Home | History | Annotate | Download | only in base
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 //
      5 // Initial input buffer layout, dividing into regions r0_ to r4_ (note: r0_, r3_
      6 // and r4_ will move after the first load):
      7 //
      8 // |----------------|-----------------------------------------|----------------|
      9 //
     10 //                                        request_frames_
     11 //                   <--------------------------------------------------------->
     12 //                                    r0_ (during first load)
     13 //
     14 //  kKernelSize / 2   kKernelSize / 2         kKernelSize / 2   kKernelSize / 2
     15 // <---------------> <--------------->       <---------------> <--------------->
     16 //        r1_               r2_                     r3_               r4_
     17 //
     18 //                             block_size_ == r4_ - r2_
     19 //                   <--------------------------------------->
     20 //
     21 //                                                  request_frames_
     22 //                                    <------------------ ... ----------------->
     23 //                                               r0_ (during second load)
     24 //
     25 // On the second request r0_ slides to the right by kKernelSize / 2 and r3_, r4_
     26 // and block_size_ are reinitialized via step (3) in the algorithm below.
     27 //
     28 // These new regions remain constant until a Flush() occurs.  While complicated,
     29 // this allows us to reduce jitter by always requesting the same amount from the
     30 // provided callback.
     31 //
     32 // The algorithm:
     33 //
     34 // 1) Allocate input_buffer of size: request_frames_ + kKernelSize; this ensures
     35 //    there's enough room to read request_frames_ from the callback into region
     36 //    r0_ (which will move between the first and subsequent passes).
     37 //
     38 // 2) Let r1_, r2_ each represent half the kernel centered around r0_:
     39 //
     40 //        r0_ = input_buffer_ + kKernelSize / 2
     41 //        r1_ = input_buffer_
     42 //        r2_ = r0_
     43 //
     44 //    r0_ is always request_frames_ in size.  r1_, r2_ are kKernelSize / 2 in
     45 //    size.  r1_ must be zero initialized to avoid convolution with garbage (see
     46 //    step (5) for why).
     47 //
     48 // 3) Let r3_, r4_ each represent half the kernel right aligned with the end of
     49 //    r0_ and choose block_size_ as the distance in frames between r4_ and r2_:
     50 //
     51 //        r3_ = r0_ + request_frames_ - kKernelSize
     52 //        r4_ = r0_ + request_frames_ - kKernelSize / 2
     53 //        block_size_ = r4_ - r2_ = request_frames_ - kKernelSize / 2
     54 //
     55 // 4) Consume request_frames_ frames into r0_.
     56 //
     57 // 5) Position kernel centered at start of r2_ and generate output frames until
     58 //    the kernel is centered at the start of r4_ or we've finished generating
     59 //    all the output frames.
     60 //
     61 // 6) Wrap left over data from the r3_ to r1_ and r4_ to r2_.
     62 //
     63 // 7) If we're on the second load, in order to avoid overwriting the frames we
     64 //    just wrapped from r4_ we need to slide r0_ to the right by the size of
     65 //    r4_, which is kKernelSize / 2:
     66 //
     67 //        r0_ = r0_ + kKernelSize / 2 = input_buffer_ + kKernelSize
     68 //
     69 //    r3_, r4_, and block_size_ then need to be reinitialized, so goto (3).
     70 //
     71 // 8) Else, if we're not on the second load, goto (4).
     72 //
     73 // Note: we're glossing over how the sub-sample handling works with
     74 // |virtual_source_idx_|, etc.
     75 
     76 // MSVC++ requires this to be set before any other includes to get M_PI.
     77 #define _USE_MATH_DEFINES
     78 
     79 #include "media/base/sinc_resampler.h"
     80 
     81 #include <cmath>
     82 #include <limits>
     83 
     84 #include "base/cpu.h"
     85 #include "base/logging.h"
     86 
     87 #if defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
     88 #include <arm_neon.h>
     89 #endif
     90 
     91 namespace media {
     92 
     93 static double SincScaleFactor(double io_ratio) {
     94   // |sinc_scale_factor| is basically the normalized cutoff frequency of the
     95   // low-pass filter.
     96   double sinc_scale_factor = io_ratio > 1.0 ? 1.0 / io_ratio : 1.0;
     97 
     98   // The sinc function is an idealized brick-wall filter, but since we're
     99   // windowing it the transition from pass to stop does not happen right away.
    100   // So we should adjust the low pass filter cutoff slightly downward to avoid
    101   // some aliasing at the very high-end.
    102   // TODO(crogers): this value is empirical and to be more exact should vary
    103   // depending on kKernelSize.
    104   sinc_scale_factor *= 0.9;
    105 
    106   return sinc_scale_factor;
    107 }
    108 
    109 // If we know the minimum architecture at compile time, avoid CPU detection.
    110 // Force NaCl code to use C routines since (at present) nothing there uses these
    111 // methods and plumbing the -msse built library is non-trivial.
    112 #if defined(ARCH_CPU_X86_FAMILY) && !defined(OS_NACL)
    113 #if defined(__SSE__)
    114 #define CONVOLVE_FUNC Convolve_SSE
    115 void SincResampler::InitializeCPUSpecificFeatures() {}
    116 #else
    117 // X86 CPU detection required.  Functions will be set by
    118 // InitializeCPUSpecificFeatures().
    119 // TODO(dalecurtis): Once Chrome moves to an SSE baseline this can be removed.
    120 #define CONVOLVE_FUNC g_convolve_proc_
    121 
    122 typedef float (*ConvolveProc)(const float*, const float*, const float*, double);
    123 static ConvolveProc g_convolve_proc_ = NULL;
    124 
    125 void SincResampler::InitializeCPUSpecificFeatures() {
    126   CHECK(!g_convolve_proc_);
    127   g_convolve_proc_ = base::CPU().has_sse() ? Convolve_SSE : Convolve_C;
    128 }
    129 #endif
    130 #elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
    131 #define CONVOLVE_FUNC Convolve_NEON
    132 void SincResampler::InitializeCPUSpecificFeatures() {}
    133 #else
    134 // Unknown architecture.
    135 #define CONVOLVE_FUNC Convolve_C
    136 void SincResampler::InitializeCPUSpecificFeatures() {}
    137 #endif
    138 
    139 SincResampler::SincResampler(double io_sample_rate_ratio,
    140                              int request_frames,
    141                              const ReadCB& read_cb)
    142     : io_sample_rate_ratio_(io_sample_rate_ratio),
    143       read_cb_(read_cb),
    144       request_frames_(request_frames),
    145       input_buffer_size_(request_frames_ + kKernelSize),
    146       // Create input buffers with a 16-byte alignment for SSE optimizations.
    147       kernel_storage_(static_cast<float*>(
    148           base::AlignedAlloc(sizeof(float) * kKernelStorageSize, 16))),
    149       kernel_pre_sinc_storage_(static_cast<float*>(
    150           base::AlignedAlloc(sizeof(float) * kKernelStorageSize, 16))),
    151       kernel_window_storage_(static_cast<float*>(
    152           base::AlignedAlloc(sizeof(float) * kKernelStorageSize, 16))),
    153       input_buffer_(static_cast<float*>(
    154           base::AlignedAlloc(sizeof(float) * input_buffer_size_, 16))),
    155       r1_(input_buffer_.get()),
    156       r2_(input_buffer_.get() + kKernelSize / 2),
    157       currently_resampling_(0) {
    158   CHECK_GT(request_frames_, 0);
    159   Flush();
    160   CHECK_GT(block_size_, kKernelSize)
    161       << "block_size must be greater than kKernelSize!";
    162 
    163   memset(kernel_storage_.get(), 0,
    164          sizeof(*kernel_storage_.get()) * kKernelStorageSize);
    165   memset(kernel_pre_sinc_storage_.get(), 0,
    166          sizeof(*kernel_pre_sinc_storage_.get()) * kKernelStorageSize);
    167   memset(kernel_window_storage_.get(), 0,
    168          sizeof(*kernel_window_storage_.get()) * kKernelStorageSize);
    169 
    170   InitializeKernel();
    171 }
    172 
    173 SincResampler::~SincResampler() {
    174   // TODO(dalecurtis): Remove debugging for http://crbug.com/295278
    175   CHECK(base::AtomicRefCountIsZero(&currently_resampling_));
    176 }
    177 
    178 void SincResampler::UpdateRegions(bool second_load) {
    179   // Setup various region pointers in the buffer (see diagram above).  If we're
    180   // on the second load we need to slide r0_ to the right by kKernelSize / 2.
    181   r0_ = input_buffer_.get() + (second_load ? kKernelSize : kKernelSize / 2);
    182   r3_ = r0_ + request_frames_ - kKernelSize;
    183   r4_ = r0_ + request_frames_ - kKernelSize / 2;
    184   block_size_ = r4_ - r2_;
    185 
    186   // r1_ at the beginning of the buffer.
    187   CHECK_EQ(r1_, input_buffer_.get());
    188   // r1_ left of r2_, r4_ left of r3_ and size correct.
    189   CHECK_EQ(r2_ - r1_, r4_ - r3_);
    190   // r2_ left of r3.
    191   CHECK_LT(r2_, r3_);
    192 }
    193 
    194 void SincResampler::InitializeKernel() {
    195   // Blackman window parameters.
    196   static const double kAlpha = 0.16;
    197   static const double kA0 = 0.5 * (1.0 - kAlpha);
    198   static const double kA1 = 0.5;
    199   static const double kA2 = 0.5 * kAlpha;
    200 
    201   // Generates a set of windowed sinc() kernels.
    202   // We generate a range of sub-sample offsets from 0.0 to 1.0.
    203   const double sinc_scale_factor = SincScaleFactor(io_sample_rate_ratio_);
    204   for (int offset_idx = 0; offset_idx <= kKernelOffsetCount; ++offset_idx) {
    205     const float subsample_offset =
    206         static_cast<float>(offset_idx) / kKernelOffsetCount;
    207 
    208     for (int i = 0; i < kKernelSize; ++i) {
    209       const int idx = i + offset_idx * kKernelSize;
    210       const float pre_sinc = M_PI * (i - kKernelSize / 2 - subsample_offset);
    211       kernel_pre_sinc_storage_[idx] = pre_sinc;
    212 
    213       // Compute Blackman window, matching the offset of the sinc().
    214       const float x = (i - subsample_offset) / kKernelSize;
    215       const float window = kA0 - kA1 * cos(2.0 * M_PI * x) + kA2
    216           * cos(4.0 * M_PI * x);
    217       kernel_window_storage_[idx] = window;
    218 
    219       // Compute the sinc with offset, then window the sinc() function and store
    220       // at the correct offset.
    221       if (pre_sinc == 0) {
    222         kernel_storage_[idx] = sinc_scale_factor * window;
    223       } else {
    224         kernel_storage_[idx] =
    225             window * sin(sinc_scale_factor * pre_sinc) / pre_sinc;
    226       }
    227     }
    228   }
    229 }
    230 
    231 void SincResampler::SetRatio(double io_sample_rate_ratio) {
    232   if (fabs(io_sample_rate_ratio_ - io_sample_rate_ratio) <
    233       std::numeric_limits<double>::epsilon()) {
    234     return;
    235   }
    236 
    237   io_sample_rate_ratio_ = io_sample_rate_ratio;
    238 
    239   // Optimize reinitialization by reusing values which are independent of
    240   // |sinc_scale_factor|.  Provides a 3x speedup.
    241   const double sinc_scale_factor = SincScaleFactor(io_sample_rate_ratio_);
    242   for (int offset_idx = 0; offset_idx <= kKernelOffsetCount; ++offset_idx) {
    243     for (int i = 0; i < kKernelSize; ++i) {
    244       const int idx = i + offset_idx * kKernelSize;
    245       const float window = kernel_window_storage_[idx];
    246       const float pre_sinc = kernel_pre_sinc_storage_[idx];
    247 
    248       if (pre_sinc == 0) {
    249         kernel_storage_[idx] = sinc_scale_factor * window;
    250       } else {
    251         kernel_storage_[idx] =
    252             window * sin(sinc_scale_factor * pre_sinc) / pre_sinc;
    253       }
    254     }
    255   }
    256 }
    257 
    258 void SincResampler::Resample(int frames, float* destination) {
    259   base::AtomicRefCountInc(&currently_resampling_);
    260 
    261   int remaining_frames = frames;
    262 
    263   // Step (1) -- Prime the input buffer at the start of the input stream.
    264   if (!buffer_primed_ && remaining_frames) {
    265     read_cb_.Run(request_frames_, r0_);
    266     buffer_primed_ = true;
    267   }
    268 
    269   // Step (2) -- Resample!  const what we can outside of the loop for speed.  It
    270   // actually has an impact on ARM performance.  See inner loop comment below.
    271   const double current_io_ratio = io_sample_rate_ratio_;
    272   const float* const kernel_ptr = kernel_storage_.get();
    273   while (remaining_frames) {
    274     // |i| may be negative if the last Resample() call ended on an iteration
    275     // that put |virtual_source_idx_| over the limit.
    276     //
    277     // Note: The loop construct here can severely impact performance on ARM
    278     // or when built with clang.  See https://codereview.chromium.org/18566009/
    279     for (int i = ceil((block_size_ - virtual_source_idx_) / current_io_ratio);
    280          i > 0; --i) {
    281       DCHECK_LT(virtual_source_idx_, block_size_);
    282 
    283       // |virtual_source_idx_| lies in between two kernel offsets so figure out
    284       // what they are.
    285       const int source_idx = virtual_source_idx_;
    286       const double subsample_remainder = virtual_source_idx_ - source_idx;
    287 
    288       const double virtual_offset_idx =
    289           subsample_remainder * kKernelOffsetCount;
    290       const int offset_idx = virtual_offset_idx;
    291 
    292       // We'll compute "convolutions" for the two kernels which straddle
    293       // |virtual_source_idx_|.
    294       const float* const k1 = kernel_ptr + offset_idx * kKernelSize;
    295       const float* const k2 = k1 + kKernelSize;
    296 
    297       // Ensure |k1|, |k2| are 16-byte aligned for SIMD usage.  Should always be
    298       // true so long as kKernelSize is a multiple of 16.
    299       DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(k1) & 0x0F);
    300       DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(k2) & 0x0F);
    301 
    302       // Initialize input pointer based on quantized |virtual_source_idx_|.
    303       const float* const input_ptr = r1_ + source_idx;
    304 
    305       // Figure out how much to weight each kernel's "convolution".
    306       const double kernel_interpolation_factor =
    307           virtual_offset_idx - offset_idx;
    308       *destination++ = CONVOLVE_FUNC(
    309           input_ptr, k1, k2, kernel_interpolation_factor);
    310 
    311       // Advance the virtual index.
    312       virtual_source_idx_ += current_io_ratio;
    313 
    314       if (!--remaining_frames) {
    315         CHECK(!base::AtomicRefCountDec(&currently_resampling_));
    316         return;
    317       }
    318     }
    319 
    320     // Wrap back around to the start.
    321     virtual_source_idx_ -= block_size_;
    322 
    323     // Step (3) -- Copy r3_, r4_ to r1_, r2_.
    324     // This wraps the last input frames back to the start of the buffer.
    325     memcpy(r1_, r3_, sizeof(*input_buffer_.get()) * kKernelSize);
    326 
    327     // Step (4) -- Reinitialize regions if necessary.
    328     if (r0_ == r2_)
    329       UpdateRegions(true);
    330 
    331     // Step (5) -- Refresh the buffer with more input.
    332     read_cb_.Run(request_frames_, r0_);
    333   }
    334 
    335   CHECK(!base::AtomicRefCountDec(&currently_resampling_));
    336 }
    337 
    338 #undef CONVOLVE_FUNC
    339 
    340 int SincResampler::ChunkSize() const {
    341   return block_size_ / io_sample_rate_ratio_;
    342 }
    343 
    344 void SincResampler::Flush() {
    345   CHECK(base::AtomicRefCountIsZero(&currently_resampling_));
    346   virtual_source_idx_ = 0;
    347   buffer_primed_ = false;
    348   memset(input_buffer_.get(), 0,
    349          sizeof(*input_buffer_.get()) * input_buffer_size_);
    350   UpdateRegions(false);
    351 }
    352 
    353 float SincResampler::Convolve_C(const float* input_ptr, const float* k1,
    354                                 const float* k2,
    355                                 double kernel_interpolation_factor) {
    356   float sum1 = 0;
    357   float sum2 = 0;
    358 
    359   // Generate a single output sample.  Unrolling this loop hurt performance in
    360   // local testing.
    361   int n = kKernelSize;
    362   while (n--) {
    363     sum1 += *input_ptr * *k1++;
    364     sum2 += *input_ptr++ * *k2++;
    365   }
    366 
    367   // Linearly interpolate the two "convolutions".
    368   return (1.0 - kernel_interpolation_factor) * sum1
    369       + kernel_interpolation_factor * sum2;
    370 }
    371 
    372 #if defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
    373 float SincResampler::Convolve_NEON(const float* input_ptr, const float* k1,
    374                                    const float* k2,
    375                                    double kernel_interpolation_factor) {
    376   float32x4_t m_input;
    377   float32x4_t m_sums1 = vmovq_n_f32(0);
    378   float32x4_t m_sums2 = vmovq_n_f32(0);
    379 
    380   const float* upper = input_ptr + kKernelSize;
    381   for (; input_ptr < upper; ) {
    382     m_input = vld1q_f32(input_ptr);
    383     input_ptr += 4;
    384     m_sums1 = vmlaq_f32(m_sums1, m_input, vld1q_f32(k1));
    385     k1 += 4;
    386     m_sums2 = vmlaq_f32(m_sums2, m_input, vld1q_f32(k2));
    387     k2 += 4;
    388   }
    389 
    390   // Linearly interpolate the two "convolutions".
    391   m_sums1 = vmlaq_f32(
    392       vmulq_f32(m_sums1, vmovq_n_f32(1.0 - kernel_interpolation_factor)),
    393       m_sums2, vmovq_n_f32(kernel_interpolation_factor));
    394 
    395   // Sum components together.
    396   float32x2_t m_half = vadd_f32(vget_high_f32(m_sums1), vget_low_f32(m_sums1));
    397   return vget_lane_f32(vpadd_f32(m_half, m_half), 0);
    398 }
    399 #endif
    400 
    401 }  // namespace media
    402