Home | History | Annotate | Download | only in Eigenvalues

Lines Matching full:eivecs

550     MatrixType& eivecs = solver.m_eivec;
567 eivecs.setIdentity();
586 eivecs.col(k) = cross / sqrt(n);
592 eivecs.col(k) = cross / sqrt(n);
598 eivecs.col(k) = cross / sqrt(n);
618 eivecs.col(1) = eivecs.col(k).unitOrthogonal();
621 n = (cross = eivecs.col(k).cross(tmp.row(0).normalized())).squaredNorm();
623 eivecs.col(1) = cross / sqrt(n);
626 n = (cross = eivecs.col(k).cross(tmp.row(1))).squaredNorm();
628 eivecs.col(1) = cross / sqrt(n);
631 n = (cross = eivecs.col(k).cross(tmp.row(2))).squaredNorm();
633 eivecs.col(1) = cross / sqrt(n);
638 eivecs.col(1) = eivecs.col(k).unitOrthogonal();
643 // make sure that eivecs[1] is orthogonal to eivecs[2]
644 Scalar d = eivecs.col(1).dot(eivecs.col(k));
645 eivecs.col(1) = (eivecs.col(1) - d * eivecs.col(k)).normalized();
648 eivecs.col(k==2 ? 0 : 2) = eivecs.col(k).cross(eivecs.col(1)).normalized();
684 MatrixType& eivecs = solver.m_eivec;
704 eivecs.col(1) << -scaledMat(1,0), scaledMat(0,0);
705 eivecs.col(1) /= sqrt(a2+b2);
709 eivecs.col(1) << -scaledMat(1,1), scaledMat(1,0);
710 eivecs.col(1) /= sqrt(c2+b2);
713 eivecs.col(0) << eivecs.col(1).unitOrthogonal();