Home | History | Annotate | Download | only in src
      1 /*M///////////////////////////////////////////////////////////////////////////////////////
      2 //
      3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
      4 //
      5 //  By downloading, copying, installing or using the software you agree to this license.
      6 //  If you do not agree to this license, do not download, install,
      7 //  copy or use the software.
      8 //
      9 //
     10 //                        Intel License Agreement
     11 //
     12 // Copyright (C) 2000, Intel Corporation, all rights reserved.
     13 // Third party copyrights are property of their respective owners.
     14 //
     15 // Redistribution and use in source and binary forms, with or without modification,
     16 // are permitted provided that the following conditions are met:
     17 //
     18 //   * Redistribution's of source code must retain the above copyright notice,
     19 //     this list of conditions and the following disclaimer.
     20 //
     21 //   * Redistribution's in binary form must reproduce the above copyright notice,
     22 //     this list of conditions and the following disclaimer in the documentation
     23 //     and/or other materials provided with the distribution.
     24 //
     25 //   * The name of Intel Corporation may not be used to endorse or promote products
     26 //     derived from this software without specific prior written permission.
     27 //
     28 // This software is provided by the copyright holders and contributors "as is" and
     29 // any express or implied warranties, including, but not limited to, the implied
     30 // warranties of merchantability and fitness for a particular purpose are disclaimed.
     31 // In no event shall the Intel Corporation or contributors be liable for any direct,
     32 // indirect, incidental, special, exemplary, or consequential damages
     33 // (including, but not limited to, procurement of substitute goods or services;
     34 // loss of use, data, or profits; or business interruption) however caused
     35 // and on any theory of liability, whether in contract, strict liability,
     36 // or tort (including negligence or otherwise) arising in any way out of
     37 // the use of this software, even if advised of the possibility of such damage.
     38 //
     39 //M*/
     40 
     41 #ifndef __ML_INTERNAL_H__
     42 #define __ML_INTERNAL_H__
     43 
     44 #if _MSC_VER >= 1200
     45 #pragma warning( disable: 4514 4710 4711 4710 )
     46 #endif
     47 
     48 #include "ml.h"
     49 #include "cxmisc.h"
     50 
     51 #include <assert.h>
     52 #include <float.h>
     53 #include <limits.h>
     54 #include <math.h>
     55 #include <stdlib.h>
     56 #include <stdio.h>
     57 #include <string.h>
     58 #include <time.h>
     59 
     60 #ifndef FALSE
     61 #define FALSE 0
     62 #endif
     63 #ifndef TRUE
     64 #define TRUE 1
     65 #endif
     66 
     67 #define ML_IMPL CV_IMPL
     68 
     69 #define CV_MAT_ELEM_FLAG( mat, type, comp, vect, tflag )    \
     70     (( tflag == CV_ROW_SAMPLE )                             \
     71     ? (CV_MAT_ELEM( mat, type, comp, vect ))                \
     72     : (CV_MAT_ELEM( mat, type, vect, comp )))
     73 
     74 /* Convert matrix to vector */
     75 #define ICV_MAT2VEC( mat, vdata, vstep, num )      \
     76     if( MIN( (mat).rows, (mat).cols ) != 1 )       \
     77         CV_ERROR( CV_StsBadArg, "" );              \
     78     (vdata) = ((mat).data.ptr);                    \
     79     if( (mat).rows == 1 )                          \
     80     {                                              \
     81         (vstep) = CV_ELEM_SIZE( (mat).type );      \
     82         (num) = (mat).cols;                        \
     83     }                                              \
     84     else                                           \
     85     {                                              \
     86         (vstep) = (mat).step;                      \
     87         (num) = (mat).rows;                        \
     88     }
     89 
     90 /* get raw data */
     91 #define ICV_RAWDATA( mat, flags, rdata, sstep, cstep, m, n )         \
     92     (rdata) = (mat).data.ptr;                                        \
     93     if( CV_IS_ROW_SAMPLE( flags ) )                                  \
     94     {                                                                \
     95         (sstep) = (mat).step;                                        \
     96         (cstep) = CV_ELEM_SIZE( (mat).type );                        \
     97         (m) = (mat).rows;                                            \
     98         (n) = (mat).cols;                                            \
     99     }                                                                \
    100     else                                                             \
    101     {                                                                \
    102         (cstep) = (mat).step;                                        \
    103         (sstep) = CV_ELEM_SIZE( (mat).type );                        \
    104         (n) = (mat).rows;                                            \
    105         (m) = (mat).cols;                                            \
    106     }
    107 
    108 #define ICV_IS_MAT_OF_TYPE( mat, mat_type) \
    109     (CV_IS_MAT( mat ) && CV_MAT_TYPE( mat->type ) == (mat_type) &&   \
    110     (mat)->cols > 0 && (mat)->rows > 0)
    111 
    112 /*
    113     uchar* data; int sstep, cstep;      - trainData->data
    114     uchar* classes; int clstep; int ncl;- trainClasses
    115     uchar* tmask; int tmstep; int ntm;  - typeMask
    116     uchar* missed;int msstep, mcstep;   -missedMeasurements...
    117     int mm, mn;                         == m,n == size,dim
    118     uchar* sidx;int sistep;             - sampleIdx
    119     uchar* cidx;int cistep;             - compIdx
    120     int k, l;                           == n,m == dim,size (length of cidx, sidx)
    121     int m, n;                           == size,dim
    122 */
    123 #define ICV_DECLARE_TRAIN_ARGS()                                                    \
    124     uchar* data;                                                                    \
    125     int sstep, cstep;                                                               \
    126     uchar* classes;                                                                 \
    127     int clstep;                                                                     \
    128     int ncl;                                                                        \
    129     uchar* tmask;                                                                   \
    130     int tmstep;                                                                     \
    131     int ntm;                                                                        \
    132     uchar* missed;                                                                  \
    133     int msstep, mcstep;                                                             \
    134     int mm, mn;                                                                     \
    135     uchar* sidx;                                                                    \
    136     int sistep;                                                                     \
    137     uchar* cidx;                                                                    \
    138     int cistep;                                                                     \
    139     int k, l;                                                                       \
    140     int m, n;                                                                       \
    141                                                                                     \
    142     data = classes = tmask = missed = sidx = cidx = NULL;                           \
    143     sstep = cstep = clstep = ncl = tmstep = ntm = msstep = mcstep = mm = mn = 0;    \
    144     sistep = cistep = k = l = m = n = 0;
    145 
    146 #define ICV_TRAIN_DATA_REQUIRED( param, flags )                                     \
    147     if( !ICV_IS_MAT_OF_TYPE( (param), CV_32FC1 ) )                                  \
    148     {                                                                               \
    149         CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" );                   \
    150     }                                                                               \
    151     else                                                                            \
    152     {                                                                               \
    153         ICV_RAWDATA( *(param), (flags), data, sstep, cstep, m, n );                 \
    154         k = n;                                                                      \
    155         l = m;                                                                      \
    156     }
    157 
    158 #define ICV_TRAIN_CLASSES_REQUIRED( param )                                         \
    159     if( !ICV_IS_MAT_OF_TYPE( (param), CV_32FC1 ) )                                  \
    160     {                                                                               \
    161         CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" );                   \
    162     }                                                                               \
    163     else                                                                            \
    164     {                                                                               \
    165         ICV_MAT2VEC( *(param), classes, clstep, ncl );                              \
    166         if( m != ncl )                                                              \
    167         {                                                                           \
    168             CV_ERROR( CV_StsBadArg, "Unmatched sizes" );                            \
    169         }                                                                           \
    170     }
    171 
    172 #define ICV_ARG_NULL( param )                                                       \
    173     if( (param) != NULL )                                                           \
    174     {                                                                               \
    175         CV_ERROR( CV_StsBadArg, #param " parameter must be NULL" );                 \
    176     }
    177 
    178 #define ICV_MISSED_MEASUREMENTS_OPTIONAL( param, flags )                            \
    179     if( param )                                                                     \
    180     {                                                                               \
    181         if( !ICV_IS_MAT_OF_TYPE( param, CV_8UC1 ) )                                 \
    182         {                                                                           \
    183             CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" );               \
    184         }                                                                           \
    185         else                                                                        \
    186         {                                                                           \
    187             ICV_RAWDATA( *(param), (flags), missed, msstep, mcstep, mm, mn );       \
    188             if( mm != m || mn != n )                                                \
    189             {                                                                       \
    190                 CV_ERROR( CV_StsBadArg, "Unmatched sizes" );                        \
    191             }                                                                       \
    192         }                                                                           \
    193     }
    194 
    195 #define ICV_COMP_IDX_OPTIONAL( param )                                              \
    196     if( param )                                                                     \
    197     {                                                                               \
    198         if( !ICV_IS_MAT_OF_TYPE( param, CV_32SC1 ) )                                \
    199         {                                                                           \
    200             CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" );               \
    201         }                                                                           \
    202         else                                                                        \
    203         {                                                                           \
    204             ICV_MAT2VEC( *(param), cidx, cistep, k );                               \
    205             if( k > n )                                                             \
    206                 CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" );           \
    207         }                                                                           \
    208     }
    209 
    210 #define ICV_SAMPLE_IDX_OPTIONAL( param )                                            \
    211     if( param )                                                                     \
    212     {                                                                               \
    213         if( !ICV_IS_MAT_OF_TYPE( param, CV_32SC1 ) )                                \
    214         {                                                                           \
    215             CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" );               \
    216         }                                                                           \
    217         else                                                                        \
    218         {                                                                           \
    219             ICV_MAT2VEC( *sampleIdx, sidx, sistep, l );                             \
    220             if( l > m )                                                             \
    221                 CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" );           \
    222         }                                                                           \
    223     }
    224 
    225 /****************************************************************************************/
    226 #define ICV_CONVERT_FLOAT_ARRAY_TO_MATRICE( array, matrice )        \
    227 {                                                                   \
    228     CvMat a, b;                                                     \
    229     int dims = (matrice)->cols;                                     \
    230     int nsamples = (matrice)->rows;                                 \
    231     int type = CV_MAT_TYPE((matrice)->type);                        \
    232     int i, offset = dims;                                           \
    233                                                                     \
    234     CV_ASSERT( type == CV_32FC1 || type == CV_64FC1 );              \
    235     offset *= ((type == CV_32FC1) ? sizeof(float) : sizeof(double));\
    236                                                                     \
    237     b = cvMat( 1, dims, CV_32FC1 );                                 \
    238     cvGetRow( matrice, &a, 0 );                                     \
    239     for( i = 0; i < nsamples; i++, a.data.ptr += offset )           \
    240     {                                                               \
    241         b.data.fl = (float*)array[i];                               \
    242         CV_CALL( cvConvert( &b, &a ) );                             \
    243     }                                                               \
    244 }
    245 
    246 /****************************************************************************************\
    247 *                       Auxiliary functions declarations                                 *
    248 \****************************************************************************************/
    249 
    250 /* Generates a set of classes centers in quantity <num_of_clusters> that are generated as
    251    uniform random vectors in parallelepiped, where <data> is concentrated. Vectors in
    252    <data> should have horizontal orientation. If <centers> != NULL, the function doesn't
    253    allocate any memory and stores generated centers in <centers>, returns <centers>.
    254    If <centers> == NULL, the function allocates memory and creates the matrice. Centers
    255    are supposed to be oriented horizontally. */
    256 CvMat* icvGenerateRandomClusterCenters( int seed,
    257                                         const CvMat* data,
    258                                         int num_of_clusters,
    259                                         CvMat* centers CV_DEFAULT(0));
    260 
    261 /* Fills the <labels> using <probs> by choosing the maximal probability. Outliers are
    262    fixed by <oulier_tresh> and have cluster label (-1). Function also controls that there
    263    weren't "empty" clusters by filling empty clusters with the maximal probability vector.
    264    If probs_sums != NULL, filles it with the sums of probabilities for each sample (it is
    265    useful for normalizing probabilities' matrice of FCM) */
    266 void icvFindClusterLabels( const CvMat* probs, float outlier_thresh, float r,
    267                            const CvMat* labels );
    268 
    269 typedef struct CvSparseVecElem32f
    270 {
    271     int idx;
    272     float val;
    273 }
    274 CvSparseVecElem32f;
    275 
    276 /* Prepare training data and related parameters */
    277 #define CV_TRAIN_STATMODEL_DEFRAGMENT_TRAIN_DATA    1
    278 #define CV_TRAIN_STATMODEL_SAMPLES_AS_ROWS          2
    279 #define CV_TRAIN_STATMODEL_SAMPLES_AS_COLUMNS       4
    280 #define CV_TRAIN_STATMODEL_CATEGORICAL_RESPONSE     8
    281 #define CV_TRAIN_STATMODEL_ORDERED_RESPONSE         16
    282 #define CV_TRAIN_STATMODEL_RESPONSES_ON_OUTPUT      32
    283 #define CV_TRAIN_STATMODEL_ALWAYS_COPY_TRAIN_DATA   64
    284 #define CV_TRAIN_STATMODEL_SPARSE_AS_SPARSE         128
    285 
    286 int
    287 cvPrepareTrainData( const char* /*funcname*/,
    288                     const CvMat* train_data, int tflag,
    289                     const CvMat* responses, int response_type,
    290                     const CvMat* var_idx,
    291                     const CvMat* sample_idx,
    292                     bool always_copy_data,
    293                     const float*** out_train_samples,
    294                     int* _sample_count,
    295                     int* _var_count,
    296                     int* _var_all,
    297                     CvMat** out_responses,
    298                     CvMat** out_response_map,
    299                     CvMat** out_var_idx,
    300                     CvMat** out_sample_idx=0 );
    301 
    302 void
    303 cvSortSamplesByClasses( const float** samples, const CvMat* classes,
    304                         int* class_ranges, const uchar** mask CV_DEFAULT(0) );
    305 
    306 void
    307 cvCombineResponseMaps (CvMat*  _responses,
    308                  const CvMat*  old_response_map,
    309                        CvMat*  new_response_map,
    310                        CvMat** out_response_map);
    311 
    312 void
    313 cvPreparePredictData( const CvArr* sample, int dims_all, const CvMat* comp_idx,
    314                       int class_count, const CvMat* prob, float** row_sample,
    315                       int as_sparse CV_DEFAULT(0) );
    316 
    317 /* copies clustering [or batch "predict"] results
    318    (labels and/or centers and/or probs) back to the output arrays */
    319 void
    320 cvWritebackLabels( const CvMat* labels, CvMat* dst_labels,
    321                    const CvMat* centers, CvMat* dst_centers,
    322                    const CvMat* probs, CvMat* dst_probs,
    323                    const CvMat* sample_idx, int samples_all,
    324                    const CvMat* comp_idx, int dims_all );
    325 #define cvWritebackResponses cvWritebackLabels
    326 
    327 #define XML_FIELD_NAME "_name"
    328 CvFileNode* icvFileNodeGetChild(CvFileNode* father, const char* name);
    329 CvFileNode* icvFileNodeGetChildArrayElem(CvFileNode* father, const char* name,int index);
    330 CvFileNode* icvFileNodeGetNext(CvFileNode* n, const char* name);
    331 
    332 
    333 void cvCheckTrainData( const CvMat* train_data, int tflag,
    334                        const CvMat* missing_mask,
    335                        int* var_all, int* sample_all );
    336 
    337 CvMat* cvPreprocessIndexArray( const CvMat* idx_arr, int data_arr_size, bool check_for_duplicates=false );
    338 
    339 CvMat* cvPreprocessVarType( const CvMat* type_mask, const CvMat* var_idx,
    340                             int var_all, int* response_type );
    341 
    342 CvMat* cvPreprocessOrderedResponses( const CvMat* responses,
    343                 const CvMat* sample_idx, int sample_all );
    344 
    345 CvMat* cvPreprocessCategoricalResponses( const CvMat* responses,
    346                 const CvMat* sample_idx, int sample_all,
    347                 CvMat** out_response_map, CvMat** class_counts=0 );
    348 
    349 const float** cvGetTrainSamples( const CvMat* train_data, int tflag,
    350                    const CvMat* var_idx, const CvMat* sample_idx,
    351                    int* _var_count, int* _sample_count,
    352                    bool always_copy_data=false );
    353 
    354 #endif /* __ML_H__ */
    355