Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 // discard stack allocation as that too bypasses malloc
     12 #define EIGEN_STACK_ALLOCATION_LIMIT 0
     13 #define EIGEN_RUNTIME_NO_MALLOC
     14 #include "main.h"
     15 #include <Eigen/SVD>
     16 
     17 template<typename MatrixType, int QRPreconditioner>
     18 void jacobisvd_check_full(const MatrixType& m, const JacobiSVD<MatrixType, QRPreconditioner>& svd)
     19 {
     20   typedef typename MatrixType::Index Index;
     21   Index rows = m.rows();
     22   Index cols = m.cols();
     23 
     24   enum {
     25     RowsAtCompileTime = MatrixType::RowsAtCompileTime,
     26     ColsAtCompileTime = MatrixType::ColsAtCompileTime
     27   };
     28 
     29   typedef typename MatrixType::Scalar Scalar;
     30   typedef typename NumTraits<Scalar>::Real RealScalar;
     31   typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixUType;
     32   typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime> MatrixVType;
     33   typedef Matrix<Scalar, RowsAtCompileTime, 1> ColVectorType;
     34   typedef Matrix<Scalar, ColsAtCompileTime, 1> InputVectorType;
     35 
     36   MatrixType sigma = MatrixType::Zero(rows,cols);
     37   sigma.diagonal() = svd.singularValues().template cast<Scalar>();
     38   MatrixUType u = svd.matrixU();
     39   MatrixVType v = svd.matrixV();
     40 
     41   VERIFY_IS_APPROX(m, u * sigma * v.adjoint());
     42   VERIFY_IS_UNITARY(u);
     43   VERIFY_IS_UNITARY(v);
     44 }
     45 
     46 template<typename MatrixType, int QRPreconditioner>
     47 void jacobisvd_compare_to_full(const MatrixType& m,
     48                                unsigned int computationOptions,
     49                                const JacobiSVD<MatrixType, QRPreconditioner>& referenceSvd)
     50 {
     51   typedef typename MatrixType::Index Index;
     52   Index rows = m.rows();
     53   Index cols = m.cols();
     54   Index diagSize = (std::min)(rows, cols);
     55 
     56   JacobiSVD<MatrixType, QRPreconditioner> svd(m, computationOptions);
     57 
     58   VERIFY_IS_APPROX(svd.singularValues(), referenceSvd.singularValues());
     59   if(computationOptions & ComputeFullU)
     60     VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU());
     61   if(computationOptions & ComputeThinU)
     62     VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize));
     63   if(computationOptions & ComputeFullV)
     64     VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV());
     65   if(computationOptions & ComputeThinV)
     66     VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize));
     67 }
     68 
     69 template<typename MatrixType, int QRPreconditioner>
     70 void jacobisvd_solve(const MatrixType& m, unsigned int computationOptions)
     71 {
     72   typedef typename MatrixType::Scalar Scalar;
     73   typedef typename MatrixType::Index Index;
     74   Index rows = m.rows();
     75   Index cols = m.cols();
     76 
     77   enum {
     78     RowsAtCompileTime = MatrixType::RowsAtCompileTime,
     79     ColsAtCompileTime = MatrixType::ColsAtCompileTime
     80   };
     81 
     82   typedef Matrix<Scalar, RowsAtCompileTime, Dynamic> RhsType;
     83   typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType;
     84 
     85   RhsType rhs = RhsType::Random(rows, internal::random<Index>(1, cols));
     86   JacobiSVD<MatrixType, QRPreconditioner> svd(m, computationOptions);
     87   SolutionType x = svd.solve(rhs);
     88   // evaluate normal equation which works also for least-squares solutions
     89   VERIFY_IS_APPROX(m.adjoint()*m*x,m.adjoint()*rhs);
     90 }
     91 
     92 template<typename MatrixType, int QRPreconditioner>
     93 void jacobisvd_test_all_computation_options(const MatrixType& m)
     94 {
     95   if (QRPreconditioner == NoQRPreconditioner && m.rows() != m.cols())
     96     return;
     97   JacobiSVD<MatrixType, QRPreconditioner> fullSvd(m, ComputeFullU|ComputeFullV);
     98 
     99   jacobisvd_check_full(m, fullSvd);
    100   jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeFullU | ComputeFullV);
    101 
    102   if(QRPreconditioner == FullPivHouseholderQRPreconditioner)
    103     return;
    104 
    105   jacobisvd_compare_to_full(m, ComputeFullU, fullSvd);
    106   jacobisvd_compare_to_full(m, ComputeFullV, fullSvd);
    107   jacobisvd_compare_to_full(m, 0, fullSvd);
    108 
    109   if (MatrixType::ColsAtCompileTime == Dynamic) {
    110     // thin U/V are only available with dynamic number of columns
    111     jacobisvd_compare_to_full(m, ComputeFullU|ComputeThinV, fullSvd);
    112     jacobisvd_compare_to_full(m,              ComputeThinV, fullSvd);
    113     jacobisvd_compare_to_full(m, ComputeThinU|ComputeFullV, fullSvd);
    114     jacobisvd_compare_to_full(m, ComputeThinU             , fullSvd);
    115     jacobisvd_compare_to_full(m, ComputeThinU|ComputeThinV, fullSvd);
    116     jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeFullU | ComputeThinV);
    117     jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeThinU | ComputeFullV);
    118     jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeThinU | ComputeThinV);
    119 
    120     // test reconstruction
    121     typedef typename MatrixType::Index Index;
    122     Index diagSize = (std::min)(m.rows(), m.cols());
    123     JacobiSVD<MatrixType, QRPreconditioner> svd(m, ComputeThinU | ComputeThinV);
    124     VERIFY_IS_APPROX(m, svd.matrixU().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint());
    125   }
    126 }
    127 
    128 template<typename MatrixType>
    129 void jacobisvd(const MatrixType& a = MatrixType(), bool pickrandom = true)
    130 {
    131   MatrixType m = pickrandom ? MatrixType::Random(a.rows(), a.cols()) : a;
    132 
    133   jacobisvd_test_all_computation_options<MatrixType, FullPivHouseholderQRPreconditioner>(m);
    134   jacobisvd_test_all_computation_options<MatrixType, ColPivHouseholderQRPreconditioner>(m);
    135   jacobisvd_test_all_computation_options<MatrixType, HouseholderQRPreconditioner>(m);
    136   jacobisvd_test_all_computation_options<MatrixType, NoQRPreconditioner>(m);
    137 }
    138 
    139 template<typename MatrixType> void jacobisvd_verify_assert(const MatrixType& m)
    140 {
    141   typedef typename MatrixType::Scalar Scalar;
    142   typedef typename MatrixType::Index Index;
    143   Index rows = m.rows();
    144   Index cols = m.cols();
    145 
    146   enum {
    147     RowsAtCompileTime = MatrixType::RowsAtCompileTime,
    148     ColsAtCompileTime = MatrixType::ColsAtCompileTime
    149   };
    150 
    151   typedef Matrix<Scalar, RowsAtCompileTime, 1> RhsType;
    152 
    153   RhsType rhs(rows);
    154 
    155   JacobiSVD<MatrixType> svd;
    156   VERIFY_RAISES_ASSERT(svd.matrixU())
    157   VERIFY_RAISES_ASSERT(svd.singularValues())
    158   VERIFY_RAISES_ASSERT(svd.matrixV())
    159   VERIFY_RAISES_ASSERT(svd.solve(rhs))
    160 
    161   MatrixType a = MatrixType::Zero(rows, cols);
    162   a.setZero();
    163   svd.compute(a, 0);
    164   VERIFY_RAISES_ASSERT(svd.matrixU())
    165   VERIFY_RAISES_ASSERT(svd.matrixV())
    166   svd.singularValues();
    167   VERIFY_RAISES_ASSERT(svd.solve(rhs))
    168 
    169   if (ColsAtCompileTime == Dynamic)
    170   {
    171     svd.compute(a, ComputeThinU);
    172     svd.matrixU();
    173     VERIFY_RAISES_ASSERT(svd.matrixV())
    174     VERIFY_RAISES_ASSERT(svd.solve(rhs))
    175 
    176     svd.compute(a, ComputeThinV);
    177     svd.matrixV();
    178     VERIFY_RAISES_ASSERT(svd.matrixU())
    179     VERIFY_RAISES_ASSERT(svd.solve(rhs))
    180 
    181     JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner> svd_fullqr;
    182     VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeFullU|ComputeThinV))
    183     VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU|ComputeThinV))
    184     VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU|ComputeFullV))
    185   }
    186   else
    187   {
    188     VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinU))
    189     VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinV))
    190   }
    191 }
    192 
    193 template<typename MatrixType>
    194 void jacobisvd_method()
    195 {
    196   enum { Size = MatrixType::RowsAtCompileTime };
    197   typedef typename MatrixType::RealScalar RealScalar;
    198   typedef Matrix<RealScalar, Size, 1> RealVecType;
    199   MatrixType m = MatrixType::Identity();
    200   VERIFY_IS_APPROX(m.jacobiSvd().singularValues(), RealVecType::Ones());
    201   VERIFY_RAISES_ASSERT(m.jacobiSvd().matrixU());
    202   VERIFY_RAISES_ASSERT(m.jacobiSvd().matrixV());
    203   VERIFY_IS_APPROX(m.jacobiSvd(ComputeFullU|ComputeFullV).solve(m), m);
    204 }
    205 
    206 // work around stupid msvc error when constructing at compile time an expression that involves
    207 // a division by zero, even if the numeric type has floating point
    208 template<typename Scalar>
    209 EIGEN_DONT_INLINE Scalar zero() { return Scalar(0); }
    210 
    211 // workaround aggressive optimization in ICC
    212 template<typename T> EIGEN_DONT_INLINE  T sub(T a, T b) { return a - b; }
    213 
    214 template<typename MatrixType>
    215 void jacobisvd_inf_nan()
    216 {
    217   // all this function does is verify we don't iterate infinitely on nan/inf values
    218 
    219   JacobiSVD<MatrixType> svd;
    220   typedef typename MatrixType::Scalar Scalar;
    221   Scalar some_inf = Scalar(1) / zero<Scalar>();
    222   VERIFY(sub(some_inf, some_inf) != sub(some_inf, some_inf));
    223   svd.compute(MatrixType::Constant(10,10,some_inf), ComputeFullU | ComputeFullV);
    224 
    225   Scalar some_nan = zero<Scalar>() / zero<Scalar>();
    226   VERIFY(some_nan != some_nan);
    227   svd.compute(MatrixType::Constant(10,10,some_nan), ComputeFullU | ComputeFullV);
    228 
    229   MatrixType m = MatrixType::Zero(10,10);
    230   m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_inf;
    231   svd.compute(m, ComputeFullU | ComputeFullV);
    232 
    233   m = MatrixType::Zero(10,10);
    234   m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_nan;
    235   svd.compute(m, ComputeFullU | ComputeFullV);
    236 }
    237 
    238 // Regression test for bug 286: JacobiSVD loops indefinitely with some
    239 // matrices containing denormal numbers.
    240 void jacobisvd_bug286()
    241 {
    242 #if defined __INTEL_COMPILER
    243 // shut up warning #239: floating point underflow
    244 #pragma warning push
    245 #pragma warning disable 239
    246 #endif
    247   Matrix2d M;
    248   M << -7.90884e-313, -4.94e-324,
    249                  0, 5.60844e-313;
    250 #if defined __INTEL_COMPILER
    251 #pragma warning pop
    252 #endif
    253   JacobiSVD<Matrix2d> svd;
    254   svd.compute(M); // just check we don't loop indefinitely
    255 }
    256 
    257 void jacobisvd_preallocate()
    258 {
    259   Vector3f v(3.f, 2.f, 1.f);
    260   MatrixXf m = v.asDiagonal();
    261 
    262   internal::set_is_malloc_allowed(false);
    263   VERIFY_RAISES_ASSERT(VectorXf v(10);)
    264   JacobiSVD<MatrixXf> svd;
    265   internal::set_is_malloc_allowed(true);
    266   svd.compute(m);
    267   VERIFY_IS_APPROX(svd.singularValues(), v);
    268 
    269   JacobiSVD<MatrixXf> svd2(3,3);
    270   internal::set_is_malloc_allowed(false);
    271   svd2.compute(m);
    272   internal::set_is_malloc_allowed(true);
    273   VERIFY_IS_APPROX(svd2.singularValues(), v);
    274   VERIFY_RAISES_ASSERT(svd2.matrixU());
    275   VERIFY_RAISES_ASSERT(svd2.matrixV());
    276   svd2.compute(m, ComputeFullU | ComputeFullV);
    277   VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
    278   VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
    279   internal::set_is_malloc_allowed(false);
    280   svd2.compute(m);
    281   internal::set_is_malloc_allowed(true);
    282 
    283   JacobiSVD<MatrixXf> svd3(3,3,ComputeFullU|ComputeFullV);
    284   internal::set_is_malloc_allowed(false);
    285   svd2.compute(m);
    286   internal::set_is_malloc_allowed(true);
    287   VERIFY_IS_APPROX(svd2.singularValues(), v);
    288   VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
    289   VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
    290   internal::set_is_malloc_allowed(false);
    291   svd2.compute(m, ComputeFullU|ComputeFullV);
    292   internal::set_is_malloc_allowed(true);
    293 }
    294 
    295 void test_jacobisvd()
    296 {
    297   CALL_SUBTEST_3(( jacobisvd_verify_assert(Matrix3f()) ));
    298   CALL_SUBTEST_4(( jacobisvd_verify_assert(Matrix4d()) ));
    299   CALL_SUBTEST_7(( jacobisvd_verify_assert(MatrixXf(10,12)) ));
    300   CALL_SUBTEST_8(( jacobisvd_verify_assert(MatrixXcd(7,5)) ));
    301 
    302   for(int i = 0; i < g_repeat; i++) {
    303     Matrix2cd m;
    304     m << 0, 1,
    305          0, 1;
    306     CALL_SUBTEST_1(( jacobisvd(m, false) ));
    307     m << 1, 0,
    308          1, 0;
    309     CALL_SUBTEST_1(( jacobisvd(m, false) ));
    310 
    311     Matrix2d n;
    312     n << 0, 0,
    313          0, 0;
    314     CALL_SUBTEST_2(( jacobisvd(n, false) ));
    315     n << 0, 0,
    316          0, 1;
    317     CALL_SUBTEST_2(( jacobisvd(n, false) ));
    318 
    319     CALL_SUBTEST_3(( jacobisvd<Matrix3f>() ));
    320     CALL_SUBTEST_4(( jacobisvd<Matrix4d>() ));
    321     CALL_SUBTEST_5(( jacobisvd<Matrix<float,3,5> >() ));
    322     CALL_SUBTEST_6(( jacobisvd<Matrix<double,Dynamic,2> >(Matrix<double,Dynamic,2>(10,2)) ));
    323 
    324     int r = internal::random<int>(1, 30),
    325         c = internal::random<int>(1, 30);
    326     CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(r,c)) ));
    327     CALL_SUBTEST_8(( jacobisvd<MatrixXcd>(MatrixXcd(r,c)) ));
    328     (void) r;
    329     (void) c;
    330 
    331     // Test on inf/nan matrix
    332     CALL_SUBTEST_7( jacobisvd_inf_nan<MatrixXf>() );
    333   }
    334 
    335   CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) ));
    336   CALL_SUBTEST_8(( jacobisvd<MatrixXcd>(MatrixXcd(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3))) ));
    337 
    338   // test matrixbase method
    339   CALL_SUBTEST_1(( jacobisvd_method<Matrix2cd>() ));
    340   CALL_SUBTEST_3(( jacobisvd_method<Matrix3f>() ));
    341 
    342   // Test problem size constructors
    343   CALL_SUBTEST_7( JacobiSVD<MatrixXf>(10,10) );
    344 
    345   // Check that preallocation avoids subsequent mallocs
    346   CALL_SUBTEST_9( jacobisvd_preallocate() );
    347 
    348   // Regression check for bug 286
    349   CALL_SUBTEST_2( jacobisvd_bug286() );
    350 }
    351