1 // Copyright (c) 2013 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "net/quic/crypto/strike_register.h" 6 7 #include "base/logging.h" 8 9 using std::pair; 10 using std::set; 11 using std::vector; 12 13 namespace net { 14 15 // static 16 const uint32 StrikeRegister::kExternalNodeSize = 24; 17 // static 18 const uint32 StrikeRegister::kNil = (1 << 31) | 1; 19 // static 20 const uint32 StrikeRegister::kExternalFlag = 1 << 23; 21 22 // InternalNode represents a non-leaf node in the critbit tree. See the comment 23 // in the .h file for details. 24 class StrikeRegister::InternalNode { 25 public: 26 void SetChild(unsigned direction, uint32 child) { 27 data_[direction] = (data_[direction] & 0xff) | (child << 8); 28 } 29 30 void SetCritByte(uint8 critbyte) { 31 data_[0] &= 0xffffff00; 32 data_[0] |= critbyte; 33 } 34 35 void SetOtherBits(uint8 otherbits) { 36 data_[1] &= 0xffffff00; 37 data_[1] |= otherbits; 38 } 39 40 void SetNextPtr(uint32 next) { data_[0] = next; } 41 42 uint32 next() const { return data_[0]; } 43 44 uint32 child(unsigned n) const { return data_[n] >> 8; } 45 46 uint8 critbyte() const { return data_[0]; } 47 48 uint8 otherbits() const { return data_[1]; } 49 50 // These bytes are organised thus: 51 // <24 bits> left child 52 // <8 bits> crit-byte 53 // <24 bits> right child 54 // <8 bits> other-bits 55 uint32 data_[2]; 56 }; 57 58 // kCreationTimeFromInternalEpoch contains the number of seconds between the 59 // start of the internal epoch and the creation time. This allows us 60 // to consider times that are before the creation time. 61 static const uint32 kCreationTimeFromInternalEpoch = 63115200.0; // 2 years. 62 63 StrikeRegister::StrikeRegister(unsigned max_entries, 64 uint32 current_time, 65 uint32 window_secs, 66 const uint8 orbit[8], 67 StartupType startup) 68 : max_entries_(max_entries), 69 window_secs_(window_secs), 70 internal_epoch_(current_time > kCreationTimeFromInternalEpoch 71 ? current_time - kCreationTimeFromInternalEpoch 72 : 0), 73 // The horizon is initially set |window_secs| into the future because, if 74 // we just crashed, then we may have accepted nonces in the span 75 // [current_time...current_time+window_secs) and so we conservatively 76 // reject the whole timespan unless |startup| tells us otherwise. 77 horizon_(ExternalTimeToInternal(current_time) + window_secs), 78 horizon_valid_(startup == DENY_REQUESTS_AT_STARTUP) { 79 memcpy(orbit_, orbit, sizeof(orbit_)); 80 81 // We only have 23 bits of index available. 82 CHECK_LT(max_entries, 1u << 23); 83 CHECK_GT(max_entries, 1u); // There must be at least two entries. 84 CHECK_EQ(sizeof(InternalNode), 8u); // in case of compiler changes. 85 internal_nodes_ = new InternalNode[max_entries]; 86 external_nodes_.reset(new uint8[kExternalNodeSize * max_entries]); 87 88 Reset(); 89 } 90 91 StrikeRegister::~StrikeRegister() { delete[] internal_nodes_; } 92 93 void StrikeRegister::Reset() { 94 // Thread a free list through all of the internal nodes. 95 internal_node_free_head_ = 0; 96 for (unsigned i = 0; i < max_entries_ - 1; i++) 97 internal_nodes_[i].SetNextPtr(i + 1); 98 internal_nodes_[max_entries_ - 1].SetNextPtr(kNil); 99 100 // Also thread a free list through the external nodes. 101 external_node_free_head_ = 0; 102 for (unsigned i = 0; i < max_entries_ - 1; i++) 103 external_node_next_ptr(i) = i + 1; 104 external_node_next_ptr(max_entries_ - 1) = kNil; 105 106 // This is the root of the tree. 107 internal_node_head_ = kNil; 108 } 109 110 bool StrikeRegister::Insert(const uint8 nonce[32], 111 const uint32 current_time_external) { 112 const uint32 current_time = ExternalTimeToInternal(current_time_external); 113 114 // Check to see if the orbit is correct. 115 if (memcmp(nonce + sizeof(current_time), orbit_, sizeof(orbit_))) { 116 return false; 117 } 118 const uint32 nonce_time = ExternalTimeToInternal(TimeFromBytes(nonce)); 119 // We have dropped one or more nonces with a time value of |horizon_|, so 120 // we have to reject anything with a timestamp less than or equal to that. 121 if (horizon_valid_ && nonce_time <= horizon_) { 122 return false; 123 } 124 125 // Check that the timestamp is in the current window. 126 if ((current_time > window_secs_ && 127 nonce_time < (current_time - window_secs_)) || 128 nonce_time > (current_time + window_secs_)) { 129 return false; 130 } 131 132 // We strip the orbit out of the nonce. 133 uint8 value[24]; 134 memcpy(value, &nonce_time, sizeof(nonce_time)); 135 memcpy(value + sizeof(nonce_time), 136 nonce + sizeof(nonce_time) + sizeof(orbit_), 137 sizeof(value) - sizeof(nonce_time)); 138 139 // Find the best match to |value| in the crit-bit tree. The best match is 140 // simply the value which /could/ match |value|, if any does, so we still 141 // need a memcmp to check. 142 uint32 best_match_index = BestMatch(value); 143 if (best_match_index == kNil) { 144 // Empty tree. Just insert the new value at the root. 145 uint32 index = GetFreeExternalNode(); 146 memcpy(external_node(index), value, sizeof(value)); 147 internal_node_head_ = (index | kExternalFlag) << 8; 148 return true; 149 } 150 151 const uint8* best_match = external_node(best_match_index); 152 if (memcmp(best_match, value, sizeof(value)) == 0) { 153 // We found the value in the tree. 154 return false; 155 } 156 157 // We are going to insert a new entry into the tree, so get the nodes now. 158 uint32 internal_node_index = GetFreeInternalNode(); 159 uint32 external_node_index = GetFreeExternalNode(); 160 161 // If we just evicted the best match, then we have to try and match again. 162 // We know that we didn't just empty the tree because we require that 163 // max_entries_ >= 2. Also, we know that it doesn't match because, if it 164 // did, it would have been returned previously. 165 if (external_node_index == best_match_index) { 166 best_match_index = BestMatch(value); 167 best_match = external_node(best_match_index); 168 } 169 170 // Now we need to find the first bit where we differ from |best_match|. 171 unsigned differing_byte; 172 uint8 new_other_bits; 173 for (differing_byte = 0; differing_byte < sizeof(value); differing_byte++) { 174 new_other_bits = value[differing_byte] ^ best_match[differing_byte]; 175 if (new_other_bits) { 176 break; 177 } 178 } 179 180 // Once we have the XOR the of first differing byte in new_other_bits we need 181 // to find the most significant differing bit. We could do this with a simple 182 // for loop, testing bits 7..0. Instead we fold the bits so that we end up 183 // with a byte where all the bits below the most significant one, are set. 184 new_other_bits |= new_other_bits >> 1; 185 new_other_bits |= new_other_bits >> 2; 186 new_other_bits |= new_other_bits >> 4; 187 // Now this bit trick results in all the bits set, except the original 188 // most-significant one. 189 new_other_bits = (new_other_bits & ~(new_other_bits >> 1)) ^ 255; 190 191 // Consider the effect of ORing against |new_other_bits|. If |value| did not 192 // have the critical bit set, the result is the same as |new_other_bits|. If 193 // it did, the result is all ones. 194 195 unsigned newdirection; 196 if ((new_other_bits | value[differing_byte]) == 0xff) { 197 newdirection = 1; 198 } else { 199 newdirection = 0; 200 } 201 202 memcpy(external_node(external_node_index), value, sizeof(value)); 203 InternalNode* inode = &internal_nodes_[internal_node_index]; 204 205 inode->SetChild(newdirection, external_node_index | kExternalFlag); 206 inode->SetCritByte(differing_byte); 207 inode->SetOtherBits(new_other_bits); 208 209 // |where_index| is a pointer to the uint32 which needs to be updated in 210 // order to insert the new internal node into the tree. The internal nodes 211 // store the child indexes in the top 24-bits of a 32-bit word and, to keep 212 // the code simple, we define that |internal_node_head_| is organised the 213 // same way. 214 DCHECK_EQ(internal_node_head_ & 0xff, 0u); 215 uint32* where_index = &internal_node_head_; 216 while (((*where_index >> 8) & kExternalFlag) == 0) { 217 InternalNode* node = &internal_nodes_[*where_index >> 8]; 218 if (node->critbyte() > differing_byte) { 219 break; 220 } 221 if (node->critbyte() == differing_byte && 222 node->otherbits() > new_other_bits) { 223 break; 224 } 225 if (node->critbyte() == differing_byte && 226 node->otherbits() == new_other_bits) { 227 CHECK(false); 228 } 229 230 uint8 c = value[node->critbyte()]; 231 const int direction = 232 (1 + static_cast<unsigned>(node->otherbits() | c)) >> 8; 233 where_index = &node->data_[direction]; 234 } 235 236 inode->SetChild(newdirection ^ 1, *where_index >> 8); 237 *where_index = (*where_index & 0xff) | (internal_node_index << 8); 238 239 return true; 240 } 241 242 const uint8* StrikeRegister::orbit() const { 243 return orbit_; 244 } 245 246 void StrikeRegister::Validate() { 247 set<uint32> free_internal_nodes; 248 for (uint32 i = internal_node_free_head_; i != kNil; 249 i = internal_nodes_[i].next()) { 250 CHECK_LT(i, max_entries_); 251 CHECK_EQ(free_internal_nodes.count(i), 0u); 252 free_internal_nodes.insert(i); 253 } 254 255 set<uint32> free_external_nodes; 256 for (uint32 i = external_node_free_head_; i != kNil; 257 i = external_node_next_ptr(i)) { 258 CHECK_LT(i, max_entries_); 259 CHECK_EQ(free_external_nodes.count(i), 0u); 260 free_external_nodes.insert(i); 261 } 262 263 set<uint32> used_external_nodes; 264 set<uint32> used_internal_nodes; 265 266 if (internal_node_head_ != kNil && 267 ((internal_node_head_ >> 8) & kExternalFlag) == 0) { 268 vector<pair<unsigned, bool> > bits; 269 ValidateTree(internal_node_head_ >> 8, -1, bits, free_internal_nodes, 270 free_external_nodes, &used_internal_nodes, 271 &used_external_nodes); 272 } 273 } 274 275 // static 276 uint32 StrikeRegister::TimeFromBytes(const uint8 d[4]) { 277 return static_cast<uint32>(d[0]) << 24 | 278 static_cast<uint32>(d[1]) << 16 | 279 static_cast<uint32>(d[2]) << 8 | 280 static_cast<uint32>(d[3]); 281 } 282 283 uint32 StrikeRegister::ExternalTimeToInternal(uint32 external_time) { 284 return external_time - internal_epoch_; 285 } 286 287 uint32 StrikeRegister::BestMatch(const uint8 v[24]) const { 288 if (internal_node_head_ == kNil) { 289 return kNil; 290 } 291 292 uint32 next = internal_node_head_ >> 8; 293 while ((next & kExternalFlag) == 0) { 294 InternalNode* node = &internal_nodes_[next]; 295 uint8 b = v[node->critbyte()]; 296 unsigned direction = 297 (1 + static_cast<unsigned>(node->otherbits() | b)) >> 8; 298 next = node->child(direction); 299 } 300 301 return next & ~kExternalFlag; 302 } 303 304 uint32& StrikeRegister::external_node_next_ptr(unsigned i) { 305 return *reinterpret_cast<uint32*>(&external_nodes_[i * kExternalNodeSize]); 306 } 307 308 uint8* StrikeRegister::external_node(unsigned i) { 309 return &external_nodes_[i * kExternalNodeSize]; 310 } 311 312 uint32 StrikeRegister::GetFreeExternalNode() { 313 uint32 index = external_node_free_head_; 314 if (index == kNil) { 315 DropNode(); 316 return GetFreeExternalNode(); 317 } 318 319 external_node_free_head_ = external_node_next_ptr(index); 320 return index; 321 } 322 323 uint32 StrikeRegister::GetFreeInternalNode() { 324 uint32 index = internal_node_free_head_; 325 if (index == kNil) { 326 DropNode(); 327 return GetFreeInternalNode(); 328 } 329 330 internal_node_free_head_ = internal_nodes_[index].next(); 331 return index; 332 } 333 334 void StrikeRegister::DropNode() { 335 // DropNode should never be called on an empty tree. 336 DCHECK(internal_node_head_ != kNil); 337 338 // An internal node in a crit-bit tree always has exactly two children. 339 // This means that, if we are removing an external node (which is one of 340 // those children), then we also need to remove an internal node. In order 341 // to do that we keep pointers to the parent (wherep) and grandparent 342 // (whereq) when walking down the tree. 343 344 uint32 p = internal_node_head_ >> 8, *wherep = &internal_node_head_, 345 *whereq = NULL; 346 while ((p & kExternalFlag) == 0) { 347 whereq = wherep; 348 InternalNode* inode = &internal_nodes_[p]; 349 // We always go left, towards the smallest element, exploiting the fact 350 // that the timestamp is big-endian and at the start of the value. 351 wherep = &inode->data_[0]; 352 p = (*wherep) >> 8; 353 } 354 355 const uint32 ext_index = p & ~kExternalFlag; 356 const uint8* ext_node = external_node(ext_index); 357 horizon_ = TimeFromBytes(ext_node); 358 359 if (!whereq) { 360 // We are removing the last element in a tree. 361 internal_node_head_ = kNil; 362 FreeExternalNode(ext_index); 363 return; 364 } 365 366 // |wherep| points to the left child pointer in the parent so we can add 367 // one and dereference to get the right child. 368 const uint32 other_child = wherep[1]; 369 FreeInternalNode((*whereq) >> 8); 370 *whereq = (*whereq & 0xff) | (other_child & 0xffffff00); 371 FreeExternalNode(ext_index); 372 } 373 374 void StrikeRegister::FreeExternalNode(uint32 index) { 375 external_node_next_ptr(index) = external_node_free_head_; 376 external_node_free_head_ = index; 377 } 378 379 void StrikeRegister::FreeInternalNode(uint32 index) { 380 internal_nodes_[index].SetNextPtr(internal_node_free_head_); 381 internal_node_free_head_ = index; 382 } 383 384 void StrikeRegister::ValidateTree( 385 uint32 internal_node, 386 int last_bit, 387 const vector<pair<unsigned, bool> >& bits, 388 const set<uint32>& free_internal_nodes, 389 const set<uint32>& free_external_nodes, 390 set<uint32>* used_internal_nodes, 391 set<uint32>* used_external_nodes) { 392 CHECK_LT(internal_node, max_entries_); 393 const InternalNode* i = &internal_nodes_[internal_node]; 394 unsigned bit = 0; 395 switch (i->otherbits()) { 396 case 0xff & ~(1 << 7): 397 bit = 0; 398 break; 399 case 0xff & ~(1 << 6): 400 bit = 1; 401 break; 402 case 0xff & ~(1 << 5): 403 bit = 2; 404 break; 405 case 0xff & ~(1 << 4): 406 bit = 3; 407 break; 408 case 0xff & ~(1 << 3): 409 bit = 4; 410 break; 411 case 0xff & ~(1 << 2): 412 bit = 5; 413 break; 414 case 0xff & ~(1 << 1): 415 bit = 6; 416 break; 417 case 0xff & ~1: 418 bit = 7; 419 break; 420 default: 421 CHECK(false); 422 } 423 424 bit += 8 * i->critbyte(); 425 if (last_bit > -1) { 426 CHECK_GT(bit, static_cast<unsigned>(last_bit)); 427 } 428 429 CHECK_EQ(free_internal_nodes.count(internal_node), 0u); 430 431 for (unsigned child = 0; child < 2; child++) { 432 if (i->child(child) & kExternalFlag) { 433 uint32 ext = i->child(child) & ~kExternalFlag; 434 CHECK_EQ(free_external_nodes.count(ext), 0u); 435 CHECK_EQ(used_external_nodes->count(ext), 0u); 436 used_external_nodes->insert(ext); 437 const uint8* bytes = external_node(ext); 438 for (vector<pair<unsigned, bool> >::const_iterator i = bits.begin(); 439 i != bits.end(); i++) { 440 unsigned byte = i->first / 8; 441 DCHECK_LE(byte, 0xffu); 442 unsigned bit = i->first % 8; 443 static const uint8 kMasks[8] = 444 {0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01}; 445 CHECK_EQ((bytes[byte] & kMasks[bit]) != 0, i->second); 446 } 447 } else { 448 uint32 inter = i->child(child); 449 vector<pair<unsigned, bool> > new_bits(bits); 450 new_bits.push_back(pair<unsigned, bool>(bit, child != 0)); 451 CHECK_EQ(free_internal_nodes.count(inter), 0u); 452 CHECK_EQ(used_internal_nodes->count(inter), 0u); 453 used_internal_nodes->insert(inter); 454 ValidateTree(inter, bit, bits, free_internal_nodes, free_external_nodes, 455 used_internal_nodes, used_external_nodes); 456 } 457 } 458 } 459 460 } // namespace net 461