Home | History | Annotate | Download | only in noise
      1 /**
      2  * Copyright (c) 2011, Novyon Events
      3  *
      4  * All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions are met:
      8  *
      9  * - Redistributions of source code must retain the above copyright notice, this
     10  * list of conditions and the following disclaimer.
     11  *
     12  * - Redistributions in binary form must reproduce the above copyright notice,
     13  * this list of conditions and the following disclaimer in the documentation
     14  * and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
     20  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     24  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     25  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     26  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27  *
     28  * @author Anthyon
     29  */
     30 package com.jme3.terrain.noise;
     31 
     32 import java.awt.Color;
     33 import java.awt.Graphics2D;
     34 import java.awt.image.BufferedImage;
     35 import java.awt.image.DataBuffer;
     36 import java.awt.image.DataBufferInt;
     37 import java.awt.image.WritableRaster;
     38 import java.nio.ByteBuffer;
     39 import java.nio.ByteOrder;
     40 
     41 /**
     42  * Helper class containing useful functions explained in the book:
     43  * Texturing & Modeling - A Procedural Approach
     44  *
     45  * @author Anthyon
     46  *
     47  */
     48 public class ShaderUtils {
     49 
     50 	public static final float[] i2c(final int color) {
     51 		return new float[] { (color & 0x00ff0000) / 256f, (color & 0x0000ff00) / 256f, (color & 0x000000ff) / 256f,
     52 				(color & 0xff000000) / 256f };
     53 	}
     54 
     55 	public static final int c2i(final float[] color) {
     56 		return (color.length == 4 ? (int) (color[3] * 256) : 0xff000000) | ((int) (color[0] * 256) << 16) | ((int) (color[1] * 256) << 8)
     57 				| (int) (color[2] * 256);
     58 	}
     59 
     60 	public static final float mix(final float a, final float b, final float f) {
     61 		return (1 - f) * a + f * b;
     62 	}
     63 
     64 	public static final Color mix(final Color a, final Color b, final float f) {
     65 		return new Color((int) ShaderUtils.clamp(ShaderUtils.mix(a.getRed(), b.getRed(), f), 0, 255), (int) ShaderUtils.clamp(
     66 				ShaderUtils.mix(a.getGreen(), b.getGreen(), f), 0, 255), (int) ShaderUtils.clamp(
     67 				ShaderUtils.mix(a.getBlue(), b.getBlue(), f), 0, 255));
     68 	}
     69 
     70 	public static final int mix(final int a, final int b, final float f) {
     71 		return (int) ((1 - f) * a + f * b);
     72 	}
     73 
     74 	public static final float[] mix(final float[] c1, final float[] c2, final float f) {
     75 		return new float[] { ShaderUtils.mix(c1[0], c2[0], f), ShaderUtils.mix(c1[1], c2[1], f), ShaderUtils.mix(c1[2], c2[2], f) };
     76 	}
     77 
     78 	public static final float step(final float a, final float x) {
     79 		return x < a ? 0 : 1;
     80 	}
     81 
     82 	public static final float boxstep(final float a, final float b, final float x) {
     83 		return ShaderUtils.clamp((x - a) / (b - a), 0, 1);
     84 	}
     85 
     86 	public static final float pulse(final float a, final float b, final float x) {
     87 		return ShaderUtils.step(a, x) - ShaderUtils.step(b, x);
     88 	}
     89 
     90 	public static final float clamp(final float x, final float a, final float b) {
     91 		return x < a ? a : x > b ? b : x;
     92 	}
     93 
     94 	public static final float min(final float a, final float b) {
     95 		return a < b ? a : b;
     96 	}
     97 
     98 	public static final float max(final float a, final float b) {
     99 		return a > b ? a : b;
    100 	}
    101 
    102 	public static final float abs(final float x) {
    103 		return x < 0 ? -x : x;
    104 	}
    105 
    106 	public static final float smoothstep(final float a, final float b, final float x) {
    107 		if (x < a) {
    108 			return 0;
    109 		} else if (x > b) {
    110 			return 1;
    111 		}
    112 		float xx = (x - a) / (b - a);
    113 		return xx * xx * (3 - 2 * xx);
    114 	}
    115 
    116 	public static final float mod(final float a, final float b) {
    117 		int n = (int) (a / b);
    118 		float aa = a - n * b;
    119 		if (aa < 0) {
    120 			aa += b;
    121 		}
    122 		return aa;
    123 	}
    124 
    125 	public static final int floor(final float x) {
    126 		return x > 0 ? (int) x : (int) x - 1;
    127 	}
    128 
    129 	public static final float ceil(final float x) {
    130 		return (int) x + (x > 0 && x != (int) x ? 1 : 0);
    131 	}
    132 
    133 	public static final float spline(float x, final float[] knot) {
    134 		float CR00 = -0.5f;
    135 		float CR01 = 1.5f;
    136 		float CR02 = -1.5f;
    137 		float CR03 = 0.5f;
    138 		float CR10 = 1.0f;
    139 		float CR11 = -2.5f;
    140 		float CR12 = 2.0f;
    141 		float CR13 = -0.5f;
    142 		float CR20 = -0.5f;
    143 		float CR21 = 0.0f;
    144 		float CR22 = 0.5f;
    145 		float CR23 = 0.0f;
    146 		float CR30 = 0.0f;
    147 		float CR31 = 1.0f;
    148 		float CR32 = 0.0f;
    149 		float CR33 = 0.0f;
    150 
    151 		int span;
    152 		int nspans = knot.length - 3;
    153 		float c0, c1, c2, c3; /* coefficients of the cubic. */
    154 		if (nspans < 1) {/* illegal */
    155 			throw new RuntimeException("Spline has too few knots.");
    156 		}
    157 		/* Find the appropriate 4-point span of the spline. */
    158 		x = ShaderUtils.clamp(x, 0, 1) * nspans;
    159 		span = (int) x;
    160 		if (span >= knot.length - 3) {
    161 			span = knot.length - 3;
    162 		}
    163 		x -= span;
    164 		/* Evaluate the span cubic at x using Horners rule. */
    165 		c3 = CR00 * knot[span + 0] + CR01 * knot[span + 1] + CR02 * knot[span + 2] + CR03 * knot[span + 3];
    166 		c2 = CR10 * knot[span + 0] + CR11 * knot[span + 1] + CR12 * knot[span + 2] + CR13 * knot[span + 3];
    167 		c1 = CR20 * knot[span + 0] + CR21 * knot[span + 1] + CR22 * knot[span + 2] + CR23 * knot[span + 3];
    168 		c0 = CR30 * knot[span + 0] + CR31 * knot[span + 1] + CR32 * knot[span + 2] + CR33 * knot[span + 3];
    169 		return ((c3 * x + c2) * x + c1) * x + c0;
    170 	}
    171 
    172 	public static final float[] spline(final float x, final float[][] knots) {
    173 		float[] retval = new float[knots.length];
    174 		for (int i = 0; i < knots.length; i++) {
    175 			retval[i] = ShaderUtils.spline(x, knots[i]);
    176 		}
    177 		return retval;
    178 	}
    179 
    180 	public static final float gammaCorrection(final float gamma, final float x) {
    181 		return (float) Math.pow(x, 1 / gamma);
    182 	}
    183 
    184 	public static final float bias(final float b, final float x) {
    185 		return (float) Math.pow(x, Math.log(b) / Math.log(0.5));
    186 	}
    187 
    188 	public static final float gain(final float g, final float x) {
    189 		return x < 0.5 ? ShaderUtils.bias(1 - g, 2 * x) / 2 : 1 - ShaderUtils.bias(1 - g, 2 - 2 * x) / 2;
    190 	}
    191 
    192 	public static final float sinValue(final float s, final float minFreq, final float maxFreq, final float swidth) {
    193 		float value = 0;
    194 		float cutoff = ShaderUtils.clamp(0.5f / swidth, 0, maxFreq);
    195 		float f;
    196 		for (f = minFreq; f < 0.5 * cutoff; f *= 2) {
    197 			value += Math.sin(2 * Math.PI * f * s) / f;
    198 		}
    199 		float fade = ShaderUtils.clamp(2 * (cutoff - f) / cutoff, 0, 1);
    200 		value += fade * Math.sin(2 * Math.PI * f * s) / f;
    201 		return value;
    202 	}
    203 
    204 	public static final float length(final float x, final float y, final float z) {
    205 		return (float) Math.sqrt(x * x + y * y + z * z);
    206 	}
    207 
    208 	public static final float[] rotate(final float[] v, final float[][] m) {
    209 		float x = v[0] * m[0][0] + v[1] * m[0][1] + v[2] * m[0][2];
    210 		float y = v[0] * m[1][0] + v[1] * m[1][1] + v[2] * m[1][2];
    211 		float z = v[0] * m[2][0] + v[1] * m[2][1] + v[2] * m[2][2];
    212 		return new float[] { x, y, z };
    213 	}
    214 
    215 	public static final float[][] calcRotationMatrix(final float ax, final float ay, final float az) {
    216 		float[][] retval = new float[3][3];
    217 		float cax = (float) Math.cos(ax);
    218 		float sax = (float) Math.sin(ax);
    219 		float cay = (float) Math.cos(ay);
    220 		float say = (float) Math.sin(ay);
    221 		float caz = (float) Math.cos(az);
    222 		float saz = (float) Math.sin(az);
    223 
    224 		retval[0][0] = cay * caz;
    225 		retval[0][1] = -cay * saz;
    226 		retval[0][2] = say;
    227 		retval[1][0] = sax * say * caz + cax * saz;
    228 		retval[1][1] = -sax * say * saz + cax * caz;
    229 		retval[1][2] = -sax * cay;
    230 		retval[2][0] = -cax * say * caz + sax * saz;
    231 		retval[2][1] = cax * say * saz + sax * caz;
    232 		retval[2][2] = cax * cay;
    233 
    234 		return retval;
    235 	}
    236 
    237 	public static final float[] normalize(final float[] v) {
    238 		float l = ShaderUtils.length(v);
    239 		float[] r = new float[v.length];
    240 		int i = 0;
    241 		for (float vv : v) {
    242 			r[i++] = vv / l;
    243 		}
    244 		return r;
    245 	}
    246 
    247 	public static final float length(final float[] v) {
    248 		float s = 0;
    249 		for (float vv : v) {
    250 			s += vv * vv;
    251 		}
    252 		return (float) Math.sqrt(s);
    253 	}
    254 
    255 	public static final ByteBuffer getImageDataFromImage(BufferedImage bufferedImage) {
    256 		WritableRaster wr;
    257 		DataBuffer db;
    258 
    259 		BufferedImage bi = new BufferedImage(128, 64, BufferedImage.TYPE_INT_ARGB);
    260 		Graphics2D g = bi.createGraphics();
    261 		g.drawImage(bufferedImage, null, null);
    262 		bufferedImage = bi;
    263 		wr = bi.getRaster();
    264 		db = wr.getDataBuffer();
    265 
    266 		DataBufferInt dbi = (DataBufferInt) db;
    267 		int[] data = dbi.getData();
    268 
    269 		ByteBuffer byteBuffer = ByteBuffer.allocateDirect(data.length * 4);
    270 		byteBuffer.order(ByteOrder.LITTLE_ENDIAN);
    271 		byteBuffer.asIntBuffer().put(data);
    272 		byteBuffer.flip();
    273 
    274 		return byteBuffer;
    275 	}
    276 
    277 	public static float frac(float f) {
    278 		return f - ShaderUtils.floor(f);
    279 	}
    280 
    281 	public static float[] floor(float[] fs) {
    282 		float[] retval = new float[fs.length];
    283 		for (int i = 0; i < fs.length; i++) {
    284 			retval[i] = ShaderUtils.floor(fs[i]);
    285 		}
    286 		return retval;
    287 	}
    288 }
    289