1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 // 5 // Initial input buffer layout, dividing into regions r0_ to r4_ (note: r0_, r3_ 6 // and r4_ will move after the first load): 7 // 8 // |----------------|-----------------------------------------|----------------| 9 // 10 // request_frames_ 11 // <---------------------------------------------------------> 12 // r0_ (during first load) 13 // 14 // kKernelSize / 2 kKernelSize / 2 kKernelSize / 2 kKernelSize / 2 15 // <---------------> <---------------> <---------------> <---------------> 16 // r1_ r2_ r3_ r4_ 17 // 18 // block_size_ == r4_ - r2_ 19 // <---------------------------------------> 20 // 21 // request_frames_ 22 // <------------------ ... -----------------> 23 // r0_ (during second load) 24 // 25 // On the second request r0_ slides to the right by kKernelSize / 2 and r3_, r4_ 26 // and block_size_ are reinitialized via step (3) in the algorithm below. 27 // 28 // These new regions remain constant until a Flush() occurs. While complicated, 29 // this allows us to reduce jitter by always requesting the same amount from the 30 // provided callback. 31 // 32 // The algorithm: 33 // 34 // 1) Allocate input_buffer of size: request_frames_ + kKernelSize; this ensures 35 // there's enough room to read request_frames_ from the callback into region 36 // r0_ (which will move between the first and subsequent passes). 37 // 38 // 2) Let r1_, r2_ each represent half the kernel centered around r0_: 39 // 40 // r0_ = input_buffer_ + kKernelSize / 2 41 // r1_ = input_buffer_ 42 // r2_ = r0_ 43 // 44 // r0_ is always request_frames_ in size. r1_, r2_ are kKernelSize / 2 in 45 // size. r1_ must be zero initialized to avoid convolution with garbage (see 46 // step (5) for why). 47 // 48 // 3) Let r3_, r4_ each represent half the kernel right aligned with the end of 49 // r0_ and choose block_size_ as the distance in frames between r4_ and r2_: 50 // 51 // r3_ = r0_ + request_frames_ - kKernelSize 52 // r4_ = r0_ + request_frames_ - kKernelSize / 2 53 // block_size_ = r4_ - r2_ = request_frames_ - kKernelSize / 2 54 // 55 // 4) Consume request_frames_ frames into r0_. 56 // 57 // 5) Position kernel centered at start of r2_ and generate output frames until 58 // the kernel is centered at the start of r4_ or we've finished generating 59 // all the output frames. 60 // 61 // 6) Wrap left over data from the r3_ to r1_ and r4_ to r2_. 62 // 63 // 7) If we're on the second load, in order to avoid overwriting the frames we 64 // just wrapped from r4_ we need to slide r0_ to the right by the size of 65 // r4_, which is kKernelSize / 2: 66 // 67 // r0_ = r0_ + kKernelSize / 2 = input_buffer_ + kKernelSize 68 // 69 // r3_, r4_, and block_size_ then need to be reinitialized, so goto (3). 70 // 71 // 8) Else, if we're not on the second load, goto (4). 72 // 73 // Note: we're glossing over how the sub-sample handling works with 74 // |virtual_source_idx_|, etc. 75 76 // MSVC++ requires this to be set before any other includes to get M_PI. 77 #define _USE_MATH_DEFINES 78 79 #include "media/base/sinc_resampler.h" 80 81 #include <cmath> 82 #include <limits> 83 84 #include "base/cpu.h" 85 #include "base/logging.h" 86 87 #if defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON) 88 #include <arm_neon.h> 89 #endif 90 91 namespace media { 92 93 static double SincScaleFactor(double io_ratio) { 94 // |sinc_scale_factor| is basically the normalized cutoff frequency of the 95 // low-pass filter. 96 double sinc_scale_factor = io_ratio > 1.0 ? 1.0 / io_ratio : 1.0; 97 98 // The sinc function is an idealized brick-wall filter, but since we're 99 // windowing it the transition from pass to stop does not happen right away. 100 // So we should adjust the low pass filter cutoff slightly downward to avoid 101 // some aliasing at the very high-end. 102 // TODO(crogers): this value is empirical and to be more exact should vary 103 // depending on kKernelSize. 104 sinc_scale_factor *= 0.9; 105 106 return sinc_scale_factor; 107 } 108 109 // If we know the minimum architecture at compile time, avoid CPU detection. 110 // Force NaCl code to use C routines since (at present) nothing there uses these 111 // methods and plumbing the -msse built library is non-trivial. 112 #if defined(ARCH_CPU_X86_FAMILY) && !defined(OS_NACL) 113 #if defined(__SSE__) 114 #define CONVOLVE_FUNC Convolve_SSE 115 void SincResampler::InitializeCPUSpecificFeatures() {} 116 #else 117 // X86 CPU detection required. Functions will be set by 118 // InitializeCPUSpecificFeatures(). 119 // TODO(dalecurtis): Once Chrome moves to an SSE baseline this can be removed. 120 #define CONVOLVE_FUNC g_convolve_proc_ 121 122 typedef float (*ConvolveProc)(const float*, const float*, const float*, double); 123 static ConvolveProc g_convolve_proc_ = NULL; 124 125 void SincResampler::InitializeCPUSpecificFeatures() { 126 CHECK(!g_convolve_proc_); 127 g_convolve_proc_ = base::CPU().has_sse() ? Convolve_SSE : Convolve_C; 128 } 129 #endif 130 #elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON) 131 #define CONVOLVE_FUNC Convolve_NEON 132 void SincResampler::InitializeCPUSpecificFeatures() {} 133 #else 134 // Unknown architecture. 135 #define CONVOLVE_FUNC Convolve_C 136 void SincResampler::InitializeCPUSpecificFeatures() {} 137 #endif 138 139 SincResampler::SincResampler(double io_sample_rate_ratio, 140 int request_frames, 141 const ReadCB& read_cb) 142 : io_sample_rate_ratio_(io_sample_rate_ratio), 143 read_cb_(read_cb), 144 request_frames_(request_frames), 145 input_buffer_size_(request_frames_ + kKernelSize), 146 // Create input buffers with a 16-byte alignment for SSE optimizations. 147 kernel_storage_(static_cast<float*>( 148 base::AlignedAlloc(sizeof(float) * kKernelStorageSize, 16))), 149 kernel_pre_sinc_storage_(static_cast<float*>( 150 base::AlignedAlloc(sizeof(float) * kKernelStorageSize, 16))), 151 kernel_window_storage_(static_cast<float*>( 152 base::AlignedAlloc(sizeof(float) * kKernelStorageSize, 16))), 153 input_buffer_(static_cast<float*>( 154 base::AlignedAlloc(sizeof(float) * input_buffer_size_, 16))), 155 r1_(input_buffer_.get()), 156 r2_(input_buffer_.get() + kKernelSize / 2), 157 currently_resampling_(0) { 158 CHECK_GT(request_frames_, 0); 159 Flush(); 160 CHECK_GT(block_size_, kKernelSize) 161 << "block_size must be greater than kKernelSize!"; 162 163 memset(kernel_storage_.get(), 0, 164 sizeof(*kernel_storage_.get()) * kKernelStorageSize); 165 memset(kernel_pre_sinc_storage_.get(), 0, 166 sizeof(*kernel_pre_sinc_storage_.get()) * kKernelStorageSize); 167 memset(kernel_window_storage_.get(), 0, 168 sizeof(*kernel_window_storage_.get()) * kKernelStorageSize); 169 170 InitializeKernel(); 171 } 172 173 SincResampler::~SincResampler() { 174 // TODO(dalecurtis): Remove debugging for http://crbug.com/295278 175 CHECK(base::AtomicRefCountIsZero(¤tly_resampling_)); 176 } 177 178 void SincResampler::UpdateRegions(bool second_load) { 179 // Setup various region pointers in the buffer (see diagram above). If we're 180 // on the second load we need to slide r0_ to the right by kKernelSize / 2. 181 r0_ = input_buffer_.get() + (second_load ? kKernelSize : kKernelSize / 2); 182 r3_ = r0_ + request_frames_ - kKernelSize; 183 r4_ = r0_ + request_frames_ - kKernelSize / 2; 184 block_size_ = r4_ - r2_; 185 186 // r1_ at the beginning of the buffer. 187 CHECK_EQ(r1_, input_buffer_.get()); 188 // r1_ left of r2_, r4_ left of r3_ and size correct. 189 CHECK_EQ(r2_ - r1_, r4_ - r3_); 190 // r2_ left of r3. 191 CHECK_LT(r2_, r3_); 192 } 193 194 void SincResampler::InitializeKernel() { 195 // Blackman window parameters. 196 static const double kAlpha = 0.16; 197 static const double kA0 = 0.5 * (1.0 - kAlpha); 198 static const double kA1 = 0.5; 199 static const double kA2 = 0.5 * kAlpha; 200 201 // Generates a set of windowed sinc() kernels. 202 // We generate a range of sub-sample offsets from 0.0 to 1.0. 203 const double sinc_scale_factor = SincScaleFactor(io_sample_rate_ratio_); 204 for (int offset_idx = 0; offset_idx <= kKernelOffsetCount; ++offset_idx) { 205 const float subsample_offset = 206 static_cast<float>(offset_idx) / kKernelOffsetCount; 207 208 for (int i = 0; i < kKernelSize; ++i) { 209 const int idx = i + offset_idx * kKernelSize; 210 const float pre_sinc = M_PI * (i - kKernelSize / 2 - subsample_offset); 211 kernel_pre_sinc_storage_[idx] = pre_sinc; 212 213 // Compute Blackman window, matching the offset of the sinc(). 214 const float x = (i - subsample_offset) / kKernelSize; 215 const float window = kA0 - kA1 * cos(2.0 * M_PI * x) + kA2 216 * cos(4.0 * M_PI * x); 217 kernel_window_storage_[idx] = window; 218 219 // Compute the sinc with offset, then window the sinc() function and store 220 // at the correct offset. 221 if (pre_sinc == 0) { 222 kernel_storage_[idx] = sinc_scale_factor * window; 223 } else { 224 kernel_storage_[idx] = 225 window * sin(sinc_scale_factor * pre_sinc) / pre_sinc; 226 } 227 } 228 } 229 } 230 231 void SincResampler::SetRatio(double io_sample_rate_ratio) { 232 if (fabs(io_sample_rate_ratio_ - io_sample_rate_ratio) < 233 std::numeric_limits<double>::epsilon()) { 234 return; 235 } 236 237 io_sample_rate_ratio_ = io_sample_rate_ratio; 238 239 // Optimize reinitialization by reusing values which are independent of 240 // |sinc_scale_factor|. Provides a 3x speedup. 241 const double sinc_scale_factor = SincScaleFactor(io_sample_rate_ratio_); 242 for (int offset_idx = 0; offset_idx <= kKernelOffsetCount; ++offset_idx) { 243 for (int i = 0; i < kKernelSize; ++i) { 244 const int idx = i + offset_idx * kKernelSize; 245 const float window = kernel_window_storage_[idx]; 246 const float pre_sinc = kernel_pre_sinc_storage_[idx]; 247 248 if (pre_sinc == 0) { 249 kernel_storage_[idx] = sinc_scale_factor * window; 250 } else { 251 kernel_storage_[idx] = 252 window * sin(sinc_scale_factor * pre_sinc) / pre_sinc; 253 } 254 } 255 } 256 } 257 258 void SincResampler::Resample(int frames, float* destination) { 259 base::AtomicRefCountInc(¤tly_resampling_); 260 261 int remaining_frames = frames; 262 263 // Step (1) -- Prime the input buffer at the start of the input stream. 264 if (!buffer_primed_ && remaining_frames) { 265 read_cb_.Run(request_frames_, r0_); 266 buffer_primed_ = true; 267 } 268 269 // Step (2) -- Resample! const what we can outside of the loop for speed. It 270 // actually has an impact on ARM performance. See inner loop comment below. 271 const double current_io_ratio = io_sample_rate_ratio_; 272 const float* const kernel_ptr = kernel_storage_.get(); 273 while (remaining_frames) { 274 // |i| may be negative if the last Resample() call ended on an iteration 275 // that put |virtual_source_idx_| over the limit. 276 // 277 // Note: The loop construct here can severely impact performance on ARM 278 // or when built with clang. See https://codereview.chromium.org/18566009/ 279 for (int i = ceil((block_size_ - virtual_source_idx_) / current_io_ratio); 280 i > 0; --i) { 281 DCHECK_LT(virtual_source_idx_, block_size_); 282 283 // |virtual_source_idx_| lies in between two kernel offsets so figure out 284 // what they are. 285 const int source_idx = virtual_source_idx_; 286 const double subsample_remainder = virtual_source_idx_ - source_idx; 287 288 const double virtual_offset_idx = 289 subsample_remainder * kKernelOffsetCount; 290 const int offset_idx = virtual_offset_idx; 291 292 // We'll compute "convolutions" for the two kernels which straddle 293 // |virtual_source_idx_|. 294 const float* const k1 = kernel_ptr + offset_idx * kKernelSize; 295 const float* const k2 = k1 + kKernelSize; 296 297 // Ensure |k1|, |k2| are 16-byte aligned for SIMD usage. Should always be 298 // true so long as kKernelSize is a multiple of 16. 299 DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(k1) & 0x0F); 300 DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(k2) & 0x0F); 301 302 // Initialize input pointer based on quantized |virtual_source_idx_|. 303 const float* const input_ptr = r1_ + source_idx; 304 305 // Figure out how much to weight each kernel's "convolution". 306 const double kernel_interpolation_factor = 307 virtual_offset_idx - offset_idx; 308 *destination++ = CONVOLVE_FUNC( 309 input_ptr, k1, k2, kernel_interpolation_factor); 310 311 // Advance the virtual index. 312 virtual_source_idx_ += current_io_ratio; 313 314 if (!--remaining_frames) { 315 CHECK(!base::AtomicRefCountDec(¤tly_resampling_)); 316 return; 317 } 318 } 319 320 // Wrap back around to the start. 321 virtual_source_idx_ -= block_size_; 322 323 // Step (3) -- Copy r3_, r4_ to r1_, r2_. 324 // This wraps the last input frames back to the start of the buffer. 325 memcpy(r1_, r3_, sizeof(*input_buffer_.get()) * kKernelSize); 326 327 // Step (4) -- Reinitialize regions if necessary. 328 if (r0_ == r2_) 329 UpdateRegions(true); 330 331 // Step (5) -- Refresh the buffer with more input. 332 read_cb_.Run(request_frames_, r0_); 333 } 334 335 CHECK(!base::AtomicRefCountDec(¤tly_resampling_)); 336 } 337 338 #undef CONVOLVE_FUNC 339 340 int SincResampler::ChunkSize() const { 341 return block_size_ / io_sample_rate_ratio_; 342 } 343 344 void SincResampler::Flush() { 345 CHECK(base::AtomicRefCountIsZero(¤tly_resampling_)); 346 virtual_source_idx_ = 0; 347 buffer_primed_ = false; 348 memset(input_buffer_.get(), 0, 349 sizeof(*input_buffer_.get()) * input_buffer_size_); 350 UpdateRegions(false); 351 } 352 353 float SincResampler::Convolve_C(const float* input_ptr, const float* k1, 354 const float* k2, 355 double kernel_interpolation_factor) { 356 float sum1 = 0; 357 float sum2 = 0; 358 359 // Generate a single output sample. Unrolling this loop hurt performance in 360 // local testing. 361 int n = kKernelSize; 362 while (n--) { 363 sum1 += *input_ptr * *k1++; 364 sum2 += *input_ptr++ * *k2++; 365 } 366 367 // Linearly interpolate the two "convolutions". 368 return (1.0 - kernel_interpolation_factor) * sum1 369 + kernel_interpolation_factor * sum2; 370 } 371 372 #if defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON) 373 float SincResampler::Convolve_NEON(const float* input_ptr, const float* k1, 374 const float* k2, 375 double kernel_interpolation_factor) { 376 float32x4_t m_input; 377 float32x4_t m_sums1 = vmovq_n_f32(0); 378 float32x4_t m_sums2 = vmovq_n_f32(0); 379 380 const float* upper = input_ptr + kKernelSize; 381 for (; input_ptr < upper; ) { 382 m_input = vld1q_f32(input_ptr); 383 input_ptr += 4; 384 m_sums1 = vmlaq_f32(m_sums1, m_input, vld1q_f32(k1)); 385 k1 += 4; 386 m_sums2 = vmlaq_f32(m_sums2, m_input, vld1q_f32(k2)); 387 k2 += 4; 388 } 389 390 // Linearly interpolate the two "convolutions". 391 m_sums1 = vmlaq_f32( 392 vmulq_f32(m_sums1, vmovq_n_f32(1.0 - kernel_interpolation_factor)), 393 m_sums2, vmovq_n_f32(kernel_interpolation_factor)); 394 395 // Sum components together. 396 float32x2_t m_half = vadd_f32(vget_high_f32(m_sums1), vget_low_f32(m_sums1)); 397 return vget_lane_f32(vpadd_f32(m_half, m_half), 0); 398 } 399 #endif 400 401 } // namespace media 402