Home | History | Annotate | Download | only in Utils
      1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the CloneFunctionInto interface, which is used as the
     11 // low-level function cloner.  This is used by the CloneFunction and function
     12 // inliner to do the dirty work of copying the body of a function around.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/Transforms/Utils/Cloning.h"
     17 #include "llvm/ADT/SmallVector.h"
     18 #include "llvm/Analysis/ConstantFolding.h"
     19 #include "llvm/Analysis/InstructionSimplify.h"
     20 #include "llvm/DebugInfo.h"
     21 #include "llvm/IR/Constants.h"
     22 #include "llvm/IR/DerivedTypes.h"
     23 #include "llvm/IR/Function.h"
     24 #include "llvm/IR/GlobalVariable.h"
     25 #include "llvm/IR/Instructions.h"
     26 #include "llvm/IR/IntrinsicInst.h"
     27 #include "llvm/IR/LLVMContext.h"
     28 #include "llvm/IR/Metadata.h"
     29 #include "llvm/Support/CFG.h"
     30 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     31 #include "llvm/Transforms/Utils/Local.h"
     32 #include "llvm/Transforms/Utils/ValueMapper.h"
     33 #include <map>
     34 using namespace llvm;
     35 
     36 // CloneBasicBlock - See comments in Cloning.h
     37 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
     38                                   ValueToValueMapTy &VMap,
     39                                   const Twine &NameSuffix, Function *F,
     40                                   ClonedCodeInfo *CodeInfo) {
     41   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
     42   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
     43 
     44   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
     45 
     46   // Loop over all instructions, and copy them over.
     47   for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
     48        II != IE; ++II) {
     49     Instruction *NewInst = II->clone();
     50     if (II->hasName())
     51       NewInst->setName(II->getName()+NameSuffix);
     52     NewBB->getInstList().push_back(NewInst);
     53     VMap[II] = NewInst;                // Add instruction map to value.
     54 
     55     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
     56     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
     57       if (isa<ConstantInt>(AI->getArraySize()))
     58         hasStaticAllocas = true;
     59       else
     60         hasDynamicAllocas = true;
     61     }
     62   }
     63 
     64   if (CodeInfo) {
     65     CodeInfo->ContainsCalls          |= hasCalls;
     66     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
     67     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
     68                                         BB != &BB->getParent()->getEntryBlock();
     69   }
     70   return NewBB;
     71 }
     72 
     73 // Clone OldFunc into NewFunc, transforming the old arguments into references to
     74 // VMap values.
     75 //
     76 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
     77                              ValueToValueMapTy &VMap,
     78                              bool ModuleLevelChanges,
     79                              SmallVectorImpl<ReturnInst*> &Returns,
     80                              const char *NameSuffix, ClonedCodeInfo *CodeInfo,
     81                              ValueMapTypeRemapper *TypeMapper,
     82                              ValueMaterializer *Materializer) {
     83   assert(NameSuffix && "NameSuffix cannot be null!");
     84 
     85 #ifndef NDEBUG
     86   for (Function::const_arg_iterator I = OldFunc->arg_begin(),
     87        E = OldFunc->arg_end(); I != E; ++I)
     88     assert(VMap.count(I) && "No mapping from source argument specified!");
     89 #endif
     90 
     91   AttributeSet OldAttrs = OldFunc->getAttributes();
     92   // Clone any argument attributes that are present in the VMap.
     93   for (Function::const_arg_iterator I = OldFunc->arg_begin(),
     94                                     E = OldFunc->arg_end();
     95        I != E; ++I)
     96     if (Argument *Anew = dyn_cast<Argument>(VMap[I])) {
     97       AttributeSet attrs =
     98           OldAttrs.getParamAttributes(I->getArgNo() + 1);
     99       if (attrs.getNumSlots() > 0)
    100         Anew->addAttr(attrs);
    101     }
    102 
    103   NewFunc->setAttributes(NewFunc->getAttributes()
    104                          .addAttributes(NewFunc->getContext(),
    105                                         AttributeSet::ReturnIndex,
    106                                         OldAttrs.getRetAttributes()));
    107   NewFunc->setAttributes(NewFunc->getAttributes()
    108                          .addAttributes(NewFunc->getContext(),
    109                                         AttributeSet::FunctionIndex,
    110                                         OldAttrs.getFnAttributes()));
    111 
    112   // Loop over all of the basic blocks in the function, cloning them as
    113   // appropriate.  Note that we save BE this way in order to handle cloning of
    114   // recursive functions into themselves.
    115   //
    116   for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
    117        BI != BE; ++BI) {
    118     const BasicBlock &BB = *BI;
    119 
    120     // Create a new basic block and copy instructions into it!
    121     BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo);
    122 
    123     // Add basic block mapping.
    124     VMap[&BB] = CBB;
    125 
    126     // It is only legal to clone a function if a block address within that
    127     // function is never referenced outside of the function.  Given that, we
    128     // want to map block addresses from the old function to block addresses in
    129     // the clone. (This is different from the generic ValueMapper
    130     // implementation, which generates an invalid blockaddress when
    131     // cloning a function.)
    132     if (BB.hasAddressTaken()) {
    133       Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
    134                                               const_cast<BasicBlock*>(&BB));
    135       VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
    136     }
    137 
    138     // Note return instructions for the caller.
    139     if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
    140       Returns.push_back(RI);
    141   }
    142 
    143   // Loop over all of the instructions in the function, fixing up operand
    144   // references as we go.  This uses VMap to do all the hard work.
    145   for (Function::iterator BB = cast<BasicBlock>(VMap[OldFunc->begin()]),
    146          BE = NewFunc->end(); BB != BE; ++BB)
    147     // Loop over all instructions, fixing each one as we find it...
    148     for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II)
    149       RemapInstruction(II, VMap,
    150                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
    151                        TypeMapper, Materializer);
    152 }
    153 
    154 /// CloneFunction - Return a copy of the specified function, but without
    155 /// embedding the function into another module.  Also, any references specified
    156 /// in the VMap are changed to refer to their mapped value instead of the
    157 /// original one.  If any of the arguments to the function are in the VMap,
    158 /// the arguments are deleted from the resultant function.  The VMap is
    159 /// updated to include mappings from all of the instructions and basicblocks in
    160 /// the function from their old to new values.
    161 ///
    162 Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap,
    163                               bool ModuleLevelChanges,
    164                               ClonedCodeInfo *CodeInfo) {
    165   std::vector<Type*> ArgTypes;
    166 
    167   // The user might be deleting arguments to the function by specifying them in
    168   // the VMap.  If so, we need to not add the arguments to the arg ty vector
    169   //
    170   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
    171        I != E; ++I)
    172     if (VMap.count(I) == 0)  // Haven't mapped the argument to anything yet?
    173       ArgTypes.push_back(I->getType());
    174 
    175   // Create a new function type...
    176   FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
    177                                     ArgTypes, F->getFunctionType()->isVarArg());
    178 
    179   // Create the new function...
    180   Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName());
    181 
    182   // Loop over the arguments, copying the names of the mapped arguments over...
    183   Function::arg_iterator DestI = NewF->arg_begin();
    184   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
    185        I != E; ++I)
    186     if (VMap.count(I) == 0) {   // Is this argument preserved?
    187       DestI->setName(I->getName()); // Copy the name over...
    188       VMap[I] = DestI++;        // Add mapping to VMap
    189     }
    190 
    191   SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
    192   CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo);
    193   return NewF;
    194 }
    195 
    196 
    197 
    198 namespace {
    199   /// PruningFunctionCloner - This class is a private class used to implement
    200   /// the CloneAndPruneFunctionInto method.
    201   struct PruningFunctionCloner {
    202     Function *NewFunc;
    203     const Function *OldFunc;
    204     ValueToValueMapTy &VMap;
    205     bool ModuleLevelChanges;
    206     const char *NameSuffix;
    207     ClonedCodeInfo *CodeInfo;
    208     const DataLayout *TD;
    209   public:
    210     PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
    211                           ValueToValueMapTy &valueMap,
    212                           bool moduleLevelChanges,
    213                           const char *nameSuffix,
    214                           ClonedCodeInfo *codeInfo,
    215                           const DataLayout *td)
    216     : NewFunc(newFunc), OldFunc(oldFunc),
    217       VMap(valueMap), ModuleLevelChanges(moduleLevelChanges),
    218       NameSuffix(nameSuffix), CodeInfo(codeInfo), TD(td) {
    219     }
    220 
    221     /// CloneBlock - The specified block is found to be reachable, clone it and
    222     /// anything that it can reach.
    223     void CloneBlock(const BasicBlock *BB,
    224                     std::vector<const BasicBlock*> &ToClone);
    225   };
    226 }
    227 
    228 /// CloneBlock - The specified block is found to be reachable, clone it and
    229 /// anything that it can reach.
    230 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
    231                                        std::vector<const BasicBlock*> &ToClone){
    232   WeakVH &BBEntry = VMap[BB];
    233 
    234   // Have we already cloned this block?
    235   if (BBEntry) return;
    236 
    237   // Nope, clone it now.
    238   BasicBlock *NewBB;
    239   BBEntry = NewBB = BasicBlock::Create(BB->getContext());
    240   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
    241 
    242   // It is only legal to clone a function if a block address within that
    243   // function is never referenced outside of the function.  Given that, we
    244   // want to map block addresses from the old function to block addresses in
    245   // the clone. (This is different from the generic ValueMapper
    246   // implementation, which generates an invalid blockaddress when
    247   // cloning a function.)
    248   //
    249   // Note that we don't need to fix the mapping for unreachable blocks;
    250   // the default mapping there is safe.
    251   if (BB->hasAddressTaken()) {
    252     Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
    253                                             const_cast<BasicBlock*>(BB));
    254     VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
    255   }
    256 
    257 
    258   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
    259 
    260   // Loop over all instructions, and copy them over, DCE'ing as we go.  This
    261   // loop doesn't include the terminator.
    262   for (BasicBlock::const_iterator II = BB->begin(), IE = --BB->end();
    263        II != IE; ++II) {
    264     Instruction *NewInst = II->clone();
    265 
    266     // Eagerly remap operands to the newly cloned instruction, except for PHI
    267     // nodes for which we defer processing until we update the CFG.
    268     if (!isa<PHINode>(NewInst)) {
    269       RemapInstruction(NewInst, VMap,
    270                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
    271 
    272       // If we can simplify this instruction to some other value, simply add
    273       // a mapping to that value rather than inserting a new instruction into
    274       // the basic block.
    275       if (Value *V = SimplifyInstruction(NewInst, TD)) {
    276         // On the off-chance that this simplifies to an instruction in the old
    277         // function, map it back into the new function.
    278         if (Value *MappedV = VMap.lookup(V))
    279           V = MappedV;
    280 
    281         VMap[II] = V;
    282         delete NewInst;
    283         continue;
    284       }
    285     }
    286 
    287     if (II->hasName())
    288       NewInst->setName(II->getName()+NameSuffix);
    289     VMap[II] = NewInst;                // Add instruction map to value.
    290     NewBB->getInstList().push_back(NewInst);
    291     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
    292     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
    293       if (isa<ConstantInt>(AI->getArraySize()))
    294         hasStaticAllocas = true;
    295       else
    296         hasDynamicAllocas = true;
    297     }
    298   }
    299 
    300   // Finally, clone over the terminator.
    301   const TerminatorInst *OldTI = BB->getTerminator();
    302   bool TerminatorDone = false;
    303   if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
    304     if (BI->isConditional()) {
    305       // If the condition was a known constant in the callee...
    306       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
    307       // Or is a known constant in the caller...
    308       if (Cond == 0) {
    309         Value *V = VMap[BI->getCondition()];
    310         Cond = dyn_cast_or_null<ConstantInt>(V);
    311       }
    312 
    313       // Constant fold to uncond branch!
    314       if (Cond) {
    315         BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
    316         VMap[OldTI] = BranchInst::Create(Dest, NewBB);
    317         ToClone.push_back(Dest);
    318         TerminatorDone = true;
    319       }
    320     }
    321   } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
    322     // If switching on a value known constant in the caller.
    323     ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
    324     if (Cond == 0) { // Or known constant after constant prop in the callee...
    325       Value *V = VMap[SI->getCondition()];
    326       Cond = dyn_cast_or_null<ConstantInt>(V);
    327     }
    328     if (Cond) {     // Constant fold to uncond branch!
    329       SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond);
    330       BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
    331       VMap[OldTI] = BranchInst::Create(Dest, NewBB);
    332       ToClone.push_back(Dest);
    333       TerminatorDone = true;
    334     }
    335   }
    336 
    337   if (!TerminatorDone) {
    338     Instruction *NewInst = OldTI->clone();
    339     if (OldTI->hasName())
    340       NewInst->setName(OldTI->getName()+NameSuffix);
    341     NewBB->getInstList().push_back(NewInst);
    342     VMap[OldTI] = NewInst;             // Add instruction map to value.
    343 
    344     // Recursively clone any reachable successor blocks.
    345     const TerminatorInst *TI = BB->getTerminator();
    346     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
    347       ToClone.push_back(TI->getSuccessor(i));
    348   }
    349 
    350   if (CodeInfo) {
    351     CodeInfo->ContainsCalls          |= hasCalls;
    352     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
    353     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
    354       BB != &BB->getParent()->front();
    355   }
    356 }
    357 
    358 /// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
    359 /// except that it does some simple constant prop and DCE on the fly.  The
    360 /// effect of this is to copy significantly less code in cases where (for
    361 /// example) a function call with constant arguments is inlined, and those
    362 /// constant arguments cause a significant amount of code in the callee to be
    363 /// dead.  Since this doesn't produce an exact copy of the input, it can't be
    364 /// used for things like CloneFunction or CloneModule.
    365 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
    366                                      ValueToValueMapTy &VMap,
    367                                      bool ModuleLevelChanges,
    368                                      SmallVectorImpl<ReturnInst*> &Returns,
    369                                      const char *NameSuffix,
    370                                      ClonedCodeInfo *CodeInfo,
    371                                      const DataLayout *TD,
    372                                      Instruction *TheCall) {
    373   assert(NameSuffix && "NameSuffix cannot be null!");
    374 
    375 #ifndef NDEBUG
    376   for (Function::const_arg_iterator II = OldFunc->arg_begin(),
    377        E = OldFunc->arg_end(); II != E; ++II)
    378     assert(VMap.count(II) && "No mapping from source argument specified!");
    379 #endif
    380 
    381   PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
    382                             NameSuffix, CodeInfo, TD);
    383 
    384   // Clone the entry block, and anything recursively reachable from it.
    385   std::vector<const BasicBlock*> CloneWorklist;
    386   CloneWorklist.push_back(&OldFunc->getEntryBlock());
    387   while (!CloneWorklist.empty()) {
    388     const BasicBlock *BB = CloneWorklist.back();
    389     CloneWorklist.pop_back();
    390     PFC.CloneBlock(BB, CloneWorklist);
    391   }
    392 
    393   // Loop over all of the basic blocks in the old function.  If the block was
    394   // reachable, we have cloned it and the old block is now in the value map:
    395   // insert it into the new function in the right order.  If not, ignore it.
    396   //
    397   // Defer PHI resolution until rest of function is resolved.
    398   SmallVector<const PHINode*, 16> PHIToResolve;
    399   for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
    400        BI != BE; ++BI) {
    401     Value *V = VMap[BI];
    402     BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
    403     if (NewBB == 0) continue;  // Dead block.
    404 
    405     // Add the new block to the new function.
    406     NewFunc->getBasicBlockList().push_back(NewBB);
    407 
    408     // Handle PHI nodes specially, as we have to remove references to dead
    409     // blocks.
    410     for (BasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I)
    411       if (const PHINode *PN = dyn_cast<PHINode>(I))
    412         PHIToResolve.push_back(PN);
    413       else
    414         break;
    415 
    416     // Finally, remap the terminator instructions, as those can't be remapped
    417     // until all BBs are mapped.
    418     RemapInstruction(NewBB->getTerminator(), VMap,
    419                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
    420   }
    421 
    422   // Defer PHI resolution until rest of function is resolved, PHI resolution
    423   // requires the CFG to be up-to-date.
    424   for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
    425     const PHINode *OPN = PHIToResolve[phino];
    426     unsigned NumPreds = OPN->getNumIncomingValues();
    427     const BasicBlock *OldBB = OPN->getParent();
    428     BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
    429 
    430     // Map operands for blocks that are live and remove operands for blocks
    431     // that are dead.
    432     for (; phino != PHIToResolve.size() &&
    433          PHIToResolve[phino]->getParent() == OldBB; ++phino) {
    434       OPN = PHIToResolve[phino];
    435       PHINode *PN = cast<PHINode>(VMap[OPN]);
    436       for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
    437         Value *V = VMap[PN->getIncomingBlock(pred)];
    438         if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
    439           Value *InVal = MapValue(PN->getIncomingValue(pred),
    440                                   VMap,
    441                         ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
    442           assert(InVal && "Unknown input value?");
    443           PN->setIncomingValue(pred, InVal);
    444           PN->setIncomingBlock(pred, MappedBlock);
    445         } else {
    446           PN->removeIncomingValue(pred, false);
    447           --pred, --e;  // Revisit the next entry.
    448         }
    449       }
    450     }
    451 
    452     // The loop above has removed PHI entries for those blocks that are dead
    453     // and has updated others.  However, if a block is live (i.e. copied over)
    454     // but its terminator has been changed to not go to this block, then our
    455     // phi nodes will have invalid entries.  Update the PHI nodes in this
    456     // case.
    457     PHINode *PN = cast<PHINode>(NewBB->begin());
    458     NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
    459     if (NumPreds != PN->getNumIncomingValues()) {
    460       assert(NumPreds < PN->getNumIncomingValues());
    461       // Count how many times each predecessor comes to this block.
    462       std::map<BasicBlock*, unsigned> PredCount;
    463       for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
    464            PI != E; ++PI)
    465         --PredCount[*PI];
    466 
    467       // Figure out how many entries to remove from each PHI.
    468       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    469         ++PredCount[PN->getIncomingBlock(i)];
    470 
    471       // At this point, the excess predecessor entries are positive in the
    472       // map.  Loop over all of the PHIs and remove excess predecessor
    473       // entries.
    474       BasicBlock::iterator I = NewBB->begin();
    475       for (; (PN = dyn_cast<PHINode>(I)); ++I) {
    476         for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(),
    477              E = PredCount.end(); PCI != E; ++PCI) {
    478           BasicBlock *Pred     = PCI->first;
    479           for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove)
    480             PN->removeIncomingValue(Pred, false);
    481         }
    482       }
    483     }
    484 
    485     // If the loops above have made these phi nodes have 0 or 1 operand,
    486     // replace them with undef or the input value.  We must do this for
    487     // correctness, because 0-operand phis are not valid.
    488     PN = cast<PHINode>(NewBB->begin());
    489     if (PN->getNumIncomingValues() == 0) {
    490       BasicBlock::iterator I = NewBB->begin();
    491       BasicBlock::const_iterator OldI = OldBB->begin();
    492       while ((PN = dyn_cast<PHINode>(I++))) {
    493         Value *NV = UndefValue::get(PN->getType());
    494         PN->replaceAllUsesWith(NV);
    495         assert(VMap[OldI] == PN && "VMap mismatch");
    496         VMap[OldI] = NV;
    497         PN->eraseFromParent();
    498         ++OldI;
    499       }
    500     }
    501   }
    502 
    503   // Make a second pass over the PHINodes now that all of them have been
    504   // remapped into the new function, simplifying the PHINode and performing any
    505   // recursive simplifications exposed. This will transparently update the
    506   // WeakVH in the VMap. Notably, we rely on that so that if we coalesce
    507   // two PHINodes, the iteration over the old PHIs remains valid, and the
    508   // mapping will just map us to the new node (which may not even be a PHI
    509   // node).
    510   for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
    511     if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]]))
    512       recursivelySimplifyInstruction(PN, TD);
    513 
    514   // Now that the inlined function body has been fully constructed, go through
    515   // and zap unconditional fall-through branches.  This happen all the time when
    516   // specializing code: code specialization turns conditional branches into
    517   // uncond branches, and this code folds them.
    518   Function::iterator Begin = cast<BasicBlock>(VMap[&OldFunc->getEntryBlock()]);
    519   Function::iterator I = Begin;
    520   while (I != NewFunc->end()) {
    521     // Check if this block has become dead during inlining or other
    522     // simplifications. Note that the first block will appear dead, as it has
    523     // not yet been wired up properly.
    524     if (I != Begin && (pred_begin(I) == pred_end(I) ||
    525                        I->getSinglePredecessor() == I)) {
    526       BasicBlock *DeadBB = I++;
    527       DeleteDeadBlock(DeadBB);
    528       continue;
    529     }
    530 
    531     // We need to simplify conditional branches and switches with a constant
    532     // operand. We try to prune these out when cloning, but if the
    533     // simplification required looking through PHI nodes, those are only
    534     // available after forming the full basic block. That may leave some here,
    535     // and we still want to prune the dead code as early as possible.
    536     ConstantFoldTerminator(I);
    537 
    538     BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
    539     if (!BI || BI->isConditional()) { ++I; continue; }
    540 
    541     BasicBlock *Dest = BI->getSuccessor(0);
    542     if (!Dest->getSinglePredecessor()) {
    543       ++I; continue;
    544     }
    545 
    546     // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
    547     // above should have zapped all of them..
    548     assert(!isa<PHINode>(Dest->begin()));
    549 
    550     // We know all single-entry PHI nodes in the inlined function have been
    551     // removed, so we just need to splice the blocks.
    552     BI->eraseFromParent();
    553 
    554     // Make all PHI nodes that referred to Dest now refer to I as their source.
    555     Dest->replaceAllUsesWith(I);
    556 
    557     // Move all the instructions in the succ to the pred.
    558     I->getInstList().splice(I->end(), Dest->getInstList());
    559 
    560     // Remove the dest block.
    561     Dest->eraseFromParent();
    562 
    563     // Do not increment I, iteratively merge all things this block branches to.
    564   }
    565 
    566   // Make a final pass over the basic blocks from theh old function to gather
    567   // any return instructions which survived folding. We have to do this here
    568   // because we can iteratively remove and merge returns above.
    569   for (Function::iterator I = cast<BasicBlock>(VMap[&OldFunc->getEntryBlock()]),
    570                           E = NewFunc->end();
    571        I != E; ++I)
    572     if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
    573       Returns.push_back(RI);
    574 }
    575