1 /** 2 * Copyright (c) 2011, Novyon Events 3 * 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions are met: 8 * 9 * - Redistributions of source code must retain the above copyright notice, this 10 * list of conditions and the following disclaimer. 11 * 12 * - Redistributions in binary form must reproduce the above copyright notice, 13 * this list of conditions and the following disclaimer in the documentation 14 * and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 20 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 25 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 26 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * @author Anthyon 29 */ 30 package com.jme3.terrain.noise; 31 32 import java.awt.Color; 33 import java.awt.Graphics2D; 34 import java.awt.image.BufferedImage; 35 import java.awt.image.DataBuffer; 36 import java.awt.image.DataBufferInt; 37 import java.awt.image.WritableRaster; 38 import java.nio.ByteBuffer; 39 import java.nio.ByteOrder; 40 41 /** 42 * Helper class containing useful functions explained in the book: 43 * Texturing & Modeling - A Procedural Approach 44 * 45 * @author Anthyon 46 * 47 */ 48 public class ShaderUtils { 49 50 public static final float[] i2c(final int color) { 51 return new float[] { (color & 0x00ff0000) / 256f, (color & 0x0000ff00) / 256f, (color & 0x000000ff) / 256f, 52 (color & 0xff000000) / 256f }; 53 } 54 55 public static final int c2i(final float[] color) { 56 return (color.length == 4 ? (int) (color[3] * 256) : 0xff000000) | ((int) (color[0] * 256) << 16) | ((int) (color[1] * 256) << 8) 57 | (int) (color[2] * 256); 58 } 59 60 public static final float mix(final float a, final float b, final float f) { 61 return (1 - f) * a + f * b; 62 } 63 64 public static final Color mix(final Color a, final Color b, final float f) { 65 return new Color((int) ShaderUtils.clamp(ShaderUtils.mix(a.getRed(), b.getRed(), f), 0, 255), (int) ShaderUtils.clamp( 66 ShaderUtils.mix(a.getGreen(), b.getGreen(), f), 0, 255), (int) ShaderUtils.clamp( 67 ShaderUtils.mix(a.getBlue(), b.getBlue(), f), 0, 255)); 68 } 69 70 public static final int mix(final int a, final int b, final float f) { 71 return (int) ((1 - f) * a + f * b); 72 } 73 74 public static final float[] mix(final float[] c1, final float[] c2, final float f) { 75 return new float[] { ShaderUtils.mix(c1[0], c2[0], f), ShaderUtils.mix(c1[1], c2[1], f), ShaderUtils.mix(c1[2], c2[2], f) }; 76 } 77 78 public static final float step(final float a, final float x) { 79 return x < a ? 0 : 1; 80 } 81 82 public static final float boxstep(final float a, final float b, final float x) { 83 return ShaderUtils.clamp((x - a) / (b - a), 0, 1); 84 } 85 86 public static final float pulse(final float a, final float b, final float x) { 87 return ShaderUtils.step(a, x) - ShaderUtils.step(b, x); 88 } 89 90 public static final float clamp(final float x, final float a, final float b) { 91 return x < a ? a : x > b ? b : x; 92 } 93 94 public static final float min(final float a, final float b) { 95 return a < b ? a : b; 96 } 97 98 public static final float max(final float a, final float b) { 99 return a > b ? a : b; 100 } 101 102 public static final float abs(final float x) { 103 return x < 0 ? -x : x; 104 } 105 106 public static final float smoothstep(final float a, final float b, final float x) { 107 if (x < a) { 108 return 0; 109 } else if (x > b) { 110 return 1; 111 } 112 float xx = (x - a) / (b - a); 113 return xx * xx * (3 - 2 * xx); 114 } 115 116 public static final float mod(final float a, final float b) { 117 int n = (int) (a / b); 118 float aa = a - n * b; 119 if (aa < 0) { 120 aa += b; 121 } 122 return aa; 123 } 124 125 public static final int floor(final float x) { 126 return x > 0 ? (int) x : (int) x - 1; 127 } 128 129 public static final float ceil(final float x) { 130 return (int) x + (x > 0 && x != (int) x ? 1 : 0); 131 } 132 133 public static final float spline(float x, final float[] knot) { 134 float CR00 = -0.5f; 135 float CR01 = 1.5f; 136 float CR02 = -1.5f; 137 float CR03 = 0.5f; 138 float CR10 = 1.0f; 139 float CR11 = -2.5f; 140 float CR12 = 2.0f; 141 float CR13 = -0.5f; 142 float CR20 = -0.5f; 143 float CR21 = 0.0f; 144 float CR22 = 0.5f; 145 float CR23 = 0.0f; 146 float CR30 = 0.0f; 147 float CR31 = 1.0f; 148 float CR32 = 0.0f; 149 float CR33 = 0.0f; 150 151 int span; 152 int nspans = knot.length - 3; 153 float c0, c1, c2, c3; /* coefficients of the cubic. */ 154 if (nspans < 1) {/* illegal */ 155 throw new RuntimeException("Spline has too few knots."); 156 } 157 /* Find the appropriate 4-point span of the spline. */ 158 x = ShaderUtils.clamp(x, 0, 1) * nspans; 159 span = (int) x; 160 if (span >= knot.length - 3) { 161 span = knot.length - 3; 162 } 163 x -= span; 164 /* Evaluate the span cubic at x using Horners rule. */ 165 c3 = CR00 * knot[span + 0] + CR01 * knot[span + 1] + CR02 * knot[span + 2] + CR03 * knot[span + 3]; 166 c2 = CR10 * knot[span + 0] + CR11 * knot[span + 1] + CR12 * knot[span + 2] + CR13 * knot[span + 3]; 167 c1 = CR20 * knot[span + 0] + CR21 * knot[span + 1] + CR22 * knot[span + 2] + CR23 * knot[span + 3]; 168 c0 = CR30 * knot[span + 0] + CR31 * knot[span + 1] + CR32 * knot[span + 2] + CR33 * knot[span + 3]; 169 return ((c3 * x + c2) * x + c1) * x + c0; 170 } 171 172 public static final float[] spline(final float x, final float[][] knots) { 173 float[] retval = new float[knots.length]; 174 for (int i = 0; i < knots.length; i++) { 175 retval[i] = ShaderUtils.spline(x, knots[i]); 176 } 177 return retval; 178 } 179 180 public static final float gammaCorrection(final float gamma, final float x) { 181 return (float) Math.pow(x, 1 / gamma); 182 } 183 184 public static final float bias(final float b, final float x) { 185 return (float) Math.pow(x, Math.log(b) / Math.log(0.5)); 186 } 187 188 public static final float gain(final float g, final float x) { 189 return x < 0.5 ? ShaderUtils.bias(1 - g, 2 * x) / 2 : 1 - ShaderUtils.bias(1 - g, 2 - 2 * x) / 2; 190 } 191 192 public static final float sinValue(final float s, final float minFreq, final float maxFreq, final float swidth) { 193 float value = 0; 194 float cutoff = ShaderUtils.clamp(0.5f / swidth, 0, maxFreq); 195 float f; 196 for (f = minFreq; f < 0.5 * cutoff; f *= 2) { 197 value += Math.sin(2 * Math.PI * f * s) / f; 198 } 199 float fade = ShaderUtils.clamp(2 * (cutoff - f) / cutoff, 0, 1); 200 value += fade * Math.sin(2 * Math.PI * f * s) / f; 201 return value; 202 } 203 204 public static final float length(final float x, final float y, final float z) { 205 return (float) Math.sqrt(x * x + y * y + z * z); 206 } 207 208 public static final float[] rotate(final float[] v, final float[][] m) { 209 float x = v[0] * m[0][0] + v[1] * m[0][1] + v[2] * m[0][2]; 210 float y = v[0] * m[1][0] + v[1] * m[1][1] + v[2] * m[1][2]; 211 float z = v[0] * m[2][0] + v[1] * m[2][1] + v[2] * m[2][2]; 212 return new float[] { x, y, z }; 213 } 214 215 public static final float[][] calcRotationMatrix(final float ax, final float ay, final float az) { 216 float[][] retval = new float[3][3]; 217 float cax = (float) Math.cos(ax); 218 float sax = (float) Math.sin(ax); 219 float cay = (float) Math.cos(ay); 220 float say = (float) Math.sin(ay); 221 float caz = (float) Math.cos(az); 222 float saz = (float) Math.sin(az); 223 224 retval[0][0] = cay * caz; 225 retval[0][1] = -cay * saz; 226 retval[0][2] = say; 227 retval[1][0] = sax * say * caz + cax * saz; 228 retval[1][1] = -sax * say * saz + cax * caz; 229 retval[1][2] = -sax * cay; 230 retval[2][0] = -cax * say * caz + sax * saz; 231 retval[2][1] = cax * say * saz + sax * caz; 232 retval[2][2] = cax * cay; 233 234 return retval; 235 } 236 237 public static final float[] normalize(final float[] v) { 238 float l = ShaderUtils.length(v); 239 float[] r = new float[v.length]; 240 int i = 0; 241 for (float vv : v) { 242 r[i++] = vv / l; 243 } 244 return r; 245 } 246 247 public static final float length(final float[] v) { 248 float s = 0; 249 for (float vv : v) { 250 s += vv * vv; 251 } 252 return (float) Math.sqrt(s); 253 } 254 255 public static final ByteBuffer getImageDataFromImage(BufferedImage bufferedImage) { 256 WritableRaster wr; 257 DataBuffer db; 258 259 BufferedImage bi = new BufferedImage(128, 64, BufferedImage.TYPE_INT_ARGB); 260 Graphics2D g = bi.createGraphics(); 261 g.drawImage(bufferedImage, null, null); 262 bufferedImage = bi; 263 wr = bi.getRaster(); 264 db = wr.getDataBuffer(); 265 266 DataBufferInt dbi = (DataBufferInt) db; 267 int[] data = dbi.getData(); 268 269 ByteBuffer byteBuffer = ByteBuffer.allocateDirect(data.length * 4); 270 byteBuffer.order(ByteOrder.LITTLE_ENDIAN); 271 byteBuffer.asIntBuffer().put(data); 272 byteBuffer.flip(); 273 274 return byteBuffer; 275 } 276 277 public static float frac(float f) { 278 return f - ShaderUtils.floor(f); 279 } 280 281 public static float[] floor(float[] fs) { 282 float[] retval = new float[fs.length]; 283 for (int i = 0; i < fs.length; i++) { 284 retval[i] = ShaderUtils.floor(fs[i]); 285 } 286 return retval; 287 } 288 } 289