1 //===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Expression parsing implementation for C++. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Parse/Parser.h" 15 #include "RAIIObjectsForParser.h" 16 #include "clang/Basic/PrettyStackTrace.h" 17 #include "clang/Lex/LiteralSupport.h" 18 #include "clang/Parse/ParseDiagnostic.h" 19 #include "clang/Sema/DeclSpec.h" 20 #include "clang/Sema/ParsedTemplate.h" 21 #include "clang/Sema/Scope.h" 22 #include "llvm/Support/ErrorHandling.h" 23 24 using namespace clang; 25 26 static int SelectDigraphErrorMessage(tok::TokenKind Kind) { 27 switch (Kind) { 28 case tok::kw_template: return 0; 29 case tok::kw_const_cast: return 1; 30 case tok::kw_dynamic_cast: return 2; 31 case tok::kw_reinterpret_cast: return 3; 32 case tok::kw_static_cast: return 4; 33 default: 34 llvm_unreachable("Unknown type for digraph error message."); 35 } 36 } 37 38 // Are the two tokens adjacent in the same source file? 39 bool Parser::areTokensAdjacent(const Token &First, const Token &Second) { 40 SourceManager &SM = PP.getSourceManager(); 41 SourceLocation FirstLoc = SM.getSpellingLoc(First.getLocation()); 42 SourceLocation FirstEnd = FirstLoc.getLocWithOffset(First.getLength()); 43 return FirstEnd == SM.getSpellingLoc(Second.getLocation()); 44 } 45 46 // Suggest fixit for "<::" after a cast. 47 static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken, 48 Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) { 49 // Pull '<:' and ':' off token stream. 50 if (!AtDigraph) 51 PP.Lex(DigraphToken); 52 PP.Lex(ColonToken); 53 54 SourceRange Range; 55 Range.setBegin(DigraphToken.getLocation()); 56 Range.setEnd(ColonToken.getLocation()); 57 P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph) 58 << SelectDigraphErrorMessage(Kind) 59 << FixItHint::CreateReplacement(Range, "< ::"); 60 61 // Update token information to reflect their change in token type. 62 ColonToken.setKind(tok::coloncolon); 63 ColonToken.setLocation(ColonToken.getLocation().getLocWithOffset(-1)); 64 ColonToken.setLength(2); 65 DigraphToken.setKind(tok::less); 66 DigraphToken.setLength(1); 67 68 // Push new tokens back to token stream. 69 PP.EnterToken(ColonToken); 70 if (!AtDigraph) 71 PP.EnterToken(DigraphToken); 72 } 73 74 // Check for '<::' which should be '< ::' instead of '[:' when following 75 // a template name. 76 void Parser::CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectType, 77 bool EnteringContext, 78 IdentifierInfo &II, CXXScopeSpec &SS) { 79 if (!Next.is(tok::l_square) || Next.getLength() != 2) 80 return; 81 82 Token SecondToken = GetLookAheadToken(2); 83 if (!SecondToken.is(tok::colon) || !areTokensAdjacent(Next, SecondToken)) 84 return; 85 86 TemplateTy Template; 87 UnqualifiedId TemplateName; 88 TemplateName.setIdentifier(&II, Tok.getLocation()); 89 bool MemberOfUnknownSpecialization; 90 if (!Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false, 91 TemplateName, ObjectType, EnteringContext, 92 Template, MemberOfUnknownSpecialization)) 93 return; 94 95 FixDigraph(*this, PP, Next, SecondToken, tok::kw_template, 96 /*AtDigraph*/false); 97 } 98 99 /// \brief Emits an error for a left parentheses after a double colon. 100 /// 101 /// When a '(' is found after a '::', emit an error. Attempt to fix the token 102 /// stream by removing the '(', and the matching ')' if found. 103 void Parser::CheckForLParenAfterColonColon() { 104 if (!Tok.is(tok::l_paren)) 105 return; 106 107 SourceLocation l_parenLoc = ConsumeParen(), r_parenLoc; 108 Token Tok1 = getCurToken(); 109 if (!Tok1.is(tok::identifier) && !Tok1.is(tok::star)) 110 return; 111 112 if (Tok1.is(tok::identifier)) { 113 Token Tok2 = GetLookAheadToken(1); 114 if (Tok2.is(tok::r_paren)) { 115 ConsumeToken(); 116 PP.EnterToken(Tok1); 117 r_parenLoc = ConsumeParen(); 118 } 119 } else if (Tok1.is(tok::star)) { 120 Token Tok2 = GetLookAheadToken(1); 121 if (Tok2.is(tok::identifier)) { 122 Token Tok3 = GetLookAheadToken(2); 123 if (Tok3.is(tok::r_paren)) { 124 ConsumeToken(); 125 ConsumeToken(); 126 PP.EnterToken(Tok2); 127 PP.EnterToken(Tok1); 128 r_parenLoc = ConsumeParen(); 129 } 130 } 131 } 132 133 Diag(l_parenLoc, diag::err_paren_after_colon_colon) 134 << FixItHint::CreateRemoval(l_parenLoc) 135 << FixItHint::CreateRemoval(r_parenLoc); 136 } 137 138 /// \brief Parse global scope or nested-name-specifier if present. 139 /// 140 /// Parses a C++ global scope specifier ('::') or nested-name-specifier (which 141 /// may be preceded by '::'). Note that this routine will not parse ::new or 142 /// ::delete; it will just leave them in the token stream. 143 /// 144 /// '::'[opt] nested-name-specifier 145 /// '::' 146 /// 147 /// nested-name-specifier: 148 /// type-name '::' 149 /// namespace-name '::' 150 /// nested-name-specifier identifier '::' 151 /// nested-name-specifier 'template'[opt] simple-template-id '::' 152 /// 153 /// 154 /// \param SS the scope specifier that will be set to the parsed 155 /// nested-name-specifier (or empty) 156 /// 157 /// \param ObjectType if this nested-name-specifier is being parsed following 158 /// the "." or "->" of a member access expression, this parameter provides the 159 /// type of the object whose members are being accessed. 160 /// 161 /// \param EnteringContext whether we will be entering into the context of 162 /// the nested-name-specifier after parsing it. 163 /// 164 /// \param MayBePseudoDestructor When non-NULL, points to a flag that 165 /// indicates whether this nested-name-specifier may be part of a 166 /// pseudo-destructor name. In this case, the flag will be set false 167 /// if we don't actually end up parsing a destructor name. Moreorover, 168 /// if we do end up determining that we are parsing a destructor name, 169 /// the last component of the nested-name-specifier is not parsed as 170 /// part of the scope specifier. 171 /// 172 /// \param IsTypename If \c true, this nested-name-specifier is known to be 173 /// part of a type name. This is used to improve error recovery. 174 /// 175 /// \param LastII When non-NULL, points to an IdentifierInfo* that will be 176 /// filled in with the leading identifier in the last component of the 177 /// nested-name-specifier, if any. 178 /// 179 /// \returns true if there was an error parsing a scope specifier 180 bool Parser::ParseOptionalCXXScopeSpecifier(CXXScopeSpec &SS, 181 ParsedType ObjectType, 182 bool EnteringContext, 183 bool *MayBePseudoDestructor, 184 bool IsTypename, 185 IdentifierInfo **LastII) { 186 assert(getLangOpts().CPlusPlus && 187 "Call sites of this function should be guarded by checking for C++"); 188 189 if (Tok.is(tok::annot_cxxscope)) { 190 assert(!LastII && "want last identifier but have already annotated scope"); 191 Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(), 192 Tok.getAnnotationRange(), 193 SS); 194 ConsumeToken(); 195 return false; 196 } 197 198 if (Tok.is(tok::annot_template_id)) { 199 // If the current token is an annotated template id, it may already have 200 // a scope specifier. Restore it. 201 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); 202 SS = TemplateId->SS; 203 } 204 205 if (LastII) 206 *LastII = 0; 207 208 bool HasScopeSpecifier = false; 209 210 if (Tok.is(tok::coloncolon)) { 211 // ::new and ::delete aren't nested-name-specifiers. 212 tok::TokenKind NextKind = NextToken().getKind(); 213 if (NextKind == tok::kw_new || NextKind == tok::kw_delete) 214 return false; 215 216 // '::' - Global scope qualifier. 217 if (Actions.ActOnCXXGlobalScopeSpecifier(getCurScope(), ConsumeToken(), SS)) 218 return true; 219 220 CheckForLParenAfterColonColon(); 221 222 HasScopeSpecifier = true; 223 } 224 225 bool CheckForDestructor = false; 226 if (MayBePseudoDestructor && *MayBePseudoDestructor) { 227 CheckForDestructor = true; 228 *MayBePseudoDestructor = false; 229 } 230 231 if (Tok.is(tok::kw_decltype) || Tok.is(tok::annot_decltype)) { 232 DeclSpec DS(AttrFactory); 233 SourceLocation DeclLoc = Tok.getLocation(); 234 SourceLocation EndLoc = ParseDecltypeSpecifier(DS); 235 if (Tok.isNot(tok::coloncolon)) { 236 AnnotateExistingDecltypeSpecifier(DS, DeclLoc, EndLoc); 237 return false; 238 } 239 240 SourceLocation CCLoc = ConsumeToken(); 241 if (Actions.ActOnCXXNestedNameSpecifierDecltype(SS, DS, CCLoc)) 242 SS.SetInvalid(SourceRange(DeclLoc, CCLoc)); 243 244 HasScopeSpecifier = true; 245 } 246 247 while (true) { 248 if (HasScopeSpecifier) { 249 // C++ [basic.lookup.classref]p5: 250 // If the qualified-id has the form 251 // 252 // ::class-name-or-namespace-name::... 253 // 254 // the class-name-or-namespace-name is looked up in global scope as a 255 // class-name or namespace-name. 256 // 257 // To implement this, we clear out the object type as soon as we've 258 // seen a leading '::' or part of a nested-name-specifier. 259 ObjectType = ParsedType(); 260 261 if (Tok.is(tok::code_completion)) { 262 // Code completion for a nested-name-specifier, where the code 263 // code completion token follows the '::'. 264 Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext); 265 // Include code completion token into the range of the scope otherwise 266 // when we try to annotate the scope tokens the dangling code completion 267 // token will cause assertion in 268 // Preprocessor::AnnotatePreviousCachedTokens. 269 SS.setEndLoc(Tok.getLocation()); 270 cutOffParsing(); 271 return true; 272 } 273 } 274 275 // nested-name-specifier: 276 // nested-name-specifier 'template'[opt] simple-template-id '::' 277 278 // Parse the optional 'template' keyword, then make sure we have 279 // 'identifier <' after it. 280 if (Tok.is(tok::kw_template)) { 281 // If we don't have a scope specifier or an object type, this isn't a 282 // nested-name-specifier, since they aren't allowed to start with 283 // 'template'. 284 if (!HasScopeSpecifier && !ObjectType) 285 break; 286 287 TentativeParsingAction TPA(*this); 288 SourceLocation TemplateKWLoc = ConsumeToken(); 289 290 UnqualifiedId TemplateName; 291 if (Tok.is(tok::identifier)) { 292 // Consume the identifier. 293 TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation()); 294 ConsumeToken(); 295 } else if (Tok.is(tok::kw_operator)) { 296 if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, 297 TemplateName)) { 298 TPA.Commit(); 299 break; 300 } 301 302 if (TemplateName.getKind() != UnqualifiedId::IK_OperatorFunctionId && 303 TemplateName.getKind() != UnqualifiedId::IK_LiteralOperatorId) { 304 Diag(TemplateName.getSourceRange().getBegin(), 305 diag::err_id_after_template_in_nested_name_spec) 306 << TemplateName.getSourceRange(); 307 TPA.Commit(); 308 break; 309 } 310 } else { 311 TPA.Revert(); 312 break; 313 } 314 315 // If the next token is not '<', we have a qualified-id that refers 316 // to a template name, such as T::template apply, but is not a 317 // template-id. 318 if (Tok.isNot(tok::less)) { 319 TPA.Revert(); 320 break; 321 } 322 323 // Commit to parsing the template-id. 324 TPA.Commit(); 325 TemplateTy Template; 326 if (TemplateNameKind TNK 327 = Actions.ActOnDependentTemplateName(getCurScope(), 328 SS, TemplateKWLoc, TemplateName, 329 ObjectType, EnteringContext, 330 Template)) { 331 if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc, 332 TemplateName, false)) 333 return true; 334 } else 335 return true; 336 337 continue; 338 } 339 340 if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) { 341 // We have 342 // 343 // simple-template-id '::' 344 // 345 // So we need to check whether the simple-template-id is of the 346 // right kind (it should name a type or be dependent), and then 347 // convert it into a type within the nested-name-specifier. 348 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); 349 if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) { 350 *MayBePseudoDestructor = true; 351 return false; 352 } 353 354 if (LastII) 355 *LastII = TemplateId->Name; 356 357 // Consume the template-id token. 358 ConsumeToken(); 359 360 assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!"); 361 SourceLocation CCLoc = ConsumeToken(); 362 363 HasScopeSpecifier = true; 364 365 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 366 TemplateId->NumArgs); 367 368 if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(), 369 SS, 370 TemplateId->TemplateKWLoc, 371 TemplateId->Template, 372 TemplateId->TemplateNameLoc, 373 TemplateId->LAngleLoc, 374 TemplateArgsPtr, 375 TemplateId->RAngleLoc, 376 CCLoc, 377 EnteringContext)) { 378 SourceLocation StartLoc 379 = SS.getBeginLoc().isValid()? SS.getBeginLoc() 380 : TemplateId->TemplateNameLoc; 381 SS.SetInvalid(SourceRange(StartLoc, CCLoc)); 382 } 383 384 continue; 385 } 386 387 388 // The rest of the nested-name-specifier possibilities start with 389 // tok::identifier. 390 if (Tok.isNot(tok::identifier)) 391 break; 392 393 IdentifierInfo &II = *Tok.getIdentifierInfo(); 394 395 // nested-name-specifier: 396 // type-name '::' 397 // namespace-name '::' 398 // nested-name-specifier identifier '::' 399 Token Next = NextToken(); 400 401 // If we get foo:bar, this is almost certainly a typo for foo::bar. Recover 402 // and emit a fixit hint for it. 403 if (Next.is(tok::colon) && !ColonIsSacred) { 404 if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, II, 405 Tok.getLocation(), 406 Next.getLocation(), ObjectType, 407 EnteringContext) && 408 // If the token after the colon isn't an identifier, it's still an 409 // error, but they probably meant something else strange so don't 410 // recover like this. 411 PP.LookAhead(1).is(tok::identifier)) { 412 Diag(Next, diag::err_unexected_colon_in_nested_name_spec) 413 << FixItHint::CreateReplacement(Next.getLocation(), "::"); 414 415 // Recover as if the user wrote '::'. 416 Next.setKind(tok::coloncolon); 417 } 418 } 419 420 if (Next.is(tok::coloncolon)) { 421 if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde) && 422 !Actions.isNonTypeNestedNameSpecifier(getCurScope(), SS, Tok.getLocation(), 423 II, ObjectType)) { 424 *MayBePseudoDestructor = true; 425 return false; 426 } 427 428 if (LastII) 429 *LastII = &II; 430 431 // We have an identifier followed by a '::'. Lookup this name 432 // as the name in a nested-name-specifier. 433 SourceLocation IdLoc = ConsumeToken(); 434 assert((Tok.is(tok::coloncolon) || Tok.is(tok::colon)) && 435 "NextToken() not working properly!"); 436 SourceLocation CCLoc = ConsumeToken(); 437 438 CheckForLParenAfterColonColon(); 439 440 HasScopeSpecifier = true; 441 if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(), II, IdLoc, CCLoc, 442 ObjectType, EnteringContext, SS)) 443 SS.SetInvalid(SourceRange(IdLoc, CCLoc)); 444 445 continue; 446 } 447 448 CheckForTemplateAndDigraph(Next, ObjectType, EnteringContext, II, SS); 449 450 // nested-name-specifier: 451 // type-name '<' 452 if (Next.is(tok::less)) { 453 TemplateTy Template; 454 UnqualifiedId TemplateName; 455 TemplateName.setIdentifier(&II, Tok.getLocation()); 456 bool MemberOfUnknownSpecialization; 457 if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS, 458 /*hasTemplateKeyword=*/false, 459 TemplateName, 460 ObjectType, 461 EnteringContext, 462 Template, 463 MemberOfUnknownSpecialization)) { 464 // We have found a template name, so annotate this token 465 // with a template-id annotation. We do not permit the 466 // template-id to be translated into a type annotation, 467 // because some clients (e.g., the parsing of class template 468 // specializations) still want to see the original template-id 469 // token. 470 ConsumeToken(); 471 if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(), 472 TemplateName, false)) 473 return true; 474 continue; 475 } 476 477 if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) && 478 (IsTypename || IsTemplateArgumentList(1))) { 479 // We have something like t::getAs<T>, where getAs is a 480 // member of an unknown specialization. However, this will only 481 // parse correctly as a template, so suggest the keyword 'template' 482 // before 'getAs' and treat this as a dependent template name. 483 unsigned DiagID = diag::err_missing_dependent_template_keyword; 484 if (getLangOpts().MicrosoftExt) 485 DiagID = diag::warn_missing_dependent_template_keyword; 486 487 Diag(Tok.getLocation(), DiagID) 488 << II.getName() 489 << FixItHint::CreateInsertion(Tok.getLocation(), "template "); 490 491 if (TemplateNameKind TNK 492 = Actions.ActOnDependentTemplateName(getCurScope(), 493 SS, SourceLocation(), 494 TemplateName, ObjectType, 495 EnteringContext, Template)) { 496 // Consume the identifier. 497 ConsumeToken(); 498 if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(), 499 TemplateName, false)) 500 return true; 501 } 502 else 503 return true; 504 505 continue; 506 } 507 } 508 509 // We don't have any tokens that form the beginning of a 510 // nested-name-specifier, so we're done. 511 break; 512 } 513 514 // Even if we didn't see any pieces of a nested-name-specifier, we 515 // still check whether there is a tilde in this position, which 516 // indicates a potential pseudo-destructor. 517 if (CheckForDestructor && Tok.is(tok::tilde)) 518 *MayBePseudoDestructor = true; 519 520 return false; 521 } 522 523 /// ParseCXXIdExpression - Handle id-expression. 524 /// 525 /// id-expression: 526 /// unqualified-id 527 /// qualified-id 528 /// 529 /// qualified-id: 530 /// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id 531 /// '::' identifier 532 /// '::' operator-function-id 533 /// '::' template-id 534 /// 535 /// NOTE: The standard specifies that, for qualified-id, the parser does not 536 /// expect: 537 /// 538 /// '::' conversion-function-id 539 /// '::' '~' class-name 540 /// 541 /// This may cause a slight inconsistency on diagnostics: 542 /// 543 /// class C {}; 544 /// namespace A {} 545 /// void f() { 546 /// :: A :: ~ C(); // Some Sema error about using destructor with a 547 /// // namespace. 548 /// :: ~ C(); // Some Parser error like 'unexpected ~'. 549 /// } 550 /// 551 /// We simplify the parser a bit and make it work like: 552 /// 553 /// qualified-id: 554 /// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id 555 /// '::' unqualified-id 556 /// 557 /// That way Sema can handle and report similar errors for namespaces and the 558 /// global scope. 559 /// 560 /// The isAddressOfOperand parameter indicates that this id-expression is a 561 /// direct operand of the address-of operator. This is, besides member contexts, 562 /// the only place where a qualified-id naming a non-static class member may 563 /// appear. 564 /// 565 ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) { 566 // qualified-id: 567 // '::'[opt] nested-name-specifier 'template'[opt] unqualified-id 568 // '::' unqualified-id 569 // 570 CXXScopeSpec SS; 571 ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false); 572 573 SourceLocation TemplateKWLoc; 574 UnqualifiedId Name; 575 if (ParseUnqualifiedId(SS, 576 /*EnteringContext=*/false, 577 /*AllowDestructorName=*/false, 578 /*AllowConstructorName=*/false, 579 /*ObjectType=*/ ParsedType(), 580 TemplateKWLoc, 581 Name)) 582 return ExprError(); 583 584 // This is only the direct operand of an & operator if it is not 585 // followed by a postfix-expression suffix. 586 if (isAddressOfOperand && isPostfixExpressionSuffixStart()) 587 isAddressOfOperand = false; 588 589 return Actions.ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Name, 590 Tok.is(tok::l_paren), isAddressOfOperand); 591 } 592 593 /// ParseLambdaExpression - Parse a C++11 lambda expression. 594 /// 595 /// lambda-expression: 596 /// lambda-introducer lambda-declarator[opt] compound-statement 597 /// 598 /// lambda-introducer: 599 /// '[' lambda-capture[opt] ']' 600 /// 601 /// lambda-capture: 602 /// capture-default 603 /// capture-list 604 /// capture-default ',' capture-list 605 /// 606 /// capture-default: 607 /// '&' 608 /// '=' 609 /// 610 /// capture-list: 611 /// capture 612 /// capture-list ',' capture 613 /// 614 /// capture: 615 /// simple-capture 616 /// init-capture [C++1y] 617 /// 618 /// simple-capture: 619 /// identifier 620 /// '&' identifier 621 /// 'this' 622 /// 623 /// init-capture: [C++1y] 624 /// identifier initializer 625 /// '&' identifier initializer 626 /// 627 /// lambda-declarator: 628 /// '(' parameter-declaration-clause ')' attribute-specifier[opt] 629 /// 'mutable'[opt] exception-specification[opt] 630 /// trailing-return-type[opt] 631 /// 632 ExprResult Parser::ParseLambdaExpression() { 633 // Parse lambda-introducer. 634 LambdaIntroducer Intro; 635 636 Optional<unsigned> DiagID(ParseLambdaIntroducer(Intro)); 637 if (DiagID) { 638 Diag(Tok, DiagID.getValue()); 639 SkipUntil(tok::r_square); 640 SkipUntil(tok::l_brace); 641 SkipUntil(tok::r_brace); 642 return ExprError(); 643 } 644 645 return ParseLambdaExpressionAfterIntroducer(Intro); 646 } 647 648 /// TryParseLambdaExpression - Use lookahead and potentially tentative 649 /// parsing to determine if we are looking at a C++0x lambda expression, and parse 650 /// it if we are. 651 /// 652 /// If we are not looking at a lambda expression, returns ExprError(). 653 ExprResult Parser::TryParseLambdaExpression() { 654 assert(getLangOpts().CPlusPlus11 655 && Tok.is(tok::l_square) 656 && "Not at the start of a possible lambda expression."); 657 658 const Token Next = NextToken(), After = GetLookAheadToken(2); 659 660 // If lookahead indicates this is a lambda... 661 if (Next.is(tok::r_square) || // [] 662 Next.is(tok::equal) || // [= 663 (Next.is(tok::amp) && // [&] or [&, 664 (After.is(tok::r_square) || 665 After.is(tok::comma))) || 666 (Next.is(tok::identifier) && // [identifier] 667 After.is(tok::r_square))) { 668 return ParseLambdaExpression(); 669 } 670 671 // If lookahead indicates an ObjC message send... 672 // [identifier identifier 673 if (Next.is(tok::identifier) && After.is(tok::identifier)) { 674 return ExprEmpty(); 675 } 676 677 // Here, we're stuck: lambda introducers and Objective-C message sends are 678 // unambiguous, but it requires arbitrary lookhead. [a,b,c,d,e,f,g] is a 679 // lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send. Instead of 680 // writing two routines to parse a lambda introducer, just try to parse 681 // a lambda introducer first, and fall back if that fails. 682 // (TryParseLambdaIntroducer never produces any diagnostic output.) 683 LambdaIntroducer Intro; 684 if (TryParseLambdaIntroducer(Intro)) 685 return ExprEmpty(); 686 return ParseLambdaExpressionAfterIntroducer(Intro); 687 } 688 689 /// \brief Parse a lambda introducer. 690 /// \param Intro A LambdaIntroducer filled in with information about the 691 /// contents of the lambda-introducer. 692 /// \param SkippedInits If non-null, we are disambiguating between an Obj-C 693 /// message send and a lambda expression. In this mode, we will 694 /// sometimes skip the initializers for init-captures and not fully 695 /// populate \p Intro. This flag will be set to \c true if we do so. 696 /// \return A DiagnosticID if it hit something unexpected. The location for 697 /// for the diagnostic is that of the current token. 698 Optional<unsigned> Parser::ParseLambdaIntroducer(LambdaIntroducer &Intro, 699 bool *SkippedInits) { 700 typedef Optional<unsigned> DiagResult; 701 702 assert(Tok.is(tok::l_square) && "Lambda expressions begin with '['."); 703 BalancedDelimiterTracker T(*this, tok::l_square); 704 T.consumeOpen(); 705 706 Intro.Range.setBegin(T.getOpenLocation()); 707 708 bool first = true; 709 710 // Parse capture-default. 711 if (Tok.is(tok::amp) && 712 (NextToken().is(tok::comma) || NextToken().is(tok::r_square))) { 713 Intro.Default = LCD_ByRef; 714 Intro.DefaultLoc = ConsumeToken(); 715 first = false; 716 } else if (Tok.is(tok::equal)) { 717 Intro.Default = LCD_ByCopy; 718 Intro.DefaultLoc = ConsumeToken(); 719 first = false; 720 } 721 722 while (Tok.isNot(tok::r_square)) { 723 if (!first) { 724 if (Tok.isNot(tok::comma)) { 725 // Provide a completion for a lambda introducer here. Except 726 // in Objective-C, where this is Almost Surely meant to be a message 727 // send. In that case, fail here and let the ObjC message 728 // expression parser perform the completion. 729 if (Tok.is(tok::code_completion) && 730 !(getLangOpts().ObjC1 && Intro.Default == LCD_None && 731 !Intro.Captures.empty())) { 732 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro, 733 /*AfterAmpersand=*/false); 734 ConsumeCodeCompletionToken(); 735 break; 736 } 737 738 return DiagResult(diag::err_expected_comma_or_rsquare); 739 } 740 ConsumeToken(); 741 } 742 743 if (Tok.is(tok::code_completion)) { 744 // If we're in Objective-C++ and we have a bare '[', then this is more 745 // likely to be a message receiver. 746 if (getLangOpts().ObjC1 && first) 747 Actions.CodeCompleteObjCMessageReceiver(getCurScope()); 748 else 749 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro, 750 /*AfterAmpersand=*/false); 751 ConsumeCodeCompletionToken(); 752 break; 753 } 754 755 first = false; 756 757 // Parse capture. 758 LambdaCaptureKind Kind = LCK_ByCopy; 759 SourceLocation Loc; 760 IdentifierInfo* Id = 0; 761 SourceLocation EllipsisLoc; 762 ExprResult Init; 763 764 if (Tok.is(tok::kw_this)) { 765 Kind = LCK_This; 766 Loc = ConsumeToken(); 767 } else { 768 if (Tok.is(tok::amp)) { 769 Kind = LCK_ByRef; 770 ConsumeToken(); 771 772 if (Tok.is(tok::code_completion)) { 773 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro, 774 /*AfterAmpersand=*/true); 775 ConsumeCodeCompletionToken(); 776 break; 777 } 778 } 779 780 if (Tok.is(tok::identifier)) { 781 Id = Tok.getIdentifierInfo(); 782 Loc = ConsumeToken(); 783 } else if (Tok.is(tok::kw_this)) { 784 // FIXME: If we want to suggest a fixit here, will need to return more 785 // than just DiagnosticID. Perhaps full DiagnosticBuilder that can be 786 // Clear()ed to prevent emission in case of tentative parsing? 787 return DiagResult(diag::err_this_captured_by_reference); 788 } else { 789 return DiagResult(diag::err_expected_capture); 790 } 791 792 if (Tok.is(tok::l_paren)) { 793 BalancedDelimiterTracker Parens(*this, tok::l_paren); 794 Parens.consumeOpen(); 795 796 ExprVector Exprs; 797 CommaLocsTy Commas; 798 if (SkippedInits) { 799 Parens.skipToEnd(); 800 *SkippedInits = true; 801 } else if (ParseExpressionList(Exprs, Commas)) { 802 Parens.skipToEnd(); 803 Init = ExprError(); 804 } else { 805 Parens.consumeClose(); 806 Init = Actions.ActOnParenListExpr(Parens.getOpenLocation(), 807 Parens.getCloseLocation(), 808 Exprs); 809 } 810 } else if (Tok.is(tok::l_brace) || Tok.is(tok::equal)) { 811 if (Tok.is(tok::equal)) 812 ConsumeToken(); 813 814 if (!SkippedInits) 815 Init = ParseInitializer(); 816 else if (Tok.is(tok::l_brace)) { 817 BalancedDelimiterTracker Braces(*this, tok::l_brace); 818 Braces.consumeOpen(); 819 Braces.skipToEnd(); 820 *SkippedInits = true; 821 } else { 822 // We're disambiguating this: 823 // 824 // [..., x = expr 825 // 826 // We need to find the end of the following expression in order to 827 // determine whether this is an Obj-C message send's receiver, or a 828 // lambda init-capture. 829 // 830 // Parse the expression to find where it ends, and annotate it back 831 // onto the tokens. We would have parsed this expression the same way 832 // in either case: both the RHS of an init-capture and the RHS of an 833 // assignment expression are parsed as an initializer-clause, and in 834 // neither case can anything be added to the scope between the '[' and 835 // here. 836 // 837 // FIXME: This is horrible. Adding a mechanism to skip an expression 838 // would be much cleaner. 839 // FIXME: If there is a ',' before the next ']' or ':', we can skip to 840 // that instead. (And if we see a ':' with no matching '?', we can 841 // classify this as an Obj-C message send.) 842 SourceLocation StartLoc = Tok.getLocation(); 843 InMessageExpressionRAIIObject MaybeInMessageExpression(*this, true); 844 Init = ParseInitializer(); 845 846 if (Tok.getLocation() != StartLoc) { 847 // Back out the lexing of the token after the initializer. 848 PP.RevertCachedTokens(1); 849 850 // Replace the consumed tokens with an appropriate annotation. 851 Tok.setLocation(StartLoc); 852 Tok.setKind(tok::annot_primary_expr); 853 setExprAnnotation(Tok, Init); 854 Tok.setAnnotationEndLoc(PP.getLastCachedTokenLocation()); 855 PP.AnnotateCachedTokens(Tok); 856 857 // Consume the annotated initializer. 858 ConsumeToken(); 859 } 860 } 861 } else if (Tok.is(tok::ellipsis)) 862 EllipsisLoc = ConsumeToken(); 863 } 864 865 Intro.addCapture(Kind, Loc, Id, EllipsisLoc, Init); 866 } 867 868 T.consumeClose(); 869 Intro.Range.setEnd(T.getCloseLocation()); 870 871 return DiagResult(); 872 } 873 874 /// TryParseLambdaIntroducer - Tentatively parse a lambda introducer. 875 /// 876 /// Returns true if it hit something unexpected. 877 bool Parser::TryParseLambdaIntroducer(LambdaIntroducer &Intro) { 878 TentativeParsingAction PA(*this); 879 880 bool SkippedInits = false; 881 Optional<unsigned> DiagID(ParseLambdaIntroducer(Intro, &SkippedInits)); 882 883 if (DiagID) { 884 PA.Revert(); 885 return true; 886 } 887 888 if (SkippedInits) { 889 // Parse it again, but this time parse the init-captures too. 890 PA.Revert(); 891 Intro = LambdaIntroducer(); 892 DiagID = ParseLambdaIntroducer(Intro); 893 assert(!DiagID && "parsing lambda-introducer failed on reparse"); 894 return false; 895 } 896 897 PA.Commit(); 898 return false; 899 } 900 901 /// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda 902 /// expression. 903 ExprResult Parser::ParseLambdaExpressionAfterIntroducer( 904 LambdaIntroducer &Intro) { 905 SourceLocation LambdaBeginLoc = Intro.Range.getBegin(); 906 Diag(LambdaBeginLoc, diag::warn_cxx98_compat_lambda); 907 908 PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc, 909 "lambda expression parsing"); 910 911 // FIXME: Call into Actions to add any init-capture declarations to the 912 // scope while parsing the lambda-declarator and compound-statement. 913 914 // Parse lambda-declarator[opt]. 915 DeclSpec DS(AttrFactory); 916 Declarator D(DS, Declarator::LambdaExprContext); 917 918 if (Tok.is(tok::l_paren)) { 919 ParseScope PrototypeScope(this, 920 Scope::FunctionPrototypeScope | 921 Scope::FunctionDeclarationScope | 922 Scope::DeclScope); 923 924 SourceLocation DeclEndLoc; 925 BalancedDelimiterTracker T(*this, tok::l_paren); 926 T.consumeOpen(); 927 SourceLocation LParenLoc = T.getOpenLocation(); 928 929 // Parse parameter-declaration-clause. 930 ParsedAttributes Attr(AttrFactory); 931 SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo; 932 SourceLocation EllipsisLoc; 933 934 if (Tok.isNot(tok::r_paren)) 935 ParseParameterDeclarationClause(D, Attr, ParamInfo, EllipsisLoc); 936 937 T.consumeClose(); 938 SourceLocation RParenLoc = T.getCloseLocation(); 939 DeclEndLoc = RParenLoc; 940 941 // Parse 'mutable'[opt]. 942 SourceLocation MutableLoc; 943 if (Tok.is(tok::kw_mutable)) { 944 MutableLoc = ConsumeToken(); 945 DeclEndLoc = MutableLoc; 946 } 947 948 // Parse exception-specification[opt]. 949 ExceptionSpecificationType ESpecType = EST_None; 950 SourceRange ESpecRange; 951 SmallVector<ParsedType, 2> DynamicExceptions; 952 SmallVector<SourceRange, 2> DynamicExceptionRanges; 953 ExprResult NoexceptExpr; 954 ESpecType = tryParseExceptionSpecification(ESpecRange, 955 DynamicExceptions, 956 DynamicExceptionRanges, 957 NoexceptExpr); 958 959 if (ESpecType != EST_None) 960 DeclEndLoc = ESpecRange.getEnd(); 961 962 // Parse attribute-specifier[opt]. 963 MaybeParseCXX11Attributes(Attr, &DeclEndLoc); 964 965 SourceLocation FunLocalRangeEnd = DeclEndLoc; 966 967 // Parse trailing-return-type[opt]. 968 TypeResult TrailingReturnType; 969 if (Tok.is(tok::arrow)) { 970 FunLocalRangeEnd = Tok.getLocation(); 971 SourceRange Range; 972 TrailingReturnType = ParseTrailingReturnType(Range); 973 if (Range.getEnd().isValid()) 974 DeclEndLoc = Range.getEnd(); 975 } 976 977 PrototypeScope.Exit(); 978 979 SourceLocation NoLoc; 980 D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true, 981 /*isAmbiguous=*/false, 982 LParenLoc, 983 ParamInfo.data(), ParamInfo.size(), 984 EllipsisLoc, RParenLoc, 985 DS.getTypeQualifiers(), 986 /*RefQualifierIsLValueRef=*/true, 987 /*RefQualifierLoc=*/NoLoc, 988 /*ConstQualifierLoc=*/NoLoc, 989 /*VolatileQualifierLoc=*/NoLoc, 990 MutableLoc, 991 ESpecType, ESpecRange.getBegin(), 992 DynamicExceptions.data(), 993 DynamicExceptionRanges.data(), 994 DynamicExceptions.size(), 995 NoexceptExpr.isUsable() ? 996 NoexceptExpr.get() : 0, 997 LParenLoc, FunLocalRangeEnd, D, 998 TrailingReturnType), 999 Attr, DeclEndLoc); 1000 } else if (Tok.is(tok::kw_mutable) || Tok.is(tok::arrow)) { 1001 // It's common to forget that one needs '()' before 'mutable' or the 1002 // result type. Deal with this. 1003 Diag(Tok, diag::err_lambda_missing_parens) 1004 << Tok.is(tok::arrow) 1005 << FixItHint::CreateInsertion(Tok.getLocation(), "() "); 1006 SourceLocation DeclLoc = Tok.getLocation(); 1007 SourceLocation DeclEndLoc = DeclLoc; 1008 1009 // Parse 'mutable', if it's there. 1010 SourceLocation MutableLoc; 1011 if (Tok.is(tok::kw_mutable)) { 1012 MutableLoc = ConsumeToken(); 1013 DeclEndLoc = MutableLoc; 1014 } 1015 1016 // Parse the return type, if there is one. 1017 TypeResult TrailingReturnType; 1018 if (Tok.is(tok::arrow)) { 1019 SourceRange Range; 1020 TrailingReturnType = ParseTrailingReturnType(Range); 1021 if (Range.getEnd().isValid()) 1022 DeclEndLoc = Range.getEnd(); 1023 } 1024 1025 ParsedAttributes Attr(AttrFactory); 1026 SourceLocation NoLoc; 1027 D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true, 1028 /*isAmbiguous=*/false, 1029 /*LParenLoc=*/NoLoc, 1030 /*Params=*/0, 1031 /*NumParams=*/0, 1032 /*EllipsisLoc=*/NoLoc, 1033 /*RParenLoc=*/NoLoc, 1034 /*TypeQuals=*/0, 1035 /*RefQualifierIsLValueRef=*/true, 1036 /*RefQualifierLoc=*/NoLoc, 1037 /*ConstQualifierLoc=*/NoLoc, 1038 /*VolatileQualifierLoc=*/NoLoc, 1039 MutableLoc, 1040 EST_None, 1041 /*ESpecLoc=*/NoLoc, 1042 /*Exceptions=*/0, 1043 /*ExceptionRanges=*/0, 1044 /*NumExceptions=*/0, 1045 /*NoexceptExpr=*/0, 1046 DeclLoc, DeclEndLoc, D, 1047 TrailingReturnType), 1048 Attr, DeclEndLoc); 1049 } 1050 1051 1052 // FIXME: Rename BlockScope -> ClosureScope if we decide to continue using 1053 // it. 1054 unsigned ScopeFlags = Scope::BlockScope | Scope::FnScope | Scope::DeclScope; 1055 ParseScope BodyScope(this, ScopeFlags); 1056 1057 Actions.ActOnStartOfLambdaDefinition(Intro, D, getCurScope()); 1058 1059 // Parse compound-statement. 1060 if (!Tok.is(tok::l_brace)) { 1061 Diag(Tok, diag::err_expected_lambda_body); 1062 Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope()); 1063 return ExprError(); 1064 } 1065 1066 StmtResult Stmt(ParseCompoundStatementBody()); 1067 BodyScope.Exit(); 1068 1069 if (!Stmt.isInvalid()) 1070 return Actions.ActOnLambdaExpr(LambdaBeginLoc, Stmt.take(), getCurScope()); 1071 1072 Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope()); 1073 return ExprError(); 1074 } 1075 1076 /// ParseCXXCasts - This handles the various ways to cast expressions to another 1077 /// type. 1078 /// 1079 /// postfix-expression: [C++ 5.2p1] 1080 /// 'dynamic_cast' '<' type-name '>' '(' expression ')' 1081 /// 'static_cast' '<' type-name '>' '(' expression ')' 1082 /// 'reinterpret_cast' '<' type-name '>' '(' expression ')' 1083 /// 'const_cast' '<' type-name '>' '(' expression ')' 1084 /// 1085 ExprResult Parser::ParseCXXCasts() { 1086 tok::TokenKind Kind = Tok.getKind(); 1087 const char *CastName = 0; // For error messages 1088 1089 switch (Kind) { 1090 default: llvm_unreachable("Unknown C++ cast!"); 1091 case tok::kw_const_cast: CastName = "const_cast"; break; 1092 case tok::kw_dynamic_cast: CastName = "dynamic_cast"; break; 1093 case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break; 1094 case tok::kw_static_cast: CastName = "static_cast"; break; 1095 } 1096 1097 SourceLocation OpLoc = ConsumeToken(); 1098 SourceLocation LAngleBracketLoc = Tok.getLocation(); 1099 1100 // Check for "<::" which is parsed as "[:". If found, fix token stream, 1101 // diagnose error, suggest fix, and recover parsing. 1102 if (Tok.is(tok::l_square) && Tok.getLength() == 2) { 1103 Token Next = NextToken(); 1104 if (Next.is(tok::colon) && areTokensAdjacent(Tok, Next)) 1105 FixDigraph(*this, PP, Tok, Next, Kind, /*AtDigraph*/true); 1106 } 1107 1108 if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName)) 1109 return ExprError(); 1110 1111 // Parse the common declaration-specifiers piece. 1112 DeclSpec DS(AttrFactory); 1113 ParseSpecifierQualifierList(DS); 1114 1115 // Parse the abstract-declarator, if present. 1116 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext); 1117 ParseDeclarator(DeclaratorInfo); 1118 1119 SourceLocation RAngleBracketLoc = Tok.getLocation(); 1120 1121 if (ExpectAndConsume(tok::greater, diag::err_expected_greater)) 1122 return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << "<"); 1123 1124 SourceLocation LParenLoc, RParenLoc; 1125 BalancedDelimiterTracker T(*this, tok::l_paren); 1126 1127 if (T.expectAndConsume(diag::err_expected_lparen_after, CastName)) 1128 return ExprError(); 1129 1130 ExprResult Result = ParseExpression(); 1131 1132 // Match the ')'. 1133 T.consumeClose(); 1134 1135 if (!Result.isInvalid() && !DeclaratorInfo.isInvalidType()) 1136 Result = Actions.ActOnCXXNamedCast(OpLoc, Kind, 1137 LAngleBracketLoc, DeclaratorInfo, 1138 RAngleBracketLoc, 1139 T.getOpenLocation(), Result.take(), 1140 T.getCloseLocation()); 1141 1142 return Result; 1143 } 1144 1145 /// ParseCXXTypeid - This handles the C++ typeid expression. 1146 /// 1147 /// postfix-expression: [C++ 5.2p1] 1148 /// 'typeid' '(' expression ')' 1149 /// 'typeid' '(' type-id ')' 1150 /// 1151 ExprResult Parser::ParseCXXTypeid() { 1152 assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!"); 1153 1154 SourceLocation OpLoc = ConsumeToken(); 1155 SourceLocation LParenLoc, RParenLoc; 1156 BalancedDelimiterTracker T(*this, tok::l_paren); 1157 1158 // typeid expressions are always parenthesized. 1159 if (T.expectAndConsume(diag::err_expected_lparen_after, "typeid")) 1160 return ExprError(); 1161 LParenLoc = T.getOpenLocation(); 1162 1163 ExprResult Result; 1164 1165 // C++0x [expr.typeid]p3: 1166 // When typeid is applied to an expression other than an lvalue of a 1167 // polymorphic class type [...] The expression is an unevaluated 1168 // operand (Clause 5). 1169 // 1170 // Note that we can't tell whether the expression is an lvalue of a 1171 // polymorphic class type until after we've parsed the expression; we 1172 // speculatively assume the subexpression is unevaluated, and fix it up 1173 // later. 1174 // 1175 // We enter the unevaluated context before trying to determine whether we 1176 // have a type-id, because the tentative parse logic will try to resolve 1177 // names, and must treat them as unevaluated. 1178 EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated, 1179 Sema::ReuseLambdaContextDecl); 1180 1181 if (isTypeIdInParens()) { 1182 TypeResult Ty = ParseTypeName(); 1183 1184 // Match the ')'. 1185 T.consumeClose(); 1186 RParenLoc = T.getCloseLocation(); 1187 if (Ty.isInvalid() || RParenLoc.isInvalid()) 1188 return ExprError(); 1189 1190 Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true, 1191 Ty.get().getAsOpaquePtr(), RParenLoc); 1192 } else { 1193 Result = ParseExpression(); 1194 1195 // Match the ')'. 1196 if (Result.isInvalid()) 1197 SkipUntil(tok::r_paren); 1198 else { 1199 T.consumeClose(); 1200 RParenLoc = T.getCloseLocation(); 1201 if (RParenLoc.isInvalid()) 1202 return ExprError(); 1203 1204 Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false, 1205 Result.release(), RParenLoc); 1206 } 1207 } 1208 1209 return Result; 1210 } 1211 1212 /// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression. 1213 /// 1214 /// '__uuidof' '(' expression ')' 1215 /// '__uuidof' '(' type-id ')' 1216 /// 1217 ExprResult Parser::ParseCXXUuidof() { 1218 assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!"); 1219 1220 SourceLocation OpLoc = ConsumeToken(); 1221 BalancedDelimiterTracker T(*this, tok::l_paren); 1222 1223 // __uuidof expressions are always parenthesized. 1224 if (T.expectAndConsume(diag::err_expected_lparen_after, "__uuidof")) 1225 return ExprError(); 1226 1227 ExprResult Result; 1228 1229 if (isTypeIdInParens()) { 1230 TypeResult Ty = ParseTypeName(); 1231 1232 // Match the ')'. 1233 T.consumeClose(); 1234 1235 if (Ty.isInvalid()) 1236 return ExprError(); 1237 1238 Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), /*isType=*/true, 1239 Ty.get().getAsOpaquePtr(), 1240 T.getCloseLocation()); 1241 } else { 1242 EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated); 1243 Result = ParseExpression(); 1244 1245 // Match the ')'. 1246 if (Result.isInvalid()) 1247 SkipUntil(tok::r_paren); 1248 else { 1249 T.consumeClose(); 1250 1251 Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), 1252 /*isType=*/false, 1253 Result.release(), T.getCloseLocation()); 1254 } 1255 } 1256 1257 return Result; 1258 } 1259 1260 /// \brief Parse a C++ pseudo-destructor expression after the base, 1261 /// . or -> operator, and nested-name-specifier have already been 1262 /// parsed. 1263 /// 1264 /// postfix-expression: [C++ 5.2] 1265 /// postfix-expression . pseudo-destructor-name 1266 /// postfix-expression -> pseudo-destructor-name 1267 /// 1268 /// pseudo-destructor-name: 1269 /// ::[opt] nested-name-specifier[opt] type-name :: ~type-name 1270 /// ::[opt] nested-name-specifier template simple-template-id :: 1271 /// ~type-name 1272 /// ::[opt] nested-name-specifier[opt] ~type-name 1273 /// 1274 ExprResult 1275 Parser::ParseCXXPseudoDestructor(ExprArg Base, SourceLocation OpLoc, 1276 tok::TokenKind OpKind, 1277 CXXScopeSpec &SS, 1278 ParsedType ObjectType) { 1279 // We're parsing either a pseudo-destructor-name or a dependent 1280 // member access that has the same form as a 1281 // pseudo-destructor-name. We parse both in the same way and let 1282 // the action model sort them out. 1283 // 1284 // Note that the ::[opt] nested-name-specifier[opt] has already 1285 // been parsed, and if there was a simple-template-id, it has 1286 // been coalesced into a template-id annotation token. 1287 UnqualifiedId FirstTypeName; 1288 SourceLocation CCLoc; 1289 if (Tok.is(tok::identifier)) { 1290 FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation()); 1291 ConsumeToken(); 1292 assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail"); 1293 CCLoc = ConsumeToken(); 1294 } else if (Tok.is(tok::annot_template_id)) { 1295 // FIXME: retrieve TemplateKWLoc from template-id annotation and 1296 // store it in the pseudo-dtor node (to be used when instantiating it). 1297 FirstTypeName.setTemplateId( 1298 (TemplateIdAnnotation *)Tok.getAnnotationValue()); 1299 ConsumeToken(); 1300 assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail"); 1301 CCLoc = ConsumeToken(); 1302 } else { 1303 FirstTypeName.setIdentifier(0, SourceLocation()); 1304 } 1305 1306 // Parse the tilde. 1307 assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail"); 1308 SourceLocation TildeLoc = ConsumeToken(); 1309 1310 if (Tok.is(tok::kw_decltype) && !FirstTypeName.isValid() && SS.isEmpty()) { 1311 DeclSpec DS(AttrFactory); 1312 ParseDecltypeSpecifier(DS); 1313 if (DS.getTypeSpecType() == TST_error) 1314 return ExprError(); 1315 return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, 1316 OpKind, TildeLoc, DS, 1317 Tok.is(tok::l_paren)); 1318 } 1319 1320 if (!Tok.is(tok::identifier)) { 1321 Diag(Tok, diag::err_destructor_tilde_identifier); 1322 return ExprError(); 1323 } 1324 1325 // Parse the second type. 1326 UnqualifiedId SecondTypeName; 1327 IdentifierInfo *Name = Tok.getIdentifierInfo(); 1328 SourceLocation NameLoc = ConsumeToken(); 1329 SecondTypeName.setIdentifier(Name, NameLoc); 1330 1331 // If there is a '<', the second type name is a template-id. Parse 1332 // it as such. 1333 if (Tok.is(tok::less) && 1334 ParseUnqualifiedIdTemplateId(SS, SourceLocation(), 1335 Name, NameLoc, 1336 false, ObjectType, SecondTypeName, 1337 /*AssumeTemplateName=*/true)) 1338 return ExprError(); 1339 1340 return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, 1341 OpLoc, OpKind, 1342 SS, FirstTypeName, CCLoc, 1343 TildeLoc, SecondTypeName, 1344 Tok.is(tok::l_paren)); 1345 } 1346 1347 /// ParseCXXBoolLiteral - This handles the C++ Boolean literals. 1348 /// 1349 /// boolean-literal: [C++ 2.13.5] 1350 /// 'true' 1351 /// 'false' 1352 ExprResult Parser::ParseCXXBoolLiteral() { 1353 tok::TokenKind Kind = Tok.getKind(); 1354 return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind); 1355 } 1356 1357 /// ParseThrowExpression - This handles the C++ throw expression. 1358 /// 1359 /// throw-expression: [C++ 15] 1360 /// 'throw' assignment-expression[opt] 1361 ExprResult Parser::ParseThrowExpression() { 1362 assert(Tok.is(tok::kw_throw) && "Not throw!"); 1363 SourceLocation ThrowLoc = ConsumeToken(); // Eat the throw token. 1364 1365 // If the current token isn't the start of an assignment-expression, 1366 // then the expression is not present. This handles things like: 1367 // "C ? throw : (void)42", which is crazy but legal. 1368 switch (Tok.getKind()) { // FIXME: move this predicate somewhere common. 1369 case tok::semi: 1370 case tok::r_paren: 1371 case tok::r_square: 1372 case tok::r_brace: 1373 case tok::colon: 1374 case tok::comma: 1375 return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, 0); 1376 1377 default: 1378 ExprResult Expr(ParseAssignmentExpression()); 1379 if (Expr.isInvalid()) return Expr; 1380 return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, Expr.take()); 1381 } 1382 } 1383 1384 /// ParseCXXThis - This handles the C++ 'this' pointer. 1385 /// 1386 /// C++ 9.3.2: In the body of a non-static member function, the keyword this is 1387 /// a non-lvalue expression whose value is the address of the object for which 1388 /// the function is called. 1389 ExprResult Parser::ParseCXXThis() { 1390 assert(Tok.is(tok::kw_this) && "Not 'this'!"); 1391 SourceLocation ThisLoc = ConsumeToken(); 1392 return Actions.ActOnCXXThis(ThisLoc); 1393 } 1394 1395 /// ParseCXXTypeConstructExpression - Parse construction of a specified type. 1396 /// Can be interpreted either as function-style casting ("int(x)") 1397 /// or class type construction ("ClassType(x,y,z)") 1398 /// or creation of a value-initialized type ("int()"). 1399 /// See [C++ 5.2.3]. 1400 /// 1401 /// postfix-expression: [C++ 5.2p1] 1402 /// simple-type-specifier '(' expression-list[opt] ')' 1403 /// [C++0x] simple-type-specifier braced-init-list 1404 /// typename-specifier '(' expression-list[opt] ')' 1405 /// [C++0x] typename-specifier braced-init-list 1406 /// 1407 ExprResult 1408 Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) { 1409 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext); 1410 ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get(); 1411 1412 assert((Tok.is(tok::l_paren) || 1413 (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace))) 1414 && "Expected '(' or '{'!"); 1415 1416 if (Tok.is(tok::l_brace)) { 1417 ExprResult Init = ParseBraceInitializer(); 1418 if (Init.isInvalid()) 1419 return Init; 1420 Expr *InitList = Init.take(); 1421 return Actions.ActOnCXXTypeConstructExpr(TypeRep, SourceLocation(), 1422 MultiExprArg(&InitList, 1), 1423 SourceLocation()); 1424 } else { 1425 BalancedDelimiterTracker T(*this, tok::l_paren); 1426 T.consumeOpen(); 1427 1428 ExprVector Exprs; 1429 CommaLocsTy CommaLocs; 1430 1431 if (Tok.isNot(tok::r_paren)) { 1432 if (ParseExpressionList(Exprs, CommaLocs)) { 1433 SkipUntil(tok::r_paren); 1434 return ExprError(); 1435 } 1436 } 1437 1438 // Match the ')'. 1439 T.consumeClose(); 1440 1441 // TypeRep could be null, if it references an invalid typedef. 1442 if (!TypeRep) 1443 return ExprError(); 1444 1445 assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&& 1446 "Unexpected number of commas!"); 1447 return Actions.ActOnCXXTypeConstructExpr(TypeRep, T.getOpenLocation(), 1448 Exprs, 1449 T.getCloseLocation()); 1450 } 1451 } 1452 1453 /// ParseCXXCondition - if/switch/while condition expression. 1454 /// 1455 /// condition: 1456 /// expression 1457 /// type-specifier-seq declarator '=' assignment-expression 1458 /// [C++11] type-specifier-seq declarator '=' initializer-clause 1459 /// [C++11] type-specifier-seq declarator braced-init-list 1460 /// [GNU] type-specifier-seq declarator simple-asm-expr[opt] attributes[opt] 1461 /// '=' assignment-expression 1462 /// 1463 /// \param ExprOut if the condition was parsed as an expression, the parsed 1464 /// expression. 1465 /// 1466 /// \param DeclOut if the condition was parsed as a declaration, the parsed 1467 /// declaration. 1468 /// 1469 /// \param Loc The location of the start of the statement that requires this 1470 /// condition, e.g., the "for" in a for loop. 1471 /// 1472 /// \param ConvertToBoolean Whether the condition expression should be 1473 /// converted to a boolean value. 1474 /// 1475 /// \returns true if there was a parsing, false otherwise. 1476 bool Parser::ParseCXXCondition(ExprResult &ExprOut, 1477 Decl *&DeclOut, 1478 SourceLocation Loc, 1479 bool ConvertToBoolean) { 1480 if (Tok.is(tok::code_completion)) { 1481 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition); 1482 cutOffParsing(); 1483 return true; 1484 } 1485 1486 ParsedAttributesWithRange attrs(AttrFactory); 1487 MaybeParseCXX11Attributes(attrs); 1488 1489 if (!isCXXConditionDeclaration()) { 1490 ProhibitAttributes(attrs); 1491 1492 // Parse the expression. 1493 ExprOut = ParseExpression(); // expression 1494 DeclOut = 0; 1495 if (ExprOut.isInvalid()) 1496 return true; 1497 1498 // If required, convert to a boolean value. 1499 if (ConvertToBoolean) 1500 ExprOut 1501 = Actions.ActOnBooleanCondition(getCurScope(), Loc, ExprOut.get()); 1502 return ExprOut.isInvalid(); 1503 } 1504 1505 // type-specifier-seq 1506 DeclSpec DS(AttrFactory); 1507 DS.takeAttributesFrom(attrs); 1508 ParseSpecifierQualifierList(DS); 1509 1510 // declarator 1511 Declarator DeclaratorInfo(DS, Declarator::ConditionContext); 1512 ParseDeclarator(DeclaratorInfo); 1513 1514 // simple-asm-expr[opt] 1515 if (Tok.is(tok::kw_asm)) { 1516 SourceLocation Loc; 1517 ExprResult AsmLabel(ParseSimpleAsm(&Loc)); 1518 if (AsmLabel.isInvalid()) { 1519 SkipUntil(tok::semi); 1520 return true; 1521 } 1522 DeclaratorInfo.setAsmLabel(AsmLabel.release()); 1523 DeclaratorInfo.SetRangeEnd(Loc); 1524 } 1525 1526 // If attributes are present, parse them. 1527 MaybeParseGNUAttributes(DeclaratorInfo); 1528 1529 // Type-check the declaration itself. 1530 DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(), 1531 DeclaratorInfo); 1532 DeclOut = Dcl.get(); 1533 ExprOut = ExprError(); 1534 1535 // '=' assignment-expression 1536 // If a '==' or '+=' is found, suggest a fixit to '='. 1537 bool CopyInitialization = isTokenEqualOrEqualTypo(); 1538 if (CopyInitialization) 1539 ConsumeToken(); 1540 1541 ExprResult InitExpr = ExprError(); 1542 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 1543 Diag(Tok.getLocation(), 1544 diag::warn_cxx98_compat_generalized_initializer_lists); 1545 InitExpr = ParseBraceInitializer(); 1546 } else if (CopyInitialization) { 1547 InitExpr = ParseAssignmentExpression(); 1548 } else if (Tok.is(tok::l_paren)) { 1549 // This was probably an attempt to initialize the variable. 1550 SourceLocation LParen = ConsumeParen(), RParen = LParen; 1551 if (SkipUntil(tok::r_paren, true, /*DontConsume=*/true)) 1552 RParen = ConsumeParen(); 1553 Diag(DeclOut ? DeclOut->getLocation() : LParen, 1554 diag::err_expected_init_in_condition_lparen) 1555 << SourceRange(LParen, RParen); 1556 } else { 1557 Diag(DeclOut ? DeclOut->getLocation() : Tok.getLocation(), 1558 diag::err_expected_init_in_condition); 1559 } 1560 1561 if (!InitExpr.isInvalid()) 1562 Actions.AddInitializerToDecl(DeclOut, InitExpr.take(), !CopyInitialization, 1563 DS.containsPlaceholderType()); 1564 else 1565 Actions.ActOnInitializerError(DeclOut); 1566 1567 // FIXME: Build a reference to this declaration? Convert it to bool? 1568 // (This is currently handled by Sema). 1569 1570 Actions.FinalizeDeclaration(DeclOut); 1571 1572 return false; 1573 } 1574 1575 /// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers. 1576 /// This should only be called when the current token is known to be part of 1577 /// simple-type-specifier. 1578 /// 1579 /// simple-type-specifier: 1580 /// '::'[opt] nested-name-specifier[opt] type-name 1581 /// '::'[opt] nested-name-specifier 'template' simple-template-id [TODO] 1582 /// char 1583 /// wchar_t 1584 /// bool 1585 /// short 1586 /// int 1587 /// long 1588 /// signed 1589 /// unsigned 1590 /// float 1591 /// double 1592 /// void 1593 /// [GNU] typeof-specifier 1594 /// [C++0x] auto [TODO] 1595 /// 1596 /// type-name: 1597 /// class-name 1598 /// enum-name 1599 /// typedef-name 1600 /// 1601 void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) { 1602 DS.SetRangeStart(Tok.getLocation()); 1603 const char *PrevSpec; 1604 unsigned DiagID; 1605 SourceLocation Loc = Tok.getLocation(); 1606 1607 switch (Tok.getKind()) { 1608 case tok::identifier: // foo::bar 1609 case tok::coloncolon: // ::foo::bar 1610 llvm_unreachable("Annotation token should already be formed!"); 1611 default: 1612 llvm_unreachable("Not a simple-type-specifier token!"); 1613 1614 // type-name 1615 case tok::annot_typename: { 1616 if (getTypeAnnotation(Tok)) 1617 DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, 1618 getTypeAnnotation(Tok)); 1619 else 1620 DS.SetTypeSpecError(); 1621 1622 DS.SetRangeEnd(Tok.getAnnotationEndLoc()); 1623 ConsumeToken(); 1624 1625 // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id' 1626 // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an 1627 // Objective-C interface. If we don't have Objective-C or a '<', this is 1628 // just a normal reference to a typedef name. 1629 if (Tok.is(tok::less) && getLangOpts().ObjC1) 1630 ParseObjCProtocolQualifiers(DS); 1631 1632 DS.Finish(Diags, PP); 1633 return; 1634 } 1635 1636 // builtin types 1637 case tok::kw_short: 1638 DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID); 1639 break; 1640 case tok::kw_long: 1641 DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec, DiagID); 1642 break; 1643 case tok::kw___int64: 1644 DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec, DiagID); 1645 break; 1646 case tok::kw_signed: 1647 DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID); 1648 break; 1649 case tok::kw_unsigned: 1650 DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec, DiagID); 1651 break; 1652 case tok::kw_void: 1653 DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID); 1654 break; 1655 case tok::kw_char: 1656 DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID); 1657 break; 1658 case tok::kw_int: 1659 DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID); 1660 break; 1661 case tok::kw___int128: 1662 DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID); 1663 break; 1664 case tok::kw_half: 1665 DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID); 1666 break; 1667 case tok::kw_float: 1668 DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID); 1669 break; 1670 case tok::kw_double: 1671 DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID); 1672 break; 1673 case tok::kw_wchar_t: 1674 DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID); 1675 break; 1676 case tok::kw_char16_t: 1677 DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID); 1678 break; 1679 case tok::kw_char32_t: 1680 DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID); 1681 break; 1682 case tok::kw_bool: 1683 DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID); 1684 break; 1685 case tok::annot_decltype: 1686 case tok::kw_decltype: 1687 DS.SetRangeEnd(ParseDecltypeSpecifier(DS)); 1688 return DS.Finish(Diags, PP); 1689 1690 // GNU typeof support. 1691 case tok::kw_typeof: 1692 ParseTypeofSpecifier(DS); 1693 DS.Finish(Diags, PP); 1694 return; 1695 } 1696 if (Tok.is(tok::annot_typename)) 1697 DS.SetRangeEnd(Tok.getAnnotationEndLoc()); 1698 else 1699 DS.SetRangeEnd(Tok.getLocation()); 1700 ConsumeToken(); 1701 DS.Finish(Diags, PP); 1702 } 1703 1704 /// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++ 1705 /// [dcl.name]), which is a non-empty sequence of type-specifiers, 1706 /// e.g., "const short int". Note that the DeclSpec is *not* finished 1707 /// by parsing the type-specifier-seq, because these sequences are 1708 /// typically followed by some form of declarator. Returns true and 1709 /// emits diagnostics if this is not a type-specifier-seq, false 1710 /// otherwise. 1711 /// 1712 /// type-specifier-seq: [C++ 8.1] 1713 /// type-specifier type-specifier-seq[opt] 1714 /// 1715 bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) { 1716 ParseSpecifierQualifierList(DS, AS_none, DSC_type_specifier); 1717 DS.Finish(Diags, PP); 1718 return false; 1719 } 1720 1721 /// \brief Finish parsing a C++ unqualified-id that is a template-id of 1722 /// some form. 1723 /// 1724 /// This routine is invoked when a '<' is encountered after an identifier or 1725 /// operator-function-id is parsed by \c ParseUnqualifiedId() to determine 1726 /// whether the unqualified-id is actually a template-id. This routine will 1727 /// then parse the template arguments and form the appropriate template-id to 1728 /// return to the caller. 1729 /// 1730 /// \param SS the nested-name-specifier that precedes this template-id, if 1731 /// we're actually parsing a qualified-id. 1732 /// 1733 /// \param Name for constructor and destructor names, this is the actual 1734 /// identifier that may be a template-name. 1735 /// 1736 /// \param NameLoc the location of the class-name in a constructor or 1737 /// destructor. 1738 /// 1739 /// \param EnteringContext whether we're entering the scope of the 1740 /// nested-name-specifier. 1741 /// 1742 /// \param ObjectType if this unqualified-id occurs within a member access 1743 /// expression, the type of the base object whose member is being accessed. 1744 /// 1745 /// \param Id as input, describes the template-name or operator-function-id 1746 /// that precedes the '<'. If template arguments were parsed successfully, 1747 /// will be updated with the template-id. 1748 /// 1749 /// \param AssumeTemplateId When true, this routine will assume that the name 1750 /// refers to a template without performing name lookup to verify. 1751 /// 1752 /// \returns true if a parse error occurred, false otherwise. 1753 bool Parser::ParseUnqualifiedIdTemplateId(CXXScopeSpec &SS, 1754 SourceLocation TemplateKWLoc, 1755 IdentifierInfo *Name, 1756 SourceLocation NameLoc, 1757 bool EnteringContext, 1758 ParsedType ObjectType, 1759 UnqualifiedId &Id, 1760 bool AssumeTemplateId) { 1761 assert((AssumeTemplateId || Tok.is(tok::less)) && 1762 "Expected '<' to finish parsing a template-id"); 1763 1764 TemplateTy Template; 1765 TemplateNameKind TNK = TNK_Non_template; 1766 switch (Id.getKind()) { 1767 case UnqualifiedId::IK_Identifier: 1768 case UnqualifiedId::IK_OperatorFunctionId: 1769 case UnqualifiedId::IK_LiteralOperatorId: 1770 if (AssumeTemplateId) { 1771 TNK = Actions.ActOnDependentTemplateName(getCurScope(), SS, TemplateKWLoc, 1772 Id, ObjectType, EnteringContext, 1773 Template); 1774 if (TNK == TNK_Non_template) 1775 return true; 1776 } else { 1777 bool MemberOfUnknownSpecialization; 1778 TNK = Actions.isTemplateName(getCurScope(), SS, 1779 TemplateKWLoc.isValid(), Id, 1780 ObjectType, EnteringContext, Template, 1781 MemberOfUnknownSpecialization); 1782 1783 if (TNK == TNK_Non_template && MemberOfUnknownSpecialization && 1784 ObjectType && IsTemplateArgumentList()) { 1785 // We have something like t->getAs<T>(), where getAs is a 1786 // member of an unknown specialization. However, this will only 1787 // parse correctly as a template, so suggest the keyword 'template' 1788 // before 'getAs' and treat this as a dependent template name. 1789 std::string Name; 1790 if (Id.getKind() == UnqualifiedId::IK_Identifier) 1791 Name = Id.Identifier->getName(); 1792 else { 1793 Name = "operator "; 1794 if (Id.getKind() == UnqualifiedId::IK_OperatorFunctionId) 1795 Name += getOperatorSpelling(Id.OperatorFunctionId.Operator); 1796 else 1797 Name += Id.Identifier->getName(); 1798 } 1799 Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword) 1800 << Name 1801 << FixItHint::CreateInsertion(Id.StartLocation, "template "); 1802 TNK = Actions.ActOnDependentTemplateName(getCurScope(), 1803 SS, TemplateKWLoc, Id, 1804 ObjectType, EnteringContext, 1805 Template); 1806 if (TNK == TNK_Non_template) 1807 return true; 1808 } 1809 } 1810 break; 1811 1812 case UnqualifiedId::IK_ConstructorName: { 1813 UnqualifiedId TemplateName; 1814 bool MemberOfUnknownSpecialization; 1815 TemplateName.setIdentifier(Name, NameLoc); 1816 TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(), 1817 TemplateName, ObjectType, 1818 EnteringContext, Template, 1819 MemberOfUnknownSpecialization); 1820 break; 1821 } 1822 1823 case UnqualifiedId::IK_DestructorName: { 1824 UnqualifiedId TemplateName; 1825 bool MemberOfUnknownSpecialization; 1826 TemplateName.setIdentifier(Name, NameLoc); 1827 if (ObjectType) { 1828 TNK = Actions.ActOnDependentTemplateName(getCurScope(), 1829 SS, TemplateKWLoc, TemplateName, 1830 ObjectType, EnteringContext, 1831 Template); 1832 if (TNK == TNK_Non_template) 1833 return true; 1834 } else { 1835 TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(), 1836 TemplateName, ObjectType, 1837 EnteringContext, Template, 1838 MemberOfUnknownSpecialization); 1839 1840 if (TNK == TNK_Non_template && !Id.DestructorName.get()) { 1841 Diag(NameLoc, diag::err_destructor_template_id) 1842 << Name << SS.getRange(); 1843 return true; 1844 } 1845 } 1846 break; 1847 } 1848 1849 default: 1850 return false; 1851 } 1852 1853 if (TNK == TNK_Non_template) 1854 return false; 1855 1856 // Parse the enclosed template argument list. 1857 SourceLocation LAngleLoc, RAngleLoc; 1858 TemplateArgList TemplateArgs; 1859 if (Tok.is(tok::less) && 1860 ParseTemplateIdAfterTemplateName(Template, Id.StartLocation, 1861 SS, true, LAngleLoc, 1862 TemplateArgs, 1863 RAngleLoc)) 1864 return true; 1865 1866 if (Id.getKind() == UnqualifiedId::IK_Identifier || 1867 Id.getKind() == UnqualifiedId::IK_OperatorFunctionId || 1868 Id.getKind() == UnqualifiedId::IK_LiteralOperatorId) { 1869 // Form a parsed representation of the template-id to be stored in the 1870 // UnqualifiedId. 1871 TemplateIdAnnotation *TemplateId 1872 = TemplateIdAnnotation::Allocate(TemplateArgs.size(), TemplateIds); 1873 1874 if (Id.getKind() == UnqualifiedId::IK_Identifier) { 1875 TemplateId->Name = Id.Identifier; 1876 TemplateId->Operator = OO_None; 1877 TemplateId->TemplateNameLoc = Id.StartLocation; 1878 } else { 1879 TemplateId->Name = 0; 1880 TemplateId->Operator = Id.OperatorFunctionId.Operator; 1881 TemplateId->TemplateNameLoc = Id.StartLocation; 1882 } 1883 1884 TemplateId->SS = SS; 1885 TemplateId->TemplateKWLoc = TemplateKWLoc; 1886 TemplateId->Template = Template; 1887 TemplateId->Kind = TNK; 1888 TemplateId->LAngleLoc = LAngleLoc; 1889 TemplateId->RAngleLoc = RAngleLoc; 1890 ParsedTemplateArgument *Args = TemplateId->getTemplateArgs(); 1891 for (unsigned Arg = 0, ArgEnd = TemplateArgs.size(); 1892 Arg != ArgEnd; ++Arg) 1893 Args[Arg] = TemplateArgs[Arg]; 1894 1895 Id.setTemplateId(TemplateId); 1896 return false; 1897 } 1898 1899 // Bundle the template arguments together. 1900 ASTTemplateArgsPtr TemplateArgsPtr(TemplateArgs); 1901 1902 // Constructor and destructor names. 1903 TypeResult Type 1904 = Actions.ActOnTemplateIdType(SS, TemplateKWLoc, 1905 Template, NameLoc, 1906 LAngleLoc, TemplateArgsPtr, RAngleLoc, 1907 /*IsCtorOrDtorName=*/true); 1908 if (Type.isInvalid()) 1909 return true; 1910 1911 if (Id.getKind() == UnqualifiedId::IK_ConstructorName) 1912 Id.setConstructorName(Type.get(), NameLoc, RAngleLoc); 1913 else 1914 Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc); 1915 1916 return false; 1917 } 1918 1919 /// \brief Parse an operator-function-id or conversion-function-id as part 1920 /// of a C++ unqualified-id. 1921 /// 1922 /// This routine is responsible only for parsing the operator-function-id or 1923 /// conversion-function-id; it does not handle template arguments in any way. 1924 /// 1925 /// \code 1926 /// operator-function-id: [C++ 13.5] 1927 /// 'operator' operator 1928 /// 1929 /// operator: one of 1930 /// new delete new[] delete[] 1931 /// + - * / % ^ & | ~ 1932 /// ! = < > += -= *= /= %= 1933 /// ^= &= |= << >> >>= <<= == != 1934 /// <= >= && || ++ -- , ->* -> 1935 /// () [] 1936 /// 1937 /// conversion-function-id: [C++ 12.3.2] 1938 /// operator conversion-type-id 1939 /// 1940 /// conversion-type-id: 1941 /// type-specifier-seq conversion-declarator[opt] 1942 /// 1943 /// conversion-declarator: 1944 /// ptr-operator conversion-declarator[opt] 1945 /// \endcode 1946 /// 1947 /// \param SS The nested-name-specifier that preceded this unqualified-id. If 1948 /// non-empty, then we are parsing the unqualified-id of a qualified-id. 1949 /// 1950 /// \param EnteringContext whether we are entering the scope of the 1951 /// nested-name-specifier. 1952 /// 1953 /// \param ObjectType if this unqualified-id occurs within a member access 1954 /// expression, the type of the base object whose member is being accessed. 1955 /// 1956 /// \param Result on a successful parse, contains the parsed unqualified-id. 1957 /// 1958 /// \returns true if parsing fails, false otherwise. 1959 bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext, 1960 ParsedType ObjectType, 1961 UnqualifiedId &Result) { 1962 assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword"); 1963 1964 // Consume the 'operator' keyword. 1965 SourceLocation KeywordLoc = ConsumeToken(); 1966 1967 // Determine what kind of operator name we have. 1968 unsigned SymbolIdx = 0; 1969 SourceLocation SymbolLocations[3]; 1970 OverloadedOperatorKind Op = OO_None; 1971 switch (Tok.getKind()) { 1972 case tok::kw_new: 1973 case tok::kw_delete: { 1974 bool isNew = Tok.getKind() == tok::kw_new; 1975 // Consume the 'new' or 'delete'. 1976 SymbolLocations[SymbolIdx++] = ConsumeToken(); 1977 // Check for array new/delete. 1978 if (Tok.is(tok::l_square) && 1979 (!getLangOpts().CPlusPlus11 || NextToken().isNot(tok::l_square))) { 1980 // Consume the '[' and ']'. 1981 BalancedDelimiterTracker T(*this, tok::l_square); 1982 T.consumeOpen(); 1983 T.consumeClose(); 1984 if (T.getCloseLocation().isInvalid()) 1985 return true; 1986 1987 SymbolLocations[SymbolIdx++] = T.getOpenLocation(); 1988 SymbolLocations[SymbolIdx++] = T.getCloseLocation(); 1989 Op = isNew? OO_Array_New : OO_Array_Delete; 1990 } else { 1991 Op = isNew? OO_New : OO_Delete; 1992 } 1993 break; 1994 } 1995 1996 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ 1997 case tok::Token: \ 1998 SymbolLocations[SymbolIdx++] = ConsumeToken(); \ 1999 Op = OO_##Name; \ 2000 break; 2001 #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly) 2002 #include "clang/Basic/OperatorKinds.def" 2003 2004 case tok::l_paren: { 2005 // Consume the '(' and ')'. 2006 BalancedDelimiterTracker T(*this, tok::l_paren); 2007 T.consumeOpen(); 2008 T.consumeClose(); 2009 if (T.getCloseLocation().isInvalid()) 2010 return true; 2011 2012 SymbolLocations[SymbolIdx++] = T.getOpenLocation(); 2013 SymbolLocations[SymbolIdx++] = T.getCloseLocation(); 2014 Op = OO_Call; 2015 break; 2016 } 2017 2018 case tok::l_square: { 2019 // Consume the '[' and ']'. 2020 BalancedDelimiterTracker T(*this, tok::l_square); 2021 T.consumeOpen(); 2022 T.consumeClose(); 2023 if (T.getCloseLocation().isInvalid()) 2024 return true; 2025 2026 SymbolLocations[SymbolIdx++] = T.getOpenLocation(); 2027 SymbolLocations[SymbolIdx++] = T.getCloseLocation(); 2028 Op = OO_Subscript; 2029 break; 2030 } 2031 2032 case tok::code_completion: { 2033 // Code completion for the operator name. 2034 Actions.CodeCompleteOperatorName(getCurScope()); 2035 cutOffParsing(); 2036 // Don't try to parse any further. 2037 return true; 2038 } 2039 2040 default: 2041 break; 2042 } 2043 2044 if (Op != OO_None) { 2045 // We have parsed an operator-function-id. 2046 Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations); 2047 return false; 2048 } 2049 2050 // Parse a literal-operator-id. 2051 // 2052 // literal-operator-id: C++11 [over.literal] 2053 // operator string-literal identifier 2054 // operator user-defined-string-literal 2055 2056 if (getLangOpts().CPlusPlus11 && isTokenStringLiteral()) { 2057 Diag(Tok.getLocation(), diag::warn_cxx98_compat_literal_operator); 2058 2059 SourceLocation DiagLoc; 2060 unsigned DiagId = 0; 2061 2062 // We're past translation phase 6, so perform string literal concatenation 2063 // before checking for "". 2064 SmallVector<Token, 4> Toks; 2065 SmallVector<SourceLocation, 4> TokLocs; 2066 while (isTokenStringLiteral()) { 2067 if (!Tok.is(tok::string_literal) && !DiagId) { 2068 // C++11 [over.literal]p1: 2069 // The string-literal or user-defined-string-literal in a 2070 // literal-operator-id shall have no encoding-prefix [...]. 2071 DiagLoc = Tok.getLocation(); 2072 DiagId = diag::err_literal_operator_string_prefix; 2073 } 2074 Toks.push_back(Tok); 2075 TokLocs.push_back(ConsumeStringToken()); 2076 } 2077 2078 StringLiteralParser Literal(Toks.data(), Toks.size(), PP); 2079 if (Literal.hadError) 2080 return true; 2081 2082 // Grab the literal operator's suffix, which will be either the next token 2083 // or a ud-suffix from the string literal. 2084 IdentifierInfo *II = 0; 2085 SourceLocation SuffixLoc; 2086 if (!Literal.getUDSuffix().empty()) { 2087 II = &PP.getIdentifierTable().get(Literal.getUDSuffix()); 2088 SuffixLoc = 2089 Lexer::AdvanceToTokenCharacter(TokLocs[Literal.getUDSuffixToken()], 2090 Literal.getUDSuffixOffset(), 2091 PP.getSourceManager(), getLangOpts()); 2092 } else if (Tok.is(tok::identifier)) { 2093 II = Tok.getIdentifierInfo(); 2094 SuffixLoc = ConsumeToken(); 2095 TokLocs.push_back(SuffixLoc); 2096 } else { 2097 Diag(Tok.getLocation(), diag::err_expected_ident); 2098 return true; 2099 } 2100 2101 // The string literal must be empty. 2102 if (!Literal.GetString().empty() || Literal.Pascal) { 2103 // C++11 [over.literal]p1: 2104 // The string-literal or user-defined-string-literal in a 2105 // literal-operator-id shall [...] contain no characters 2106 // other than the implicit terminating '\0'. 2107 DiagLoc = TokLocs.front(); 2108 DiagId = diag::err_literal_operator_string_not_empty; 2109 } 2110 2111 if (DiagId) { 2112 // This isn't a valid literal-operator-id, but we think we know 2113 // what the user meant. Tell them what they should have written. 2114 SmallString<32> Str; 2115 Str += "\"\" "; 2116 Str += II->getName(); 2117 Diag(DiagLoc, DiagId) << FixItHint::CreateReplacement( 2118 SourceRange(TokLocs.front(), TokLocs.back()), Str); 2119 } 2120 2121 Result.setLiteralOperatorId(II, KeywordLoc, SuffixLoc); 2122 return false; 2123 } 2124 2125 // Parse a conversion-function-id. 2126 // 2127 // conversion-function-id: [C++ 12.3.2] 2128 // operator conversion-type-id 2129 // 2130 // conversion-type-id: 2131 // type-specifier-seq conversion-declarator[opt] 2132 // 2133 // conversion-declarator: 2134 // ptr-operator conversion-declarator[opt] 2135 2136 // Parse the type-specifier-seq. 2137 DeclSpec DS(AttrFactory); 2138 if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType? 2139 return true; 2140 2141 // Parse the conversion-declarator, which is merely a sequence of 2142 // ptr-operators. 2143 Declarator D(DS, Declarator::ConversionIdContext); 2144 ParseDeclaratorInternal(D, /*DirectDeclParser=*/0); 2145 2146 // Finish up the type. 2147 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D); 2148 if (Ty.isInvalid()) 2149 return true; 2150 2151 // Note that this is a conversion-function-id. 2152 Result.setConversionFunctionId(KeywordLoc, Ty.get(), 2153 D.getSourceRange().getEnd()); 2154 return false; 2155 } 2156 2157 /// \brief Parse a C++ unqualified-id (or a C identifier), which describes the 2158 /// name of an entity. 2159 /// 2160 /// \code 2161 /// unqualified-id: [C++ expr.prim.general] 2162 /// identifier 2163 /// operator-function-id 2164 /// conversion-function-id 2165 /// [C++0x] literal-operator-id [TODO] 2166 /// ~ class-name 2167 /// template-id 2168 /// 2169 /// \endcode 2170 /// 2171 /// \param SS The nested-name-specifier that preceded this unqualified-id. If 2172 /// non-empty, then we are parsing the unqualified-id of a qualified-id. 2173 /// 2174 /// \param EnteringContext whether we are entering the scope of the 2175 /// nested-name-specifier. 2176 /// 2177 /// \param AllowDestructorName whether we allow parsing of a destructor name. 2178 /// 2179 /// \param AllowConstructorName whether we allow parsing a constructor name. 2180 /// 2181 /// \param ObjectType if this unqualified-id occurs within a member access 2182 /// expression, the type of the base object whose member is being accessed. 2183 /// 2184 /// \param Result on a successful parse, contains the parsed unqualified-id. 2185 /// 2186 /// \returns true if parsing fails, false otherwise. 2187 bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, bool EnteringContext, 2188 bool AllowDestructorName, 2189 bool AllowConstructorName, 2190 ParsedType ObjectType, 2191 SourceLocation& TemplateKWLoc, 2192 UnqualifiedId &Result) { 2193 2194 // Handle 'A::template B'. This is for template-ids which have not 2195 // already been annotated by ParseOptionalCXXScopeSpecifier(). 2196 bool TemplateSpecified = false; 2197 if (getLangOpts().CPlusPlus && Tok.is(tok::kw_template) && 2198 (ObjectType || SS.isSet())) { 2199 TemplateSpecified = true; 2200 TemplateKWLoc = ConsumeToken(); 2201 } 2202 2203 // unqualified-id: 2204 // identifier 2205 // template-id (when it hasn't already been annotated) 2206 if (Tok.is(tok::identifier)) { 2207 // Consume the identifier. 2208 IdentifierInfo *Id = Tok.getIdentifierInfo(); 2209 SourceLocation IdLoc = ConsumeToken(); 2210 2211 if (!getLangOpts().CPlusPlus) { 2212 // If we're not in C++, only identifiers matter. Record the 2213 // identifier and return. 2214 Result.setIdentifier(Id, IdLoc); 2215 return false; 2216 } 2217 2218 if (AllowConstructorName && 2219 Actions.isCurrentClassName(*Id, getCurScope(), &SS)) { 2220 // We have parsed a constructor name. 2221 ParsedType Ty = Actions.getTypeName(*Id, IdLoc, getCurScope(), 2222 &SS, false, false, 2223 ParsedType(), 2224 /*IsCtorOrDtorName=*/true, 2225 /*NonTrivialTypeSourceInfo=*/true); 2226 Result.setConstructorName(Ty, IdLoc, IdLoc); 2227 } else { 2228 // We have parsed an identifier. 2229 Result.setIdentifier(Id, IdLoc); 2230 } 2231 2232 // If the next token is a '<', we may have a template. 2233 if (TemplateSpecified || Tok.is(tok::less)) 2234 return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc, Id, IdLoc, 2235 EnteringContext, ObjectType, 2236 Result, TemplateSpecified); 2237 2238 return false; 2239 } 2240 2241 // unqualified-id: 2242 // template-id (already parsed and annotated) 2243 if (Tok.is(tok::annot_template_id)) { 2244 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); 2245 2246 // If the template-name names the current class, then this is a constructor 2247 if (AllowConstructorName && TemplateId->Name && 2248 Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) { 2249 if (SS.isSet()) { 2250 // C++ [class.qual]p2 specifies that a qualified template-name 2251 // is taken as the constructor name where a constructor can be 2252 // declared. Thus, the template arguments are extraneous, so 2253 // complain about them and remove them entirely. 2254 Diag(TemplateId->TemplateNameLoc, 2255 diag::err_out_of_line_constructor_template_id) 2256 << TemplateId->Name 2257 << FixItHint::CreateRemoval( 2258 SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)); 2259 ParsedType Ty = Actions.getTypeName(*TemplateId->Name, 2260 TemplateId->TemplateNameLoc, 2261 getCurScope(), 2262 &SS, false, false, 2263 ParsedType(), 2264 /*IsCtorOrDtorName=*/true, 2265 /*NontrivialTypeSourceInfo=*/true); 2266 Result.setConstructorName(Ty, TemplateId->TemplateNameLoc, 2267 TemplateId->RAngleLoc); 2268 ConsumeToken(); 2269 return false; 2270 } 2271 2272 Result.setConstructorTemplateId(TemplateId); 2273 ConsumeToken(); 2274 return false; 2275 } 2276 2277 // We have already parsed a template-id; consume the annotation token as 2278 // our unqualified-id. 2279 Result.setTemplateId(TemplateId); 2280 TemplateKWLoc = TemplateId->TemplateKWLoc; 2281 ConsumeToken(); 2282 return false; 2283 } 2284 2285 // unqualified-id: 2286 // operator-function-id 2287 // conversion-function-id 2288 if (Tok.is(tok::kw_operator)) { 2289 if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result)) 2290 return true; 2291 2292 // If we have an operator-function-id or a literal-operator-id and the next 2293 // token is a '<', we may have a 2294 // 2295 // template-id: 2296 // operator-function-id < template-argument-list[opt] > 2297 if ((Result.getKind() == UnqualifiedId::IK_OperatorFunctionId || 2298 Result.getKind() == UnqualifiedId::IK_LiteralOperatorId) && 2299 (TemplateSpecified || Tok.is(tok::less))) 2300 return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc, 2301 0, SourceLocation(), 2302 EnteringContext, ObjectType, 2303 Result, TemplateSpecified); 2304 2305 return false; 2306 } 2307 2308 if (getLangOpts().CPlusPlus && 2309 (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) { 2310 // C++ [expr.unary.op]p10: 2311 // There is an ambiguity in the unary-expression ~X(), where X is a 2312 // class-name. The ambiguity is resolved in favor of treating ~ as a 2313 // unary complement rather than treating ~X as referring to a destructor. 2314 2315 // Parse the '~'. 2316 SourceLocation TildeLoc = ConsumeToken(); 2317 2318 if (SS.isEmpty() && Tok.is(tok::kw_decltype)) { 2319 DeclSpec DS(AttrFactory); 2320 SourceLocation EndLoc = ParseDecltypeSpecifier(DS); 2321 if (ParsedType Type = Actions.getDestructorType(DS, ObjectType)) { 2322 Result.setDestructorName(TildeLoc, Type, EndLoc); 2323 return false; 2324 } 2325 return true; 2326 } 2327 2328 // Parse the class-name. 2329 if (Tok.isNot(tok::identifier)) { 2330 Diag(Tok, diag::err_destructor_tilde_identifier); 2331 return true; 2332 } 2333 2334 // Parse the class-name (or template-name in a simple-template-id). 2335 IdentifierInfo *ClassName = Tok.getIdentifierInfo(); 2336 SourceLocation ClassNameLoc = ConsumeToken(); 2337 2338 if (TemplateSpecified || Tok.is(tok::less)) { 2339 Result.setDestructorName(TildeLoc, ParsedType(), ClassNameLoc); 2340 return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc, 2341 ClassName, ClassNameLoc, 2342 EnteringContext, ObjectType, 2343 Result, TemplateSpecified); 2344 } 2345 2346 // Note that this is a destructor name. 2347 ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName, 2348 ClassNameLoc, getCurScope(), 2349 SS, ObjectType, 2350 EnteringContext); 2351 if (!Ty) 2352 return true; 2353 2354 Result.setDestructorName(TildeLoc, Ty, ClassNameLoc); 2355 return false; 2356 } 2357 2358 Diag(Tok, diag::err_expected_unqualified_id) 2359 << getLangOpts().CPlusPlus; 2360 return true; 2361 } 2362 2363 /// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate 2364 /// memory in a typesafe manner and call constructors. 2365 /// 2366 /// This method is called to parse the new expression after the optional :: has 2367 /// been already parsed. If the :: was present, "UseGlobal" is true and "Start" 2368 /// is its location. Otherwise, "Start" is the location of the 'new' token. 2369 /// 2370 /// new-expression: 2371 /// '::'[opt] 'new' new-placement[opt] new-type-id 2372 /// new-initializer[opt] 2373 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')' 2374 /// new-initializer[opt] 2375 /// 2376 /// new-placement: 2377 /// '(' expression-list ')' 2378 /// 2379 /// new-type-id: 2380 /// type-specifier-seq new-declarator[opt] 2381 /// [GNU] attributes type-specifier-seq new-declarator[opt] 2382 /// 2383 /// new-declarator: 2384 /// ptr-operator new-declarator[opt] 2385 /// direct-new-declarator 2386 /// 2387 /// new-initializer: 2388 /// '(' expression-list[opt] ')' 2389 /// [C++0x] braced-init-list 2390 /// 2391 ExprResult 2392 Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) { 2393 assert(Tok.is(tok::kw_new) && "expected 'new' token"); 2394 ConsumeToken(); // Consume 'new' 2395 2396 // A '(' now can be a new-placement or the '(' wrapping the type-id in the 2397 // second form of new-expression. It can't be a new-type-id. 2398 2399 ExprVector PlacementArgs; 2400 SourceLocation PlacementLParen, PlacementRParen; 2401 2402 SourceRange TypeIdParens; 2403 DeclSpec DS(AttrFactory); 2404 Declarator DeclaratorInfo(DS, Declarator::CXXNewContext); 2405 if (Tok.is(tok::l_paren)) { 2406 // If it turns out to be a placement, we change the type location. 2407 BalancedDelimiterTracker T(*this, tok::l_paren); 2408 T.consumeOpen(); 2409 PlacementLParen = T.getOpenLocation(); 2410 if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) { 2411 SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true); 2412 return ExprError(); 2413 } 2414 2415 T.consumeClose(); 2416 PlacementRParen = T.getCloseLocation(); 2417 if (PlacementRParen.isInvalid()) { 2418 SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true); 2419 return ExprError(); 2420 } 2421 2422 if (PlacementArgs.empty()) { 2423 // Reset the placement locations. There was no placement. 2424 TypeIdParens = T.getRange(); 2425 PlacementLParen = PlacementRParen = SourceLocation(); 2426 } else { 2427 // We still need the type. 2428 if (Tok.is(tok::l_paren)) { 2429 BalancedDelimiterTracker T(*this, tok::l_paren); 2430 T.consumeOpen(); 2431 MaybeParseGNUAttributes(DeclaratorInfo); 2432 ParseSpecifierQualifierList(DS); 2433 DeclaratorInfo.SetSourceRange(DS.getSourceRange()); 2434 ParseDeclarator(DeclaratorInfo); 2435 T.consumeClose(); 2436 TypeIdParens = T.getRange(); 2437 } else { 2438 MaybeParseGNUAttributes(DeclaratorInfo); 2439 if (ParseCXXTypeSpecifierSeq(DS)) 2440 DeclaratorInfo.setInvalidType(true); 2441 else { 2442 DeclaratorInfo.SetSourceRange(DS.getSourceRange()); 2443 ParseDeclaratorInternal(DeclaratorInfo, 2444 &Parser::ParseDirectNewDeclarator); 2445 } 2446 } 2447 } 2448 } else { 2449 // A new-type-id is a simplified type-id, where essentially the 2450 // direct-declarator is replaced by a direct-new-declarator. 2451 MaybeParseGNUAttributes(DeclaratorInfo); 2452 if (ParseCXXTypeSpecifierSeq(DS)) 2453 DeclaratorInfo.setInvalidType(true); 2454 else { 2455 DeclaratorInfo.SetSourceRange(DS.getSourceRange()); 2456 ParseDeclaratorInternal(DeclaratorInfo, 2457 &Parser::ParseDirectNewDeclarator); 2458 } 2459 } 2460 if (DeclaratorInfo.isInvalidType()) { 2461 SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true); 2462 return ExprError(); 2463 } 2464 2465 ExprResult Initializer; 2466 2467 if (Tok.is(tok::l_paren)) { 2468 SourceLocation ConstructorLParen, ConstructorRParen; 2469 ExprVector ConstructorArgs; 2470 BalancedDelimiterTracker T(*this, tok::l_paren); 2471 T.consumeOpen(); 2472 ConstructorLParen = T.getOpenLocation(); 2473 if (Tok.isNot(tok::r_paren)) { 2474 CommaLocsTy CommaLocs; 2475 if (ParseExpressionList(ConstructorArgs, CommaLocs)) { 2476 SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true); 2477 return ExprError(); 2478 } 2479 } 2480 T.consumeClose(); 2481 ConstructorRParen = T.getCloseLocation(); 2482 if (ConstructorRParen.isInvalid()) { 2483 SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true); 2484 return ExprError(); 2485 } 2486 Initializer = Actions.ActOnParenListExpr(ConstructorLParen, 2487 ConstructorRParen, 2488 ConstructorArgs); 2489 } else if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus11) { 2490 Diag(Tok.getLocation(), 2491 diag::warn_cxx98_compat_generalized_initializer_lists); 2492 Initializer = ParseBraceInitializer(); 2493 } 2494 if (Initializer.isInvalid()) 2495 return Initializer; 2496 2497 return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen, 2498 PlacementArgs, PlacementRParen, 2499 TypeIdParens, DeclaratorInfo, Initializer.take()); 2500 } 2501 2502 /// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be 2503 /// passed to ParseDeclaratorInternal. 2504 /// 2505 /// direct-new-declarator: 2506 /// '[' expression ']' 2507 /// direct-new-declarator '[' constant-expression ']' 2508 /// 2509 void Parser::ParseDirectNewDeclarator(Declarator &D) { 2510 // Parse the array dimensions. 2511 bool first = true; 2512 while (Tok.is(tok::l_square)) { 2513 // An array-size expression can't start with a lambda. 2514 if (CheckProhibitedCXX11Attribute()) 2515 continue; 2516 2517 BalancedDelimiterTracker T(*this, tok::l_square); 2518 T.consumeOpen(); 2519 2520 ExprResult Size(first ? ParseExpression() 2521 : ParseConstantExpression()); 2522 if (Size.isInvalid()) { 2523 // Recover 2524 SkipUntil(tok::r_square); 2525 return; 2526 } 2527 first = false; 2528 2529 T.consumeClose(); 2530 2531 // Attributes here appertain to the array type. C++11 [expr.new]p5. 2532 ParsedAttributes Attrs(AttrFactory); 2533 MaybeParseCXX11Attributes(Attrs); 2534 2535 D.AddTypeInfo(DeclaratorChunk::getArray(0, 2536 /*static=*/false, /*star=*/false, 2537 Size.release(), 2538 T.getOpenLocation(), 2539 T.getCloseLocation()), 2540 Attrs, T.getCloseLocation()); 2541 2542 if (T.getCloseLocation().isInvalid()) 2543 return; 2544 } 2545 } 2546 2547 /// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id. 2548 /// This ambiguity appears in the syntax of the C++ new operator. 2549 /// 2550 /// new-expression: 2551 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')' 2552 /// new-initializer[opt] 2553 /// 2554 /// new-placement: 2555 /// '(' expression-list ')' 2556 /// 2557 bool Parser::ParseExpressionListOrTypeId( 2558 SmallVectorImpl<Expr*> &PlacementArgs, 2559 Declarator &D) { 2560 // The '(' was already consumed. 2561 if (isTypeIdInParens()) { 2562 ParseSpecifierQualifierList(D.getMutableDeclSpec()); 2563 D.SetSourceRange(D.getDeclSpec().getSourceRange()); 2564 ParseDeclarator(D); 2565 return D.isInvalidType(); 2566 } 2567 2568 // It's not a type, it has to be an expression list. 2569 // Discard the comma locations - ActOnCXXNew has enough parameters. 2570 CommaLocsTy CommaLocs; 2571 return ParseExpressionList(PlacementArgs, CommaLocs); 2572 } 2573 2574 /// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used 2575 /// to free memory allocated by new. 2576 /// 2577 /// This method is called to parse the 'delete' expression after the optional 2578 /// '::' has been already parsed. If the '::' was present, "UseGlobal" is true 2579 /// and "Start" is its location. Otherwise, "Start" is the location of the 2580 /// 'delete' token. 2581 /// 2582 /// delete-expression: 2583 /// '::'[opt] 'delete' cast-expression 2584 /// '::'[opt] 'delete' '[' ']' cast-expression 2585 ExprResult 2586 Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) { 2587 assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword"); 2588 ConsumeToken(); // Consume 'delete' 2589 2590 // Array delete? 2591 bool ArrayDelete = false; 2592 if (Tok.is(tok::l_square) && NextToken().is(tok::r_square)) { 2593 // C++11 [expr.delete]p1: 2594 // Whenever the delete keyword is followed by empty square brackets, it 2595 // shall be interpreted as [array delete]. 2596 // [Footnote: A lambda expression with a lambda-introducer that consists 2597 // of empty square brackets can follow the delete keyword if 2598 // the lambda expression is enclosed in parentheses.] 2599 // FIXME: Produce a better diagnostic if the '[]' is unambiguously a 2600 // lambda-introducer. 2601 ArrayDelete = true; 2602 BalancedDelimiterTracker T(*this, tok::l_square); 2603 2604 T.consumeOpen(); 2605 T.consumeClose(); 2606 if (T.getCloseLocation().isInvalid()) 2607 return ExprError(); 2608 } 2609 2610 ExprResult Operand(ParseCastExpression(false)); 2611 if (Operand.isInvalid()) 2612 return Operand; 2613 2614 return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.take()); 2615 } 2616 2617 static UnaryTypeTrait UnaryTypeTraitFromTokKind(tok::TokenKind kind) { 2618 switch(kind) { 2619 default: llvm_unreachable("Not a known unary type trait."); 2620 case tok::kw___has_nothrow_assign: return UTT_HasNothrowAssign; 2621 case tok::kw___has_nothrow_move_assign: return UTT_HasNothrowMoveAssign; 2622 case tok::kw___has_nothrow_constructor: return UTT_HasNothrowConstructor; 2623 case tok::kw___has_nothrow_copy: return UTT_HasNothrowCopy; 2624 case tok::kw___has_trivial_assign: return UTT_HasTrivialAssign; 2625 case tok::kw___has_trivial_move_assign: return UTT_HasTrivialMoveAssign; 2626 case tok::kw___has_trivial_constructor: 2627 return UTT_HasTrivialDefaultConstructor; 2628 case tok::kw___has_trivial_move_constructor: 2629 return UTT_HasTrivialMoveConstructor; 2630 case tok::kw___has_trivial_copy: return UTT_HasTrivialCopy; 2631 case tok::kw___has_trivial_destructor: return UTT_HasTrivialDestructor; 2632 case tok::kw___has_virtual_destructor: return UTT_HasVirtualDestructor; 2633 case tok::kw___is_abstract: return UTT_IsAbstract; 2634 case tok::kw___is_arithmetic: return UTT_IsArithmetic; 2635 case tok::kw___is_array: return UTT_IsArray; 2636 case tok::kw___is_class: return UTT_IsClass; 2637 case tok::kw___is_complete_type: return UTT_IsCompleteType; 2638 case tok::kw___is_compound: return UTT_IsCompound; 2639 case tok::kw___is_const: return UTT_IsConst; 2640 case tok::kw___is_empty: return UTT_IsEmpty; 2641 case tok::kw___is_enum: return UTT_IsEnum; 2642 case tok::kw___is_final: return UTT_IsFinal; 2643 case tok::kw___is_floating_point: return UTT_IsFloatingPoint; 2644 case tok::kw___is_function: return UTT_IsFunction; 2645 case tok::kw___is_fundamental: return UTT_IsFundamental; 2646 case tok::kw___is_integral: return UTT_IsIntegral; 2647 case tok::kw___is_interface_class: return UTT_IsInterfaceClass; 2648 case tok::kw___is_lvalue_reference: return UTT_IsLvalueReference; 2649 case tok::kw___is_member_function_pointer: return UTT_IsMemberFunctionPointer; 2650 case tok::kw___is_member_object_pointer: return UTT_IsMemberObjectPointer; 2651 case tok::kw___is_member_pointer: return UTT_IsMemberPointer; 2652 case tok::kw___is_object: return UTT_IsObject; 2653 case tok::kw___is_literal: return UTT_IsLiteral; 2654 case tok::kw___is_literal_type: return UTT_IsLiteral; 2655 case tok::kw___is_pod: return UTT_IsPOD; 2656 case tok::kw___is_pointer: return UTT_IsPointer; 2657 case tok::kw___is_polymorphic: return UTT_IsPolymorphic; 2658 case tok::kw___is_reference: return UTT_IsReference; 2659 case tok::kw___is_rvalue_reference: return UTT_IsRvalueReference; 2660 case tok::kw___is_scalar: return UTT_IsScalar; 2661 case tok::kw___is_signed: return UTT_IsSigned; 2662 case tok::kw___is_standard_layout: return UTT_IsStandardLayout; 2663 case tok::kw___is_trivial: return UTT_IsTrivial; 2664 case tok::kw___is_trivially_copyable: return UTT_IsTriviallyCopyable; 2665 case tok::kw___is_union: return UTT_IsUnion; 2666 case tok::kw___is_unsigned: return UTT_IsUnsigned; 2667 case tok::kw___is_void: return UTT_IsVoid; 2668 case tok::kw___is_volatile: return UTT_IsVolatile; 2669 } 2670 } 2671 2672 static BinaryTypeTrait BinaryTypeTraitFromTokKind(tok::TokenKind kind) { 2673 switch(kind) { 2674 default: llvm_unreachable("Not a known binary type trait"); 2675 case tok::kw___is_base_of: return BTT_IsBaseOf; 2676 case tok::kw___is_convertible: return BTT_IsConvertible; 2677 case tok::kw___is_same: return BTT_IsSame; 2678 case tok::kw___builtin_types_compatible_p: return BTT_TypeCompatible; 2679 case tok::kw___is_convertible_to: return BTT_IsConvertibleTo; 2680 case tok::kw___is_trivially_assignable: return BTT_IsTriviallyAssignable; 2681 } 2682 } 2683 2684 static TypeTrait TypeTraitFromTokKind(tok::TokenKind kind) { 2685 switch (kind) { 2686 default: llvm_unreachable("Not a known type trait"); 2687 case tok::kw___is_trivially_constructible: 2688 return TT_IsTriviallyConstructible; 2689 } 2690 } 2691 2692 static ArrayTypeTrait ArrayTypeTraitFromTokKind(tok::TokenKind kind) { 2693 switch(kind) { 2694 default: llvm_unreachable("Not a known binary type trait"); 2695 case tok::kw___array_rank: return ATT_ArrayRank; 2696 case tok::kw___array_extent: return ATT_ArrayExtent; 2697 } 2698 } 2699 2700 static ExpressionTrait ExpressionTraitFromTokKind(tok::TokenKind kind) { 2701 switch(kind) { 2702 default: llvm_unreachable("Not a known unary expression trait."); 2703 case tok::kw___is_lvalue_expr: return ET_IsLValueExpr; 2704 case tok::kw___is_rvalue_expr: return ET_IsRValueExpr; 2705 } 2706 } 2707 2708 /// ParseUnaryTypeTrait - Parse the built-in unary type-trait 2709 /// pseudo-functions that allow implementation of the TR1/C++0x type traits 2710 /// templates. 2711 /// 2712 /// primary-expression: 2713 /// [GNU] unary-type-trait '(' type-id ')' 2714 /// 2715 ExprResult Parser::ParseUnaryTypeTrait() { 2716 UnaryTypeTrait UTT = UnaryTypeTraitFromTokKind(Tok.getKind()); 2717 SourceLocation Loc = ConsumeToken(); 2718 2719 BalancedDelimiterTracker T(*this, tok::l_paren); 2720 if (T.expectAndConsume(diag::err_expected_lparen)) 2721 return ExprError(); 2722 2723 // FIXME: Error reporting absolutely sucks! If the this fails to parse a type 2724 // there will be cryptic errors about mismatched parentheses and missing 2725 // specifiers. 2726 TypeResult Ty = ParseTypeName(); 2727 2728 T.consumeClose(); 2729 2730 if (Ty.isInvalid()) 2731 return ExprError(); 2732 2733 return Actions.ActOnUnaryTypeTrait(UTT, Loc, Ty.get(), T.getCloseLocation()); 2734 } 2735 2736 /// ParseBinaryTypeTrait - Parse the built-in binary type-trait 2737 /// pseudo-functions that allow implementation of the TR1/C++0x type traits 2738 /// templates. 2739 /// 2740 /// primary-expression: 2741 /// [GNU] binary-type-trait '(' type-id ',' type-id ')' 2742 /// 2743 ExprResult Parser::ParseBinaryTypeTrait() { 2744 BinaryTypeTrait BTT = BinaryTypeTraitFromTokKind(Tok.getKind()); 2745 SourceLocation Loc = ConsumeToken(); 2746 2747 BalancedDelimiterTracker T(*this, tok::l_paren); 2748 if (T.expectAndConsume(diag::err_expected_lparen)) 2749 return ExprError(); 2750 2751 TypeResult LhsTy = ParseTypeName(); 2752 if (LhsTy.isInvalid()) { 2753 SkipUntil(tok::r_paren); 2754 return ExprError(); 2755 } 2756 2757 if (ExpectAndConsume(tok::comma, diag::err_expected_comma)) { 2758 SkipUntil(tok::r_paren); 2759 return ExprError(); 2760 } 2761 2762 TypeResult RhsTy = ParseTypeName(); 2763 if (RhsTy.isInvalid()) { 2764 SkipUntil(tok::r_paren); 2765 return ExprError(); 2766 } 2767 2768 T.consumeClose(); 2769 2770 return Actions.ActOnBinaryTypeTrait(BTT, Loc, LhsTy.get(), RhsTy.get(), 2771 T.getCloseLocation()); 2772 } 2773 2774 /// \brief Parse the built-in type-trait pseudo-functions that allow 2775 /// implementation of the TR1/C++11 type traits templates. 2776 /// 2777 /// primary-expression: 2778 /// type-trait '(' type-id-seq ')' 2779 /// 2780 /// type-id-seq: 2781 /// type-id ...[opt] type-id-seq[opt] 2782 /// 2783 ExprResult Parser::ParseTypeTrait() { 2784 TypeTrait Kind = TypeTraitFromTokKind(Tok.getKind()); 2785 SourceLocation Loc = ConsumeToken(); 2786 2787 BalancedDelimiterTracker Parens(*this, tok::l_paren); 2788 if (Parens.expectAndConsume(diag::err_expected_lparen)) 2789 return ExprError(); 2790 2791 SmallVector<ParsedType, 2> Args; 2792 do { 2793 // Parse the next type. 2794 TypeResult Ty = ParseTypeName(); 2795 if (Ty.isInvalid()) { 2796 Parens.skipToEnd(); 2797 return ExprError(); 2798 } 2799 2800 // Parse the ellipsis, if present. 2801 if (Tok.is(tok::ellipsis)) { 2802 Ty = Actions.ActOnPackExpansion(Ty.get(), ConsumeToken()); 2803 if (Ty.isInvalid()) { 2804 Parens.skipToEnd(); 2805 return ExprError(); 2806 } 2807 } 2808 2809 // Add this type to the list of arguments. 2810 Args.push_back(Ty.get()); 2811 2812 if (Tok.is(tok::comma)) { 2813 ConsumeToken(); 2814 continue; 2815 } 2816 2817 break; 2818 } while (true); 2819 2820 if (Parens.consumeClose()) 2821 return ExprError(); 2822 2823 return Actions.ActOnTypeTrait(Kind, Loc, Args, Parens.getCloseLocation()); 2824 } 2825 2826 /// ParseArrayTypeTrait - Parse the built-in array type-trait 2827 /// pseudo-functions. 2828 /// 2829 /// primary-expression: 2830 /// [Embarcadero] '__array_rank' '(' type-id ')' 2831 /// [Embarcadero] '__array_extent' '(' type-id ',' expression ')' 2832 /// 2833 ExprResult Parser::ParseArrayTypeTrait() { 2834 ArrayTypeTrait ATT = ArrayTypeTraitFromTokKind(Tok.getKind()); 2835 SourceLocation Loc = ConsumeToken(); 2836 2837 BalancedDelimiterTracker T(*this, tok::l_paren); 2838 if (T.expectAndConsume(diag::err_expected_lparen)) 2839 return ExprError(); 2840 2841 TypeResult Ty = ParseTypeName(); 2842 if (Ty.isInvalid()) { 2843 SkipUntil(tok::comma); 2844 SkipUntil(tok::r_paren); 2845 return ExprError(); 2846 } 2847 2848 switch (ATT) { 2849 case ATT_ArrayRank: { 2850 T.consumeClose(); 2851 return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), NULL, 2852 T.getCloseLocation()); 2853 } 2854 case ATT_ArrayExtent: { 2855 if (ExpectAndConsume(tok::comma, diag::err_expected_comma)) { 2856 SkipUntil(tok::r_paren); 2857 return ExprError(); 2858 } 2859 2860 ExprResult DimExpr = ParseExpression(); 2861 T.consumeClose(); 2862 2863 return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), DimExpr.get(), 2864 T.getCloseLocation()); 2865 } 2866 } 2867 llvm_unreachable("Invalid ArrayTypeTrait!"); 2868 } 2869 2870 /// ParseExpressionTrait - Parse built-in expression-trait 2871 /// pseudo-functions like __is_lvalue_expr( xxx ). 2872 /// 2873 /// primary-expression: 2874 /// [Embarcadero] expression-trait '(' expression ')' 2875 /// 2876 ExprResult Parser::ParseExpressionTrait() { 2877 ExpressionTrait ET = ExpressionTraitFromTokKind(Tok.getKind()); 2878 SourceLocation Loc = ConsumeToken(); 2879 2880 BalancedDelimiterTracker T(*this, tok::l_paren); 2881 if (T.expectAndConsume(diag::err_expected_lparen)) 2882 return ExprError(); 2883 2884 ExprResult Expr = ParseExpression(); 2885 2886 T.consumeClose(); 2887 2888 return Actions.ActOnExpressionTrait(ET, Loc, Expr.get(), 2889 T.getCloseLocation()); 2890 } 2891 2892 2893 /// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a 2894 /// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate 2895 /// based on the context past the parens. 2896 ExprResult 2897 Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType, 2898 ParsedType &CastTy, 2899 BalancedDelimiterTracker &Tracker) { 2900 assert(getLangOpts().CPlusPlus && "Should only be called for C++!"); 2901 assert(ExprType == CastExpr && "Compound literals are not ambiguous!"); 2902 assert(isTypeIdInParens() && "Not a type-id!"); 2903 2904 ExprResult Result(true); 2905 CastTy = ParsedType(); 2906 2907 // We need to disambiguate a very ugly part of the C++ syntax: 2908 // 2909 // (T())x; - type-id 2910 // (T())*x; - type-id 2911 // (T())/x; - expression 2912 // (T()); - expression 2913 // 2914 // The bad news is that we cannot use the specialized tentative parser, since 2915 // it can only verify that the thing inside the parens can be parsed as 2916 // type-id, it is not useful for determining the context past the parens. 2917 // 2918 // The good news is that the parser can disambiguate this part without 2919 // making any unnecessary Action calls. 2920 // 2921 // It uses a scheme similar to parsing inline methods. The parenthesized 2922 // tokens are cached, the context that follows is determined (possibly by 2923 // parsing a cast-expression), and then we re-introduce the cached tokens 2924 // into the token stream and parse them appropriately. 2925 2926 ParenParseOption ParseAs; 2927 CachedTokens Toks; 2928 2929 // Store the tokens of the parentheses. We will parse them after we determine 2930 // the context that follows them. 2931 if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) { 2932 // We didn't find the ')' we expected. 2933 Tracker.consumeClose(); 2934 return ExprError(); 2935 } 2936 2937 if (Tok.is(tok::l_brace)) { 2938 ParseAs = CompoundLiteral; 2939 } else { 2940 bool NotCastExpr; 2941 // FIXME: Special-case ++ and --: "(S())++;" is not a cast-expression 2942 if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) { 2943 NotCastExpr = true; 2944 } else { 2945 // Try parsing the cast-expression that may follow. 2946 // If it is not a cast-expression, NotCastExpr will be true and no token 2947 // will be consumed. 2948 Result = ParseCastExpression(false/*isUnaryExpression*/, 2949 false/*isAddressofOperand*/, 2950 NotCastExpr, 2951 // type-id has priority. 2952 IsTypeCast); 2953 } 2954 2955 // If we parsed a cast-expression, it's really a type-id, otherwise it's 2956 // an expression. 2957 ParseAs = NotCastExpr ? SimpleExpr : CastExpr; 2958 } 2959 2960 // The current token should go after the cached tokens. 2961 Toks.push_back(Tok); 2962 // Re-enter the stored parenthesized tokens into the token stream, so we may 2963 // parse them now. 2964 PP.EnterTokenStream(Toks.data(), Toks.size(), 2965 true/*DisableMacroExpansion*/, false/*OwnsTokens*/); 2966 // Drop the current token and bring the first cached one. It's the same token 2967 // as when we entered this function. 2968 ConsumeAnyToken(); 2969 2970 if (ParseAs >= CompoundLiteral) { 2971 // Parse the type declarator. 2972 DeclSpec DS(AttrFactory); 2973 ParseSpecifierQualifierList(DS); 2974 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext); 2975 ParseDeclarator(DeclaratorInfo); 2976 2977 // Match the ')'. 2978 Tracker.consumeClose(); 2979 2980 if (ParseAs == CompoundLiteral) { 2981 ExprType = CompoundLiteral; 2982 TypeResult Ty = ParseTypeName(); 2983 return ParseCompoundLiteralExpression(Ty.get(), 2984 Tracker.getOpenLocation(), 2985 Tracker.getCloseLocation()); 2986 } 2987 2988 // We parsed '(' type-id ')' and the thing after it wasn't a '{'. 2989 assert(ParseAs == CastExpr); 2990 2991 if (DeclaratorInfo.isInvalidType()) 2992 return ExprError(); 2993 2994 // Result is what ParseCastExpression returned earlier. 2995 if (!Result.isInvalid()) 2996 Result = Actions.ActOnCastExpr(getCurScope(), Tracker.getOpenLocation(), 2997 DeclaratorInfo, CastTy, 2998 Tracker.getCloseLocation(), Result.take()); 2999 return Result; 3000 } 3001 3002 // Not a compound literal, and not followed by a cast-expression. 3003 assert(ParseAs == SimpleExpr); 3004 3005 ExprType = SimpleExpr; 3006 Result = ParseExpression(); 3007 if (!Result.isInvalid() && Tok.is(tok::r_paren)) 3008 Result = Actions.ActOnParenExpr(Tracker.getOpenLocation(), 3009 Tok.getLocation(), Result.take()); 3010 3011 // Match the ')'. 3012 if (Result.isInvalid()) { 3013 SkipUntil(tok::r_paren); 3014 return ExprError(); 3015 } 3016 3017 Tracker.consumeClose(); 3018 return Result; 3019 } 3020