1 // Copyright 2013 the V8 project authors. All rights reserved. 2 // Redistribution and use in source and binary forms, with or without 3 // modification, are permitted provided that the following conditions are 4 // met: 5 // 6 // * Redistributions of source code must retain the above copyright 7 // notice, this list of conditions and the following disclaimer. 8 // * Redistributions in binary form must reproduce the above 9 // copyright notice, this list of conditions and the following 10 // disclaimer in the documentation and/or other materials provided 11 // with the distribution. 12 // * Neither the name of Google Inc. nor the names of its 13 // contributors may be used to endorse or promote products derived 14 // from this software without specific prior written permission. 15 // 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28 #ifndef V8_HYDROGEN_UNIQUE_H_ 29 #define V8_HYDROGEN_UNIQUE_H_ 30 31 #include "handles.h" 32 #include "objects.h" 33 #include "utils.h" 34 #include "zone.h" 35 36 namespace v8 { 37 namespace internal { 38 39 40 template <typename T> 41 class UniqueSet; 42 43 44 // Represents a handle to an object on the heap, but with the additional 45 // ability of checking for equality and hashing without accessing the heap. 46 // 47 // Creating a Unique<T> requires first dereferencing the handle to obtain 48 // the address of the object, which is used as the hashcode and the basis for 49 // comparison. The object can be moved later by the GC, but comparison 50 // and hashing use the old address of the object, without dereferencing it. 51 // 52 // Careful! Comparison of two Uniques is only correct if both were created 53 // in the same "era" of GC or if at least one is a non-movable object. 54 template <typename T> 55 class Unique V8_FINAL { 56 public: 57 // TODO(titzer): make private and introduce a uniqueness scope. 58 explicit Unique(Handle<T> handle) { 59 if (handle.is_null()) { 60 raw_address_ = NULL; 61 } else { 62 // This is a best-effort check to prevent comparing Unique<T>'s created 63 // in different GC eras; we require heap allocation to be disallowed at 64 // creation time. 65 // NOTE: we currently consider maps to be non-movable, so no special 66 // assurance is required for creating a Unique<Map>. 67 // TODO(titzer): other immortable immovable objects are also fine. 68 ASSERT(!AllowHeapAllocation::IsAllowed() || handle->IsMap()); 69 raw_address_ = reinterpret_cast<Address>(*handle); 70 ASSERT_NE(raw_address_, NULL); // Non-null should imply non-zero address. 71 } 72 handle_ = handle; 73 } 74 75 // TODO(titzer): this is a hack to migrate to Unique<T> incrementally. 76 Unique(Address raw_address, Handle<T> handle) 77 : raw_address_(raw_address), handle_(handle) { } 78 79 // Constructor for handling automatic up casting. 80 // Eg. Unique<JSFunction> can be passed when Unique<Object> is expected. 81 template <class S> Unique(Unique<S> uniq) { 82 #ifdef DEBUG 83 T* a = NULL; 84 S* b = NULL; 85 a = b; // Fake assignment to enforce type checks. 86 USE(a); 87 #endif 88 raw_address_ = uniq.raw_address_; 89 handle_ = uniq.handle_; 90 } 91 92 template <typename U> 93 inline bool operator==(const Unique<U>& other) const { 94 ASSERT(IsInitialized() && other.IsInitialized()); 95 return raw_address_ == other.raw_address_; 96 } 97 98 template <typename U> 99 inline bool operator!=(const Unique<U>& other) const { 100 ASSERT(IsInitialized() && other.IsInitialized()); 101 return raw_address_ != other.raw_address_; 102 } 103 104 inline intptr_t Hashcode() const { 105 ASSERT(IsInitialized()); 106 return reinterpret_cast<intptr_t>(raw_address_); 107 } 108 109 inline bool IsNull() const { 110 ASSERT(IsInitialized()); 111 return raw_address_ == NULL; 112 } 113 114 inline bool IsKnownGlobal(void* global) const { 115 ASSERT(IsInitialized()); 116 return raw_address_ == reinterpret_cast<Address>(global); 117 } 118 119 inline Handle<T> handle() const { 120 return handle_; 121 } 122 123 template <class S> static Unique<T> cast(Unique<S> that) { 124 return Unique<T>(that.raw_address_, Handle<T>::cast(that.handle_)); 125 } 126 127 inline bool IsInitialized() const { 128 return raw_address_ != NULL || handle_.is_null(); 129 } 130 131 // TODO(titzer): this is a hack to migrate to Unique<T> incrementally. 132 static Unique<T> CreateUninitialized(Handle<T> handle) { 133 return Unique<T>(reinterpret_cast<Address>(NULL), handle); 134 } 135 136 static Unique<T> CreateImmovable(Handle<T> handle) { 137 return Unique<T>(reinterpret_cast<Address>(*handle), handle); 138 } 139 140 friend class UniqueSet<T>; // Uses internal details for speed. 141 template <class U> 142 friend class Unique; // For comparing raw_address values. 143 144 private: 145 Address raw_address_; 146 Handle<T> handle_; 147 }; 148 149 150 template <typename T> 151 class UniqueSet V8_FINAL : public ZoneObject { 152 public: 153 // Constructor. A new set will be empty. 154 UniqueSet() : size_(0), capacity_(0), array_(NULL) { } 155 156 // Add a new element to this unique set. Mutates this set. O(|this|). 157 void Add(Unique<T> uniq, Zone* zone) { 158 ASSERT(uniq.IsInitialized()); 159 // Keep the set sorted by the {raw_address} of the unique elements. 160 for (int i = 0; i < size_; i++) { 161 if (array_[i] == uniq) return; 162 if (array_[i].raw_address_ > uniq.raw_address_) { 163 // Insert in the middle. 164 Grow(size_ + 1, zone); 165 for (int j = size_ - 1; j >= i; j--) array_[j + 1] = array_[j]; 166 array_[i] = uniq; 167 size_++; 168 return; 169 } 170 } 171 // Append the element to the the end. 172 Grow(size_ + 1, zone); 173 array_[size_++] = uniq; 174 } 175 176 // Remove an element from this set. Mutates this set. O(|this|) 177 void Remove(Unique<T> uniq) { 178 for (int i = 0; i < size_; i++) { 179 if (array_[i] == uniq) { 180 while (++i < size_) array_[i - 1] = array_[i]; 181 size_--; 182 return; 183 } 184 } 185 } 186 187 // Compare this set against another set. O(|this|). 188 bool Equals(UniqueSet<T>* that) const { 189 if (that->size_ != this->size_) return false; 190 for (int i = 0; i < this->size_; i++) { 191 if (this->array_[i] != that->array_[i]) return false; 192 } 193 return true; 194 } 195 196 // Check whether this set contains the given element. O(|this|) 197 // TODO(titzer): use binary search for large sets to make this O(log|this|) 198 template <typename U> 199 bool Contains(Unique<U> elem) const { 200 for (int i = 0; i < size_; i++) { 201 if (this->array_[i] == elem) return true; 202 } 203 return false; 204 } 205 206 // Check if this set is a subset of the given set. O(|this| + |that|). 207 bool IsSubset(UniqueSet<T>* that) const { 208 if (that->size_ < this->size_) return false; 209 int j = 0; 210 for (int i = 0; i < this->size_; i++) { 211 Unique<T> sought = this->array_[i]; 212 while (true) { 213 if (sought == that->array_[j++]) break; 214 // Fail whenever there are more elements in {this} than {that}. 215 if ((this->size_ - i) > (that->size_ - j)) return false; 216 } 217 } 218 return true; 219 } 220 221 // Returns a new set representing the intersection of this set and the other. 222 // O(|this| + |that|). 223 UniqueSet<T>* Intersect(UniqueSet<T>* that, Zone* zone) const { 224 if (that->size_ == 0 || this->size_ == 0) return new(zone) UniqueSet<T>(); 225 226 UniqueSet<T>* out = new(zone) UniqueSet<T>(); 227 out->Grow(Min(this->size_, that->size_), zone); 228 229 int i = 0, j = 0, k = 0; 230 while (i < this->size_ && j < that->size_) { 231 Unique<T> a = this->array_[i]; 232 Unique<T> b = that->array_[j]; 233 if (a == b) { 234 out->array_[k++] = a; 235 i++; 236 j++; 237 } else if (a.raw_address_ < b.raw_address_) { 238 i++; 239 } else { 240 j++; 241 } 242 } 243 244 out->size_ = k; 245 return out; 246 } 247 248 // Returns a new set representing the union of this set and the other. 249 // O(|this| + |that|). 250 UniqueSet<T>* Union(UniqueSet<T>* that, Zone* zone) const { 251 if (that->size_ == 0) return this->Copy(zone); 252 if (this->size_ == 0) return that->Copy(zone); 253 254 UniqueSet<T>* out = new(zone) UniqueSet<T>(); 255 out->Grow(this->size_ + that->size_, zone); 256 257 int i = 0, j = 0, k = 0; 258 while (i < this->size_ && j < that->size_) { 259 Unique<T> a = this->array_[i]; 260 Unique<T> b = that->array_[j]; 261 if (a == b) { 262 out->array_[k++] = a; 263 i++; 264 j++; 265 } else if (a.raw_address_ < b.raw_address_) { 266 out->array_[k++] = a; 267 i++; 268 } else { 269 out->array_[k++] = b; 270 j++; 271 } 272 } 273 274 while (i < this->size_) out->array_[k++] = this->array_[i++]; 275 while (j < that->size_) out->array_[k++] = that->array_[j++]; 276 277 out->size_ = k; 278 return out; 279 } 280 281 // Makes an exact copy of this set. O(|this| + |that|). 282 UniqueSet<T>* Copy(Zone* zone) const { 283 UniqueSet<T>* copy = new(zone) UniqueSet<T>(); 284 copy->size_ = this->size_; 285 copy->capacity_ = this->size_; 286 copy->array_ = zone->NewArray<Unique<T> >(this->size_); 287 memcpy(copy->array_, this->array_, this->size_ * sizeof(Unique<T>)); 288 return copy; 289 } 290 291 void Clear() { 292 size_ = 0; 293 } 294 295 inline int size() const { 296 return size_; 297 } 298 299 inline Unique<T> at(int index) const { 300 ASSERT(index >= 0 && index < size_); 301 return array_[index]; 302 } 303 304 private: 305 // These sets should be small, since operations are implemented with simple 306 // linear algorithms. Enforce a maximum size. 307 static const int kMaxCapacity = 65535; 308 309 uint16_t size_; 310 uint16_t capacity_; 311 Unique<T>* array_; 312 313 // Grow the size of internal storage to be at least {size} elements. 314 void Grow(int size, Zone* zone) { 315 CHECK(size < kMaxCapacity); // Enforce maximum size. 316 if (capacity_ < size) { 317 int new_capacity = 2 * capacity_ + size; 318 if (new_capacity > kMaxCapacity) new_capacity = kMaxCapacity; 319 Unique<T>* new_array = zone->NewArray<Unique<T> >(new_capacity); 320 if (size_ > 0) { 321 memcpy(new_array, array_, size_ * sizeof(Unique<T>)); 322 } 323 capacity_ = new_capacity; 324 array_ = new_array; 325 } 326 } 327 }; 328 329 330 } } // namespace v8::internal 331 332 #endif // V8_HYDROGEN_UNIQUE_H_ 333