1 // Copyright 2008 the V8 project authors. All rights reserved. 2 // Copyright 1996 John Maloney and Mario Wolczko. 3 4 // This program is free software; you can redistribute it and/or modify 5 // it under the terms of the GNU General Public License as published by 6 // the Free Software Foundation; either version 2 of the License, or 7 // (at your option) any later version. 8 // 9 // This program is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU General Public License for more details. 13 // 14 // You should have received a copy of the GNU General Public License 15 // along with this program; if not, write to the Free Software 16 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 18 19 // This implementation of the DeltaBlue benchmark is derived 20 // from the Smalltalk implementation by John Maloney and Mario 21 // Wolczko. Some parts have been translated directly, whereas 22 // others have been modified more aggresively to make it feel 23 // more like a JavaScript program. 24 25 26 var DeltaBlue = new BenchmarkSuite('DeltaBlue', 66118, [ 27 new Benchmark('DeltaBlue', deltaBlue) 28 ]); 29 30 31 /** 32 * A JavaScript implementation of the DeltaBlue constraint-solving 33 * algorithm, as described in: 34 * 35 * "The DeltaBlue Algorithm: An Incremental Constraint Hierarchy Solver" 36 * Bjorn N. Freeman-Benson and John Maloney 37 * January 1990 Communications of the ACM, 38 * also available as University of Washington TR 89-08-06. 39 * 40 * Beware: this benchmark is written in a grotesque style where 41 * the constraint model is built by side-effects from constructors. 42 * I've kept it this way to avoid deviating too much from the original 43 * implementation. 44 */ 45 46 47 /* --- O b j e c t M o d e l --- */ 48 49 Object.prototype.inheritsFrom = function (shuper) { 50 function Inheriter() { } 51 Inheriter.prototype = shuper.prototype; 52 this.prototype = new Inheriter(); 53 this.superConstructor = shuper; 54 } 55 56 function OrderedCollection() { 57 this.elms = new Array(); 58 } 59 60 OrderedCollection.prototype.add = function (elm) { 61 this.elms.push(elm); 62 } 63 64 OrderedCollection.prototype.at = function (index) { 65 return this.elms[index]; 66 } 67 68 OrderedCollection.prototype.size = function () { 69 return this.elms.length; 70 } 71 72 OrderedCollection.prototype.removeFirst = function () { 73 return this.elms.pop(); 74 } 75 76 OrderedCollection.prototype.remove = function (elm) { 77 var index = 0, skipped = 0; 78 for (var i = 0; i < this.elms.length; i++) { 79 var value = this.elms[i]; 80 if (value != elm) { 81 this.elms[index] = value; 82 index++; 83 } else { 84 skipped++; 85 } 86 } 87 for (var i = 0; i < skipped; i++) 88 this.elms.pop(); 89 } 90 91 /* --- * 92 * S t r e n g t h 93 * --- */ 94 95 /** 96 * Strengths are used to measure the relative importance of constraints. 97 * New strengths may be inserted in the strength hierarchy without 98 * disrupting current constraints. Strengths cannot be created outside 99 * this class, so pointer comparison can be used for value comparison. 100 */ 101 function Strength(strengthValue, name) { 102 this.strengthValue = strengthValue; 103 this.name = name; 104 } 105 106 Strength.stronger = function (s1, s2) { 107 return s1.strengthValue < s2.strengthValue; 108 } 109 110 Strength.weaker = function (s1, s2) { 111 return s1.strengthValue > s2.strengthValue; 112 } 113 114 Strength.weakestOf = function (s1, s2) { 115 return this.weaker(s1, s2) ? s1 : s2; 116 } 117 118 Strength.strongest = function (s1, s2) { 119 return this.stronger(s1, s2) ? s1 : s2; 120 } 121 122 Strength.prototype.nextWeaker = function () { 123 switch (this.strengthValue) { 124 case 0: return Strength.STRONG_PREFERRED; 125 case 1: return Strength.PREFERRED; 126 case 2: return Strength.STRONG_DEFAULT; 127 case 3: return Strength.NORMAL; 128 case 4: return Strength.WEAK_DEFAULT; 129 case 5: return Strength.WEAKEST; 130 } 131 } 132 133 // Strength constants. 134 Strength.REQUIRED = new Strength(0, "required"); 135 Strength.STRONG_PREFERRED = new Strength(1, "strongPreferred"); 136 Strength.PREFERRED = new Strength(2, "preferred"); 137 Strength.STRONG_DEFAULT = new Strength(3, "strongDefault"); 138 Strength.NORMAL = new Strength(4, "normal"); 139 Strength.WEAK_DEFAULT = new Strength(5, "weakDefault"); 140 Strength.WEAKEST = new Strength(6, "weakest"); 141 142 /* --- * 143 * C o n s t r a i n t 144 * --- */ 145 146 /** 147 * An abstract class representing a system-maintainable relationship 148 * (or "constraint") between a set of variables. A constraint supplies 149 * a strength instance variable; concrete subclasses provide a means 150 * of storing the constrained variables and other information required 151 * to represent a constraint. 152 */ 153 function Constraint(strength) { 154 this.strength = strength; 155 } 156 157 /** 158 * Activate this constraint and attempt to satisfy it. 159 */ 160 Constraint.prototype.addConstraint = function () { 161 this.addToGraph(); 162 planner.incrementalAdd(this); 163 } 164 165 /** 166 * Attempt to find a way to enforce this constraint. If successful, 167 * record the solution, perhaps modifying the current dataflow 168 * graph. Answer the constraint that this constraint overrides, if 169 * there is one, or nil, if there isn't. 170 * Assume: I am not already satisfied. 171 */ 172 Constraint.prototype.satisfy = function (mark) { 173 this.chooseMethod(mark); 174 if (!this.isSatisfied()) { 175 if (this.strength == Strength.REQUIRED) 176 alert("Could not satisfy a required constraint!"); 177 return null; 178 } 179 this.markInputs(mark); 180 var out = this.output(); 181 var overridden = out.determinedBy; 182 if (overridden != null) overridden.markUnsatisfied(); 183 out.determinedBy = this; 184 if (!planner.addPropagate(this, mark)) 185 alert("Cycle encountered"); 186 out.mark = mark; 187 return overridden; 188 } 189 190 Constraint.prototype.destroyConstraint = function () { 191 if (this.isSatisfied()) planner.incrementalRemove(this); 192 else this.removeFromGraph(); 193 } 194 195 /** 196 * Normal constraints are not input constraints. An input constraint 197 * is one that depends on external state, such as the mouse, the 198 * keybord, a clock, or some arbitraty piece of imperative code. 199 */ 200 Constraint.prototype.isInput = function () { 201 return false; 202 } 203 204 /* --- * 205 * U n a r y C o n s t r a i n t 206 * --- */ 207 208 /** 209 * Abstract superclass for constraints having a single possible output 210 * variable. 211 */ 212 function UnaryConstraint(v, strength) { 213 UnaryConstraint.superConstructor.call(this, strength); 214 this.myOutput = v; 215 this.satisfied = false; 216 this.addConstraint(); 217 } 218 219 UnaryConstraint.inheritsFrom(Constraint); 220 221 /** 222 * Adds this constraint to the constraint graph 223 */ 224 UnaryConstraint.prototype.addToGraph = function () { 225 this.myOutput.addConstraint(this); 226 this.satisfied = false; 227 } 228 229 /** 230 * Decides if this constraint can be satisfied and records that 231 * decision. 232 */ 233 UnaryConstraint.prototype.chooseMethod = function (mark) { 234 this.satisfied = (this.myOutput.mark != mark) 235 && Strength.stronger(this.strength, this.myOutput.walkStrength); 236 } 237 238 /** 239 * Returns true if this constraint is satisfied in the current solution. 240 */ 241 UnaryConstraint.prototype.isSatisfied = function () { 242 return this.satisfied; 243 } 244 245 UnaryConstraint.prototype.markInputs = function (mark) { 246 // has no inputs 247 } 248 249 /** 250 * Returns the current output variable. 251 */ 252 UnaryConstraint.prototype.output = function () { 253 return this.myOutput; 254 } 255 256 /** 257 * Calculate the walkabout strength, the stay flag, and, if it is 258 * 'stay', the value for the current output of this constraint. Assume 259 * this constraint is satisfied. 260 */ 261 UnaryConstraint.prototype.recalculate = function () { 262 this.myOutput.walkStrength = this.strength; 263 this.myOutput.stay = !this.isInput(); 264 if (this.myOutput.stay) this.execute(); // Stay optimization 265 } 266 267 /** 268 * Records that this constraint is unsatisfied 269 */ 270 UnaryConstraint.prototype.markUnsatisfied = function () { 271 this.satisfied = false; 272 } 273 274 UnaryConstraint.prototype.inputsKnown = function () { 275 return true; 276 } 277 278 UnaryConstraint.prototype.removeFromGraph = function () { 279 if (this.myOutput != null) this.myOutput.removeConstraint(this); 280 this.satisfied = false; 281 } 282 283 /* --- * 284 * S t a y C o n s t r a i n t 285 * --- */ 286 287 /** 288 * Variables that should, with some level of preference, stay the same. 289 * Planners may exploit the fact that instances, if satisfied, will not 290 * change their output during plan execution. This is called "stay 291 * optimization". 292 */ 293 function StayConstraint(v, str) { 294 StayConstraint.superConstructor.call(this, v, str); 295 } 296 297 StayConstraint.inheritsFrom(UnaryConstraint); 298 299 StayConstraint.prototype.execute = function () { 300 // Stay constraints do nothing 301 } 302 303 /* --- * 304 * E d i t C o n s t r a i n t 305 * --- */ 306 307 /** 308 * A unary input constraint used to mark a variable that the client 309 * wishes to change. 310 */ 311 function EditConstraint(v, str) { 312 EditConstraint.superConstructor.call(this, v, str); 313 } 314 315 EditConstraint.inheritsFrom(UnaryConstraint); 316 317 /** 318 * Edits indicate that a variable is to be changed by imperative code. 319 */ 320 EditConstraint.prototype.isInput = function () { 321 return true; 322 } 323 324 EditConstraint.prototype.execute = function () { 325 // Edit constraints do nothing 326 } 327 328 /* --- * 329 * B i n a r y C o n s t r a i n t 330 * --- */ 331 332 var Direction = new Object(); 333 Direction.NONE = 0; 334 Direction.FORWARD = 1; 335 Direction.BACKWARD = -1; 336 337 /** 338 * Abstract superclass for constraints having two possible output 339 * variables. 340 */ 341 function BinaryConstraint(var1, var2, strength) { 342 BinaryConstraint.superConstructor.call(this, strength); 343 this.v1 = var1; 344 this.v2 = var2; 345 this.direction = Direction.NONE; 346 this.addConstraint(); 347 } 348 349 BinaryConstraint.inheritsFrom(Constraint); 350 351 /** 352 * Decides if this constraint can be satisfied and which way it 353 * should flow based on the relative strength of the variables related, 354 * and record that decision. 355 */ 356 BinaryConstraint.prototype.chooseMethod = function (mark) { 357 if (this.v1.mark == mark) { 358 this.direction = (this.v2.mark != mark && Strength.stronger(this.strength, this.v2.walkStrength)) 359 ? Direction.FORWARD 360 : Direction.NONE; 361 } 362 if (this.v2.mark == mark) { 363 this.direction = (this.v1.mark != mark && Strength.stronger(this.strength, this.v1.walkStrength)) 364 ? Direction.BACKWARD 365 : Direction.NONE; 366 } 367 if (Strength.weaker(this.v1.walkStrength, this.v2.walkStrength)) { 368 this.direction = Strength.stronger(this.strength, this.v1.walkStrength) 369 ? Direction.BACKWARD 370 : Direction.NONE; 371 } else { 372 this.direction = Strength.stronger(this.strength, this.v2.walkStrength) 373 ? Direction.FORWARD 374 : Direction.BACKWARD 375 } 376 } 377 378 /** 379 * Add this constraint to the constraint graph 380 */ 381 BinaryConstraint.prototype.addToGraph = function () { 382 this.v1.addConstraint(this); 383 this.v2.addConstraint(this); 384 this.direction = Direction.NONE; 385 } 386 387 /** 388 * Answer true if this constraint is satisfied in the current solution. 389 */ 390 BinaryConstraint.prototype.isSatisfied = function () { 391 return this.direction != Direction.NONE; 392 } 393 394 /** 395 * Mark the input variable with the given mark. 396 */ 397 BinaryConstraint.prototype.markInputs = function (mark) { 398 this.input().mark = mark; 399 } 400 401 /** 402 * Returns the current input variable 403 */ 404 BinaryConstraint.prototype.input = function () { 405 return (this.direction == Direction.FORWARD) ? this.v1 : this.v2; 406 } 407 408 /** 409 * Returns the current output variable 410 */ 411 BinaryConstraint.prototype.output = function () { 412 return (this.direction == Direction.FORWARD) ? this.v2 : this.v1; 413 } 414 415 /** 416 * Calculate the walkabout strength, the stay flag, and, if it is 417 * 'stay', the value for the current output of this 418 * constraint. Assume this constraint is satisfied. 419 */ 420 BinaryConstraint.prototype.recalculate = function () { 421 var ihn = this.input(), out = this.output(); 422 out.walkStrength = Strength.weakestOf(this.strength, ihn.walkStrength); 423 out.stay = ihn.stay; 424 if (out.stay) this.execute(); 425 } 426 427 /** 428 * Record the fact that this constraint is unsatisfied. 429 */ 430 BinaryConstraint.prototype.markUnsatisfied = function () { 431 this.direction = Direction.NONE; 432 } 433 434 BinaryConstraint.prototype.inputsKnown = function (mark) { 435 var i = this.input(); 436 return i.mark == mark || i.stay || i.determinedBy == null; 437 } 438 439 BinaryConstraint.prototype.removeFromGraph = function () { 440 if (this.v1 != null) this.v1.removeConstraint(this); 441 if (this.v2 != null) this.v2.removeConstraint(this); 442 this.direction = Direction.NONE; 443 } 444 445 /* --- * 446 * S c a l e C o n s t r a i n t 447 * --- */ 448 449 /** 450 * Relates two variables by the linear scaling relationship: "v2 = 451 * (v1 * scale) + offset". Either v1 or v2 may be changed to maintain 452 * this relationship but the scale factor and offset are considered 453 * read-only. 454 */ 455 function ScaleConstraint(src, scale, offset, dest, strength) { 456 this.direction = Direction.NONE; 457 this.scale = scale; 458 this.offset = offset; 459 ScaleConstraint.superConstructor.call(this, src, dest, strength); 460 } 461 462 ScaleConstraint.inheritsFrom(BinaryConstraint); 463 464 /** 465 * Adds this constraint to the constraint graph. 466 */ 467 ScaleConstraint.prototype.addToGraph = function () { 468 ScaleConstraint.superConstructor.prototype.addToGraph.call(this); 469 this.scale.addConstraint(this); 470 this.offset.addConstraint(this); 471 } 472 473 ScaleConstraint.prototype.removeFromGraph = function () { 474 ScaleConstraint.superConstructor.prototype.removeFromGraph.call(this); 475 if (this.scale != null) this.scale.removeConstraint(this); 476 if (this.offset != null) this.offset.removeConstraint(this); 477 } 478 479 ScaleConstraint.prototype.markInputs = function (mark) { 480 ScaleConstraint.superConstructor.prototype.markInputs.call(this, mark); 481 this.scale.mark = this.offset.mark = mark; 482 } 483 484 /** 485 * Enforce this constraint. Assume that it is satisfied. 486 */ 487 ScaleConstraint.prototype.execute = function () { 488 if (this.direction == Direction.FORWARD) { 489 this.v2.value = this.v1.value * this.scale.value + this.offset.value; 490 } else { 491 this.v1.value = (this.v2.value - this.offset.value) / this.scale.value; 492 } 493 } 494 495 /** 496 * Calculate the walkabout strength, the stay flag, and, if it is 497 * 'stay', the value for the current output of this constraint. Assume 498 * this constraint is satisfied. 499 */ 500 ScaleConstraint.prototype.recalculate = function () { 501 var ihn = this.input(), out = this.output(); 502 out.walkStrength = Strength.weakestOf(this.strength, ihn.walkStrength); 503 out.stay = ihn.stay && this.scale.stay && this.offset.stay; 504 if (out.stay) this.execute(); 505 } 506 507 /* --- * 508 * E q u a l i t y C o n s t r a i n t 509 * --- */ 510 511 /** 512 * Constrains two variables to have the same value. 513 */ 514 function EqualityConstraint(var1, var2, strength) { 515 EqualityConstraint.superConstructor.call(this, var1, var2, strength); 516 } 517 518 EqualityConstraint.inheritsFrom(BinaryConstraint); 519 520 /** 521 * Enforce this constraint. Assume that it is satisfied. 522 */ 523 EqualityConstraint.prototype.execute = function () { 524 this.output().value = this.input().value; 525 } 526 527 /* --- * 528 * V a r i a b l e 529 * --- */ 530 531 /** 532 * A constrained variable. In addition to its value, it maintain the 533 * structure of the constraint graph, the current dataflow graph, and 534 * various parameters of interest to the DeltaBlue incremental 535 * constraint solver. 536 **/ 537 function Variable(name, initialValue) { 538 this.value = initialValue || 0; 539 this.constraints = new OrderedCollection(); 540 this.determinedBy = null; 541 this.mark = 0; 542 this.walkStrength = Strength.WEAKEST; 543 this.stay = true; 544 this.name = name; 545 } 546 547 /** 548 * Add the given constraint to the set of all constraints that refer 549 * this variable. 550 */ 551 Variable.prototype.addConstraint = function (c) { 552 this.constraints.add(c); 553 } 554 555 /** 556 * Removes all traces of c from this variable. 557 */ 558 Variable.prototype.removeConstraint = function (c) { 559 this.constraints.remove(c); 560 if (this.determinedBy == c) this.determinedBy = null; 561 } 562 563 /* --- * 564 * P l a n n e r 565 * --- */ 566 567 /** 568 * The DeltaBlue planner 569 */ 570 function Planner() { 571 this.currentMark = 0; 572 } 573 574 /** 575 * Attempt to satisfy the given constraint and, if successful, 576 * incrementally update the dataflow graph. Details: If satifying 577 * the constraint is successful, it may override a weaker constraint 578 * on its output. The algorithm attempts to resatisfy that 579 * constraint using some other method. This process is repeated 580 * until either a) it reaches a variable that was not previously 581 * determined by any constraint or b) it reaches a constraint that 582 * is too weak to be satisfied using any of its methods. The 583 * variables of constraints that have been processed are marked with 584 * a unique mark value so that we know where we've been. This allows 585 * the algorithm to avoid getting into an infinite loop even if the 586 * constraint graph has an inadvertent cycle. 587 */ 588 Planner.prototype.incrementalAdd = function (c) { 589 var mark = this.newMark(); 590 var overridden = c.satisfy(mark); 591 while (overridden != null) 592 overridden = overridden.satisfy(mark); 593 } 594 595 /** 596 * Entry point for retracting a constraint. Remove the given 597 * constraint and incrementally update the dataflow graph. 598 * Details: Retracting the given constraint may allow some currently 599 * unsatisfiable downstream constraint to be satisfied. We therefore collect 600 * a list of unsatisfied downstream constraints and attempt to 601 * satisfy each one in turn. This list is traversed by constraint 602 * strength, strongest first, as a heuristic for avoiding 603 * unnecessarily adding and then overriding weak constraints. 604 * Assume: c is satisfied. 605 */ 606 Planner.prototype.incrementalRemove = function (c) { 607 var out = c.output(); 608 c.markUnsatisfied(); 609 c.removeFromGraph(); 610 var unsatisfied = this.removePropagateFrom(out); 611 var strength = Strength.REQUIRED; 612 do { 613 for (var i = 0; i < unsatisfied.size(); i++) { 614 var u = unsatisfied.at(i); 615 if (u.strength == strength) 616 this.incrementalAdd(u); 617 } 618 strength = strength.nextWeaker(); 619 } while (strength != Strength.WEAKEST); 620 } 621 622 /** 623 * Select a previously unused mark value. 624 */ 625 Planner.prototype.newMark = function () { 626 return ++this.currentMark; 627 } 628 629 /** 630 * Extract a plan for resatisfaction starting from the given source 631 * constraints, usually a set of input constraints. This method 632 * assumes that stay optimization is desired; the plan will contain 633 * only constraints whose output variables are not stay. Constraints 634 * that do no computation, such as stay and edit constraints, are 635 * not included in the plan. 636 * Details: The outputs of a constraint are marked when it is added 637 * to the plan under construction. A constraint may be appended to 638 * the plan when all its input variables are known. A variable is 639 * known if either a) the variable is marked (indicating that has 640 * been computed by a constraint appearing earlier in the plan), b) 641 * the variable is 'stay' (i.e. it is a constant at plan execution 642 * time), or c) the variable is not determined by any 643 * constraint. The last provision is for past states of history 644 * variables, which are not stay but which are also not computed by 645 * any constraint. 646 * Assume: sources are all satisfied. 647 */ 648 Planner.prototype.makePlan = function (sources) { 649 var mark = this.newMark(); 650 var plan = new Plan(); 651 var todo = sources; 652 while (todo.size() > 0) { 653 var c = todo.removeFirst(); 654 if (c.output().mark != mark && c.inputsKnown(mark)) { 655 plan.addConstraint(c); 656 c.output().mark = mark; 657 this.addConstraintsConsumingTo(c.output(), todo); 658 } 659 } 660 return plan; 661 } 662 663 /** 664 * Extract a plan for resatisfying starting from the output of the 665 * given constraints, usually a set of input constraints. 666 */ 667 Planner.prototype.extractPlanFromConstraints = function (constraints) { 668 var sources = new OrderedCollection(); 669 for (var i = 0; i < constraints.size(); i++) { 670 var c = constraints.at(i); 671 if (c.isInput() && c.isSatisfied()) 672 // not in plan already and eligible for inclusion 673 sources.add(c); 674 } 675 return this.makePlan(sources); 676 } 677 678 /** 679 * Recompute the walkabout strengths and stay flags of all variables 680 * downstream of the given constraint and recompute the actual 681 * values of all variables whose stay flag is true. If a cycle is 682 * detected, remove the given constraint and answer 683 * false. Otherwise, answer true. 684 * Details: Cycles are detected when a marked variable is 685 * encountered downstream of the given constraint. The sender is 686 * assumed to have marked the inputs of the given constraint with 687 * the given mark. Thus, encountering a marked node downstream of 688 * the output constraint means that there is a path from the 689 * constraint's output to one of its inputs. 690 */ 691 Planner.prototype.addPropagate = function (c, mark) { 692 var todo = new OrderedCollection(); 693 todo.add(c); 694 while (todo.size() > 0) { 695 var d = todo.removeFirst(); 696 if (d.output().mark == mark) { 697 this.incrementalRemove(c); 698 return false; 699 } 700 d.recalculate(); 701 this.addConstraintsConsumingTo(d.output(), todo); 702 } 703 return true; 704 } 705 706 707 /** 708 * Update the walkabout strengths and stay flags of all variables 709 * downstream of the given constraint. Answer a collection of 710 * unsatisfied constraints sorted in order of decreasing strength. 711 */ 712 Planner.prototype.removePropagateFrom = function (out) { 713 out.determinedBy = null; 714 out.walkStrength = Strength.WEAKEST; 715 out.stay = true; 716 var unsatisfied = new OrderedCollection(); 717 var todo = new OrderedCollection(); 718 todo.add(out); 719 while (todo.size() > 0) { 720 var v = todo.removeFirst(); 721 for (var i = 0; i < v.constraints.size(); i++) { 722 var c = v.constraints.at(i); 723 if (!c.isSatisfied()) 724 unsatisfied.add(c); 725 } 726 var determining = v.determinedBy; 727 for (var i = 0; i < v.constraints.size(); i++) { 728 var next = v.constraints.at(i); 729 if (next != determining && next.isSatisfied()) { 730 next.recalculate(); 731 todo.add(next.output()); 732 } 733 } 734 } 735 return unsatisfied; 736 } 737 738 Planner.prototype.addConstraintsConsumingTo = function (v, coll) { 739 var determining = v.determinedBy; 740 var cc = v.constraints; 741 for (var i = 0; i < cc.size(); i++) { 742 var c = cc.at(i); 743 if (c != determining && c.isSatisfied()) 744 coll.add(c); 745 } 746 } 747 748 /* --- * 749 * P l a n 750 * --- */ 751 752 /** 753 * A Plan is an ordered list of constraints to be executed in sequence 754 * to resatisfy all currently satisfiable constraints in the face of 755 * one or more changing inputs. 756 */ 757 function Plan() { 758 this.v = new OrderedCollection(); 759 } 760 761 Plan.prototype.addConstraint = function (c) { 762 this.v.add(c); 763 } 764 765 Plan.prototype.size = function () { 766 return this.v.size(); 767 } 768 769 Plan.prototype.constraintAt = function (index) { 770 return this.v.at(index); 771 } 772 773 Plan.prototype.execute = function () { 774 for (var i = 0; i < this.size(); i++) { 775 var c = this.constraintAt(i); 776 c.execute(); 777 } 778 } 779 780 /* --- * 781 * M a i n 782 * --- */ 783 784 /** 785 * This is the standard DeltaBlue benchmark. A long chain of equality 786 * constraints is constructed with a stay constraint on one end. An 787 * edit constraint is then added to the opposite end and the time is 788 * measured for adding and removing this constraint, and extracting 789 * and executing a constraint satisfaction plan. There are two cases. 790 * In case 1, the added constraint is stronger than the stay 791 * constraint and values must propagate down the entire length of the 792 * chain. In case 2, the added constraint is weaker than the stay 793 * constraint so it cannot be accomodated. The cost in this case is, 794 * of course, very low. Typical situations lie somewhere between these 795 * two extremes. 796 */ 797 function chainTest(n) { 798 planner = new Planner(); 799 var prev = null, first = null, last = null; 800 801 // Build chain of n equality constraints 802 for (var i = 0; i <= n; i++) { 803 var name = "v" + i; 804 var v = new Variable(name); 805 if (prev != null) 806 new EqualityConstraint(prev, v, Strength.REQUIRED); 807 if (i == 0) first = v; 808 if (i == n) last = v; 809 prev = v; 810 } 811 812 new StayConstraint(last, Strength.STRONG_DEFAULT); 813 var edit = new EditConstraint(first, Strength.PREFERRED); 814 var edits = new OrderedCollection(); 815 edits.add(edit); 816 var plan = planner.extractPlanFromConstraints(edits); 817 for (var i = 0; i < 100; i++) { 818 first.value = i; 819 plan.execute(); 820 if (last.value != i) 821 alert("Chain test failed."); 822 } 823 } 824 825 /** 826 * This test constructs a two sets of variables related to each 827 * other by a simple linear transformation (scale and offset). The 828 * time is measured to change a variable on either side of the 829 * mapping and to change the scale and offset factors. 830 */ 831 function projectionTest(n) { 832 planner = new Planner(); 833 var scale = new Variable("scale", 10); 834 var offset = new Variable("offset", 1000); 835 var src = null, dst = null; 836 837 var dests = new OrderedCollection(); 838 for (var i = 0; i < n; i++) { 839 src = new Variable("src" + i, i); 840 dst = new Variable("dst" + i, i); 841 dests.add(dst); 842 new StayConstraint(src, Strength.NORMAL); 843 new ScaleConstraint(src, scale, offset, dst, Strength.REQUIRED); 844 } 845 846 change(src, 17); 847 if (dst.value != 1170) alert("Projection 1 failed"); 848 change(dst, 1050); 849 if (src.value != 5) alert("Projection 2 failed"); 850 change(scale, 5); 851 for (var i = 0; i < n - 1; i++) { 852 if (dests.at(i).value != i * 5 + 1000) 853 alert("Projection 3 failed"); 854 } 855 change(offset, 2000); 856 for (var i = 0; i < n - 1; i++) { 857 if (dests.at(i).value != i * 5 + 2000) 858 alert("Projection 4 failed"); 859 } 860 } 861 862 function change(v, newValue) { 863 var edit = new EditConstraint(v, Strength.PREFERRED); 864 var edits = new OrderedCollection(); 865 edits.add(edit); 866 var plan = planner.extractPlanFromConstraints(edits); 867 for (var i = 0; i < 10; i++) { 868 v.value = newValue; 869 plan.execute(); 870 } 871 edit.destroyConstraint(); 872 } 873 874 // Global variable holding the current planner. 875 var planner = null; 876 877 function deltaBlue() { 878 chainTest(100); 879 projectionTest(100); 880 } 881