roots = SkDQuad::FindExtrema(quad[0].fX, quad[1].fX, quad[2].fX, tValues); 26 roots += SkDQuad::FindExtrema(quad[0].fY, quad[1].fY, quad[2].fY, &tValues[roots]); 28 for (int x = 0; x < roots; ++x) { 48 int roots = 0; local 50 roots = SkDCubic::FindExtrema(c[0].fX, c[1].fX, c[2].fX, c[3].fX, tValues); 53 roots += SkDCubic::FindExtrema(c[0].fY, c[1].fY, c[2].fY, c[3].fY, &tValues[roots]); 55 for (int x = 0; x < roots; ++x) [all...] |
SkQuarticRoot.cpp | 5 * Utility functions to find cubic and quartic roots, 10 * The functions return the number of non-complex roots and 24 * correct but multiple roots might be reported more 33 const double t0, const bool oneHint, double roots[4]) { 54 return SkDQuad::RootsReal(t2, t1, t0, roots); 57 return SkDCubic::RootsReal(t3, t2, t1, t0, roots); 64 int num = SkDCubic::RootsReal(t4, t3, t2, t1, roots); 66 if (approximately_zero(roots[i])) { 70 roots[num++] = 0; 76 int num = SkDCubic::RootsReal(t4, t4 + t3, -(t1 + t0), -t0, roots); 111 int roots = SkDCubic::RootsReal(1, -p \/ 2, -r, r * p \/ 2 - q * q \/ 8, cubicRoots); local [all...] |
/external/chromium_org/tools/deep_memory_profiler/visualizer/testdata/ |
error_sample.json | 2 "roots": [
|
sample.json | 3 "roots": [
|
/frameworks/base/packages/DocumentsUI/src/com/android/documentsui/ |
RootsCache.java | 58 * Cache of known storage backends and their roots. 64 "content://com.android.documentsui.roots/"); 94 if (LOGD) Log.d(TAG, "Updating roots due to change at " + uri); 100 * Gather roots from all known storage providers. 115 * Gather roots from storage providers belonging to given package name. 125 * Gather roots from storage providers belonging to given authority. 146 * Load roots from authorities that are in stopped state. Normal 167 * Update all roots. 174 * Only update roots belonging to given package name. Other roots wil 250 final List<RootInfo> roots = Lists.newArrayList(); local [all...] |
/external/chromium_org/chrome/browser/ |
memory_details_android.cc | 71 const std::set<ProcessId>& roots, 73 *out = roots; 76 for (std::set<ProcessId>::const_iterator i = roots.begin(); i != roots.end(); 119 std::set<ProcessId> roots; local 120 roots.insert(base::GetCurrentProcId()); 123 roots.insert(i->pid); 127 GetAllChildren(processes, roots, ¤t_browser_processes);
|
/external/eigen/bench/ |
eig33.cpp | 48 template<typename Matrix, typename Roots> 49 inline void computeRoots(const Matrix& m, Roots& roots) 56 // eigenvalues are the roots to this equation, all guaranteed to be 62 // Construct the parameters used in classifying the roots of the equation 63 // and in solving the equation for the roots in closed form. 75 // Compute the eigenvalues by solving for the roots of the polynomial. 80 roots(0) = c2_over_3 + Scalar(2)*rho*cos_theta; 81 roots(1) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta); 82 roots(2) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta) [all...] |
/external/clang/test/Analysis/ |
null-deref-ps-region.c | 6 // also be live roots.
|
/external/eigen/unsupported/Eigen/src/Polynomials/ |
PolynomialSolver.h | 20 * - real roots, 21 * - greatest, smallest complex roots, 22 * - real roots with greatest, smallest absolute real value, 23 * - greatest, smallest real roots. 25 * It stores the set of roots as a vector of complexes. 54 /** \returns the complex roots of the polynomial */ 55 inline const RootsType& roots() const { return m_roots; } function in class:Eigen::PolynomialSolverBase 58 /** Clear and fills the back insertion sequence with the real roots of the polynomial 59 * i.e. the real part of the complex roots that have an imaginary part which 304 * Computes the complex roots of a real polynomial [all...] |
/external/chromium_org/third_party/WebKit/Source/core/dom/ |
ContainerNodeAlgorithms.cpp | 59 ShadowRootVector roots(shadow); 60 for (size_t i = 0; i < roots.size(); ++i) { 61 if (node.inDocument() && roots[i]->host() == node) 62 notifyNodeInsertedIntoDocument(*roots[i]); 96 ShadowRootVector roots(shadow); 97 for (size_t i = 0; i < roots.size(); ++i) { 98 if (!node.inDocument() && roots[i]->host() == node) 99 notifyNodeRemovedFromDocument(*roots[i]); 115 ShadowRootVector roots(shadow); 116 for (size_t i = 0; i < roots.size(); ++i [all...] |
/external/ceres-solver/internal/ceres/ |
polynomial_test.cc | 78 // Needed because the roots are not returned in sorted order. 85 // Run a test with the polynomial defined by the N real roots in roots_real. 141 const double roots[1] = { 42.42 }; local 142 RunPolynomialTestRealRoots(roots, true, true, kEpsilon); 146 const double roots[1] = { -42.42 }; local 147 RunPolynomialTestRealRoots(roots, true, true, kEpsilon); 151 const double roots[2] = { 1.0, 42.42 }; local 152 RunPolynomialTestRealRoots(roots, true, true, kEpsilon); 156 const double roots[2] = { -42.42, 1.0 }; local 157 RunPolynomialTestRealRoots(roots, true, true, kEpsilon) 161 const double roots[2] = { -42.42, -1.0 }; local 166 const double roots[2] = { 42.42, 42.43 }; local 189 const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 }; local 194 const double roots[4] = { 1.23e-1, 2.46e-1, 1.23e+5, 2.46e+5 }; local 199 const double roots[4] = { -42.42, 0.0, 0.0, 42.42 }; local 204 const double roots[4] = { 0.0, 0.0, 0.0, 0.0 }; local 209 const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 }; local 214 const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 }; local 219 const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 }; local [all...] |
/external/llvm/include/llvm/CodeGen/ |
GCMetadata.h | 19 // - Stack offsets for GC roots, as specified by calls to llvm.gcroot 21 // As a refinement, liveness analysis calculates the set of live roots at each 23 // generator, so all roots are assumed live. 93 std::vector<GCRoot> Roots; 103 // The bit vector is the more compact representation where >3.2% of roots 122 Roots.push_back(GCRoot(Num, Metadata)); 127 return Roots.erase(position); 148 /// roots_begin/roots_end - Iterators for all roots in the function. 150 roots_iterator roots_begin() { return Roots.begin(); } 151 roots_iterator roots_end () { return Roots.end(); [all...] |
/build/tools/ |
fileslist.py | 26 roots = argv[1:] 27 for root in roots:
|
/external/chromium_org/chrome/test/pyautolib/ |
bookmark_model.py | 29 return self.bookdict['roots']['bookmark_bar'] 33 return self.bookdict['roots']['other'] 45 for x in self.bookdict['roots'].values()]) 64 nodes = self.bookdict['roots'].values() 88 nodes = self.bookdict['roots'].values()
|
/external/eigen/unsupported/Eigen/ |
Polynomials | 56 where \f$ p \f$ is known through its roots i.e. \f$ p(x) = (x-r_1)(x-r_2)...(x-r_n) \f$. 65 The following code: first computes the coefficients in the monomial basis of the monic polynomial that has the provided roots; 94 Computes the complex roots of a polynomial by computing the eigenvalues of the associated companion matrix with the QR algorithm. 96 The roots of \f$ p(x) = a_0 + a_1 x + a_2 x^2 + a_{3} x^3 + x^4 \f$ are the eigenvalues of 109 Therefore the current polynomial solver is guaranteed to provide a correct result only when the complex roots \f$r_1,r_2,...,r_d\f$ have distinct moduli i.e. 122 -# the accuracy problem with the QR algorithm is presented: a polynomial with almost conjugate roots is provided to the solver. 123 Those roots have almost same module therefore the QR algorithm failed to converge: the accuracy
|