Home | History | Annotate | Download | only in interface
      1 /*
      2  *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #ifndef WEBRTC_MODULES_AUDIO_PROCESSING_MAIN_INTERFACE_AUDIO_PROCESSING_H_
     12 #define WEBRTC_MODULES_AUDIO_PROCESSING_MAIN_INTERFACE_AUDIO_PROCESSING_H_
     13 
     14 #include <stddef.h> // size_t
     15 
     16 #include "typedefs.h"
     17 #include "module.h"
     18 
     19 namespace webrtc {
     20 
     21 class AudioFrame;
     22 class EchoCancellation;
     23 class EchoControlMobile;
     24 class GainControl;
     25 class HighPassFilter;
     26 class LevelEstimator;
     27 class NoiseSuppression;
     28 class VoiceDetection;
     29 
     30 // The Audio Processing Module (APM) provides a collection of voice processing
     31 // components designed for real-time communications software.
     32 //
     33 // APM operates on two audio streams on a frame-by-frame basis. Frames of the
     34 // primary stream, on which all processing is applied, are passed to
     35 // |ProcessStream()|. Frames of the reverse direction stream, which are used for
     36 // analysis by some components, are passed to |AnalyzeReverseStream()|. On the
     37 // client-side, this will typically be the near-end (capture) and far-end
     38 // (render) streams, respectively. APM should be placed in the signal chain as
     39 // close to the audio hardware abstraction layer (HAL) as possible.
     40 //
     41 // On the server-side, the reverse stream will normally not be used, with
     42 // processing occurring on each incoming stream.
     43 //
     44 // Component interfaces follow a similar pattern and are accessed through
     45 // corresponding getters in APM. All components are disabled at create-time,
     46 // with default settings that are recommended for most situations. New settings
     47 // can be applied without enabling a component. Enabling a component triggers
     48 // memory allocation and initialization to allow it to start processing the
     49 // streams.
     50 //
     51 // Thread safety is provided with the following assumptions to reduce locking
     52 // overhead:
     53 //   1. The stream getters and setters are called from the same thread as
     54 //      ProcessStream(). More precisely, stream functions are never called
     55 //      concurrently with ProcessStream().
     56 //   2. Parameter getters are never called concurrently with the corresponding
     57 //      setter.
     58 //
     59 // APM accepts only 16-bit linear PCM audio data in frames of 10 ms. Multiple
     60 // channels should be interleaved.
     61 //
     62 // Usage example, omitting error checking:
     63 // AudioProcessing* apm = AudioProcessing::Create(0);
     64 // apm->set_sample_rate_hz(32000); // Super-wideband processing.
     65 //
     66 // // Mono capture and stereo render.
     67 // apm->set_num_channels(1, 1);
     68 // apm->set_num_reverse_channels(2);
     69 //
     70 // apm->high_pass_filter()->Enable(true);
     71 //
     72 // apm->echo_cancellation()->enable_drift_compensation(false);
     73 // apm->echo_cancellation()->Enable(true);
     74 //
     75 // apm->noise_reduction()->set_level(kHighSuppression);
     76 // apm->noise_reduction()->Enable(true);
     77 //
     78 // apm->gain_control()->set_analog_level_limits(0, 255);
     79 // apm->gain_control()->set_mode(kAdaptiveAnalog);
     80 // apm->gain_control()->Enable(true);
     81 //
     82 // apm->voice_detection()->Enable(true);
     83 //
     84 // // Start a voice call...
     85 //
     86 // // ... Render frame arrives bound for the audio HAL ...
     87 // apm->AnalyzeReverseStream(render_frame);
     88 //
     89 // // ... Capture frame arrives from the audio HAL ...
     90 // // Call required set_stream_ functions.
     91 // apm->set_stream_delay_ms(delay_ms);
     92 // apm->gain_control()->set_stream_analog_level(analog_level);
     93 //
     94 // apm->ProcessStream(capture_frame);
     95 //
     96 // // Call required stream_ functions.
     97 // analog_level = apm->gain_control()->stream_analog_level();
     98 // has_voice = apm->stream_has_voice();
     99 //
    100 // // Repeate render and capture processing for the duration of the call...
    101 // // Start a new call...
    102 // apm->Initialize();
    103 //
    104 // // Close the application...
    105 // AudioProcessing::Destroy(apm);
    106 // apm = NULL;
    107 //
    108 class AudioProcessing : public Module {
    109  public:
    110   // Creates a APM instance, with identifier |id|. Use one instance for every
    111   // primary audio stream requiring processing. On the client-side, this would
    112   // typically be one instance for the near-end stream, and additional instances
    113   // for each far-end stream which requires processing. On the server-side,
    114   // this would typically be one instance for every incoming stream.
    115   static AudioProcessing* Create(int id);
    116   virtual ~AudioProcessing() {};
    117 
    118   // TODO(andrew): remove this method. We now allow users to delete instances
    119   // directly, useful for scoped_ptr.
    120   // Destroys a |apm| instance.
    121   static void Destroy(AudioProcessing* apm);
    122 
    123   // Initializes internal states, while retaining all user settings. This
    124   // should be called before beginning to process a new audio stream. However,
    125   // it is not necessary to call before processing the first stream after
    126   // creation.
    127   virtual int Initialize() = 0;
    128 
    129   // Sets the sample |rate| in Hz for both the primary and reverse audio
    130   // streams. 8000, 16000 or 32000 Hz are permitted.
    131   virtual int set_sample_rate_hz(int rate) = 0;
    132   virtual int sample_rate_hz() const = 0;
    133 
    134   // Sets the number of channels for the primary audio stream. Input frames must
    135   // contain a number of channels given by |input_channels|, while output frames
    136   // will be returned with number of channels given by |output_channels|.
    137   virtual int set_num_channels(int input_channels, int output_channels) = 0;
    138   virtual int num_input_channels() const = 0;
    139   virtual int num_output_channels() const = 0;
    140 
    141   // Sets the number of channels for the reverse audio stream. Input frames must
    142   // contain a number of channels given by |channels|.
    143   virtual int set_num_reverse_channels(int channels) = 0;
    144   virtual int num_reverse_channels() const = 0;
    145 
    146   // Processes a 10 ms |frame| of the primary audio stream. On the client-side,
    147   // this is the near-end (or captured) audio.
    148   //
    149   // If needed for enabled functionality, any function with the set_stream_ tag
    150   // must be called prior to processing the current frame. Any getter function
    151   // with the stream_ tag which is needed should be called after processing.
    152   //
    153   // The |_frequencyInHz|, |_audioChannel|, and |_payloadDataLengthInSamples|
    154   // members of |frame| must be valid, and correspond to settings supplied
    155   // to APM.
    156   virtual int ProcessStream(AudioFrame* frame) = 0;
    157 
    158   // Analyzes a 10 ms |frame| of the reverse direction audio stream. The frame
    159   // will not be modified. On the client-side, this is the far-end (or to be
    160   // rendered) audio.
    161   //
    162   // It is only necessary to provide this if echo processing is enabled, as the
    163   // reverse stream forms the echo reference signal. It is recommended, but not
    164   // necessary, to provide if gain control is enabled. On the server-side this
    165   // typically will not be used. If you're not sure what to pass in here,
    166   // chances are you don't need to use it.
    167   //
    168   // The |_frequencyInHz|, |_audioChannel|, and |_payloadDataLengthInSamples|
    169   // members of |frame| must be valid.
    170   //
    171   // TODO(ajm): add const to input; requires an implementation fix.
    172   virtual int AnalyzeReverseStream(AudioFrame* frame) = 0;
    173 
    174   // This must be called if and only if echo processing is enabled.
    175   //
    176   // Sets the |delay| in ms between AnalyzeReverseStream() receiving a far-end
    177   // frame and ProcessStream() receiving a near-end frame containing the
    178   // corresponding echo. On the client-side this can be expressed as
    179   //   delay = (t_render - t_analyze) + (t_process - t_capture)
    180   // where,
    181   //   - t_analyze is the time a frame is passed to AnalyzeReverseStream() and
    182   //     t_render is the time the first sample of the same frame is rendered by
    183   //     the audio hardware.
    184   //   - t_capture is the time the first sample of a frame is captured by the
    185   //     audio hardware and t_pull is the time the same frame is passed to
    186   //     ProcessStream().
    187   virtual int set_stream_delay_ms(int delay) = 0;
    188   virtual int stream_delay_ms() const = 0;
    189 
    190   // Starts recording debugging information to a file specified by |filename|,
    191   // a NULL-terminated string. If there is an ongoing recording, the old file
    192   // will be closed, and recording will continue in the newly specified file.
    193   // An already existing file will be overwritten without warning.
    194   static const size_t kMaxFilenameSize = 1024;
    195   virtual int StartDebugRecording(const char filename[kMaxFilenameSize]) = 0;
    196 
    197   // Stops recording debugging information, and closes the file. Recording
    198   // cannot be resumed in the same file (without overwriting it).
    199   virtual int StopDebugRecording() = 0;
    200 
    201   // These provide access to the component interfaces and should never return
    202   // NULL. The pointers will be valid for the lifetime of the APM instance.
    203   // The memory for these objects is entirely managed internally.
    204   virtual EchoCancellation* echo_cancellation() const = 0;
    205   virtual EchoControlMobile* echo_control_mobile() const = 0;
    206   virtual GainControl* gain_control() const = 0;
    207   virtual HighPassFilter* high_pass_filter() const = 0;
    208   virtual LevelEstimator* level_estimator() const = 0;
    209   virtual NoiseSuppression* noise_suppression() const = 0;
    210   virtual VoiceDetection* voice_detection() const = 0;
    211 
    212   struct Statistic {
    213     int instant;  // Instantaneous value.
    214     int average;  // Long-term average.
    215     int maximum;  // Long-term maximum.
    216     int minimum;  // Long-term minimum.
    217   };
    218 
    219   // Fatal errors.
    220   enum Errors {
    221     kNoError = 0,
    222     kUnspecifiedError = -1,
    223     kCreationFailedError = -2,
    224     kUnsupportedComponentError = -3,
    225     kUnsupportedFunctionError = -4,
    226     kNullPointerError = -5,
    227     kBadParameterError = -6,
    228     kBadSampleRateError = -7,
    229     kBadDataLengthError = -8,
    230     kBadNumberChannelsError = -9,
    231     kFileError = -10,
    232     kStreamParameterNotSetError = -11,
    233     kNotEnabledError = -12
    234   };
    235 
    236   // Warnings are non-fatal.
    237   enum Warnings {
    238     // This results when a set_stream_ parameter is out of range. Processing
    239     // will continue, but the parameter may have been truncated.
    240     kBadStreamParameterWarning = -13,
    241   };
    242 
    243   // Inherited from Module.
    244   virtual WebRtc_Word32 TimeUntilNextProcess() { return -1; };
    245   virtual WebRtc_Word32 Process() { return -1; };
    246 };
    247 
    248 // The acoustic echo cancellation (AEC) component provides better performance
    249 // than AECM but also requires more processing power and is dependent on delay
    250 // stability and reporting accuracy. As such it is well-suited and recommended
    251 // for PC and IP phone applications.
    252 //
    253 // Not recommended to be enabled on the server-side.
    254 class EchoCancellation {
    255  public:
    256   // EchoCancellation and EchoControlMobile may not be enabled simultaneously.
    257   // Enabling one will disable the other.
    258   virtual int Enable(bool enable) = 0;
    259   virtual bool is_enabled() const = 0;
    260 
    261   // Differences in clock speed on the primary and reverse streams can impact
    262   // the AEC performance. On the client-side, this could be seen when different
    263   // render and capture devices are used, particularly with webcams.
    264   //
    265   // This enables a compensation mechanism, and requires that
    266   // |set_device_sample_rate_hz()| and |set_stream_drift_samples()| be called.
    267   virtual int enable_drift_compensation(bool enable) = 0;
    268   virtual bool is_drift_compensation_enabled() const = 0;
    269 
    270   // Provides the sampling rate of the audio devices. It is assumed the render
    271   // and capture devices use the same nominal sample rate. Required if and only
    272   // if drift compensation is enabled.
    273   virtual int set_device_sample_rate_hz(int rate) = 0;
    274   virtual int device_sample_rate_hz() const = 0;
    275 
    276   // Sets the difference between the number of samples rendered and captured by
    277   // the audio devices since the last call to |ProcessStream()|. Must be called
    278   // if and only if drift compensation is enabled, prior to |ProcessStream()|.
    279   virtual int set_stream_drift_samples(int drift) = 0;
    280   virtual int stream_drift_samples() const = 0;
    281 
    282   enum SuppressionLevel {
    283     kLowSuppression,
    284     kModerateSuppression,
    285     kHighSuppression
    286   };
    287 
    288   // Sets the aggressiveness of the suppressor. A higher level trades off
    289   // double-talk performance for increased echo suppression.
    290   virtual int set_suppression_level(SuppressionLevel level) = 0;
    291   virtual SuppressionLevel suppression_level() const = 0;
    292 
    293   // Returns false if the current frame almost certainly contains no echo
    294   // and true if it _might_ contain echo.
    295   virtual bool stream_has_echo() const = 0;
    296 
    297   // Enables the computation of various echo metrics. These are obtained
    298   // through |GetMetrics()|.
    299   virtual int enable_metrics(bool enable) = 0;
    300   virtual bool are_metrics_enabled() const = 0;
    301 
    302   // Each statistic is reported in dB.
    303   // P_far:  Far-end (render) signal power.
    304   // P_echo: Near-end (capture) echo signal power.
    305   // P_out:  Signal power at the output of the AEC.
    306   // P_a:    Internal signal power at the point before the AEC's non-linear
    307   //         processor.
    308   struct Metrics {
    309     // RERL = ERL + ERLE
    310     AudioProcessing::Statistic residual_echo_return_loss;
    311 
    312     // ERL = 10log_10(P_far / P_echo)
    313     AudioProcessing::Statistic echo_return_loss;
    314 
    315     // ERLE = 10log_10(P_echo / P_out)
    316     AudioProcessing::Statistic echo_return_loss_enhancement;
    317 
    318     // (Pre non-linear processing suppression) A_NLP = 10log_10(P_echo / P_a)
    319     AudioProcessing::Statistic a_nlp;
    320   };
    321 
    322   // TODO(ajm): discuss the metrics update period.
    323   virtual int GetMetrics(Metrics* metrics) = 0;
    324 
    325   // Enables computation and logging of delay values. Statistics are obtained
    326   // through |GetDelayMetrics()|.
    327   virtual int enable_delay_logging(bool enable) = 0;
    328   virtual bool is_delay_logging_enabled() const = 0;
    329 
    330   // The delay metrics consists of the delay |median| and the delay standard
    331   // deviation |std|. The values are averaged over the time period since the
    332   // last call to |GetDelayMetrics()|.
    333   virtual int GetDelayMetrics(int* median, int* std) = 0;
    334 
    335  protected:
    336   virtual ~EchoCancellation() {};
    337 };
    338 
    339 // The acoustic echo control for mobile (AECM) component is a low complexity
    340 // robust option intended for use on mobile devices.
    341 //
    342 // Not recommended to be enabled on the server-side.
    343 class EchoControlMobile {
    344  public:
    345   // EchoCancellation and EchoControlMobile may not be enabled simultaneously.
    346   // Enabling one will disable the other.
    347   virtual int Enable(bool enable) = 0;
    348   virtual bool is_enabled() const = 0;
    349 
    350   // Recommended settings for particular audio routes. In general, the louder
    351   // the echo is expected to be, the higher this value should be set. The
    352   // preferred setting may vary from device to device.
    353   enum RoutingMode {
    354     kQuietEarpieceOrHeadset,
    355     kEarpiece,
    356     kLoudEarpiece,
    357     kSpeakerphone,
    358     kLoudSpeakerphone
    359   };
    360 
    361   // Sets echo control appropriate for the audio routing |mode| on the device.
    362   // It can and should be updated during a call if the audio routing changes.
    363   virtual int set_routing_mode(RoutingMode mode) = 0;
    364   virtual RoutingMode routing_mode() const = 0;
    365 
    366   // Comfort noise replaces suppressed background noise to maintain a
    367   // consistent signal level.
    368   virtual int enable_comfort_noise(bool enable) = 0;
    369   virtual bool is_comfort_noise_enabled() const = 0;
    370 
    371   // A typical use case is to initialize the component with an echo path from a
    372   // previous call. The echo path is retrieved using |GetEchoPath()|, typically
    373   // at the end of a call. The data can then be stored for later use as an
    374   // initializer before the next call, using |SetEchoPath()|.
    375   //
    376   // Controlling the echo path this way requires the data |size_bytes| to match
    377   // the internal echo path size. This size can be acquired using
    378   // |echo_path_size_bytes()|. |SetEchoPath()| causes an entire reset, worth
    379   // noting if it is to be called during an ongoing call.
    380   //
    381   // It is possible that version incompatibilities may result in a stored echo
    382   // path of the incorrect size. In this case, the stored path should be
    383   // discarded.
    384   virtual int SetEchoPath(const void* echo_path, size_t size_bytes) = 0;
    385   virtual int GetEchoPath(void* echo_path, size_t size_bytes) const = 0;
    386 
    387   // The returned path size is guaranteed not to change for the lifetime of
    388   // the application.
    389   static size_t echo_path_size_bytes();
    390 
    391  protected:
    392   virtual ~EchoControlMobile() {};
    393 };
    394 
    395 // The automatic gain control (AGC) component brings the signal to an
    396 // appropriate range. This is done by applying a digital gain directly and, in
    397 // the analog mode, prescribing an analog gain to be applied at the audio HAL.
    398 //
    399 // Recommended to be enabled on the client-side.
    400 class GainControl {
    401  public:
    402   virtual int Enable(bool enable) = 0;
    403   virtual bool is_enabled() const = 0;
    404 
    405   // When an analog mode is set, this must be called prior to |ProcessStream()|
    406   // to pass the current analog level from the audio HAL. Must be within the
    407   // range provided to |set_analog_level_limits()|.
    408   virtual int set_stream_analog_level(int level) = 0;
    409 
    410   // When an analog mode is set, this should be called after |ProcessStream()|
    411   // to obtain the recommended new analog level for the audio HAL. It is the
    412   // users responsibility to apply this level.
    413   virtual int stream_analog_level() = 0;
    414 
    415   enum Mode {
    416     // Adaptive mode intended for use if an analog volume control is available
    417     // on the capture device. It will require the user to provide coupling
    418     // between the OS mixer controls and AGC through the |stream_analog_level()|
    419     // functions.
    420     //
    421     // It consists of an analog gain prescription for the audio device and a
    422     // digital compression stage.
    423     kAdaptiveAnalog,
    424 
    425     // Adaptive mode intended for situations in which an analog volume control
    426     // is unavailable. It operates in a similar fashion to the adaptive analog
    427     // mode, but with scaling instead applied in the digital domain. As with
    428     // the analog mode, it additionally uses a digital compression stage.
    429     kAdaptiveDigital,
    430 
    431     // Fixed mode which enables only the digital compression stage also used by
    432     // the two adaptive modes.
    433     //
    434     // It is distinguished from the adaptive modes by considering only a
    435     // short time-window of the input signal. It applies a fixed gain through
    436     // most of the input level range, and compresses (gradually reduces gain
    437     // with increasing level) the input signal at higher levels. This mode is
    438     // preferred on embedded devices where the capture signal level is
    439     // predictable, so that a known gain can be applied.
    440     kFixedDigital
    441   };
    442 
    443   virtual int set_mode(Mode mode) = 0;
    444   virtual Mode mode() const = 0;
    445 
    446   // Sets the target peak |level| (or envelope) of the AGC in dBFs (decibels
    447   // from digital full-scale). The convention is to use positive values. For
    448   // instance, passing in a value of 3 corresponds to -3 dBFs, or a target
    449   // level 3 dB below full-scale. Limited to [0, 31].
    450   //
    451   // TODO(ajm): use a negative value here instead, if/when VoE will similarly
    452   //            update its interface.
    453   virtual int set_target_level_dbfs(int level) = 0;
    454   virtual int target_level_dbfs() const = 0;
    455 
    456   // Sets the maximum |gain| the digital compression stage may apply, in dB. A
    457   // higher number corresponds to greater compression, while a value of 0 will
    458   // leave the signal uncompressed. Limited to [0, 90].
    459   virtual int set_compression_gain_db(int gain) = 0;
    460   virtual int compression_gain_db() const = 0;
    461 
    462   // When enabled, the compression stage will hard limit the signal to the
    463   // target level. Otherwise, the signal will be compressed but not limited
    464   // above the target level.
    465   virtual int enable_limiter(bool enable) = 0;
    466   virtual bool is_limiter_enabled() const = 0;
    467 
    468   // Sets the |minimum| and |maximum| analog levels of the audio capture device.
    469   // Must be set if and only if an analog mode is used. Limited to [0, 65535].
    470   virtual int set_analog_level_limits(int minimum,
    471                                       int maximum) = 0;
    472   virtual int analog_level_minimum() const = 0;
    473   virtual int analog_level_maximum() const = 0;
    474 
    475   // Returns true if the AGC has detected a saturation event (period where the
    476   // signal reaches digital full-scale) in the current frame and the analog
    477   // level cannot be reduced.
    478   //
    479   // This could be used as an indicator to reduce or disable analog mic gain at
    480   // the audio HAL.
    481   virtual bool stream_is_saturated() const = 0;
    482 
    483  protected:
    484   virtual ~GainControl() {};
    485 };
    486 
    487 // A filtering component which removes DC offset and low-frequency noise.
    488 // Recommended to be enabled on the client-side.
    489 class HighPassFilter {
    490  public:
    491   virtual int Enable(bool enable) = 0;
    492   virtual bool is_enabled() const = 0;
    493 
    494  protected:
    495   virtual ~HighPassFilter() {};
    496 };
    497 
    498 // An estimation component used to retrieve level metrics.
    499 class LevelEstimator {
    500  public:
    501   virtual int Enable(bool enable) = 0;
    502   virtual bool is_enabled() const = 0;
    503 
    504   // Returns the root mean square (RMS) level in dBFs (decibels from digital
    505   // full-scale), or alternately dBov. It is computed over all primary stream
    506   // frames since the last call to RMS(). The returned value is positive but
    507   // should be interpreted as negative. It is constrained to [0, 127].
    508   //
    509   // The computation follows:
    510   // http://tools.ietf.org/html/draft-ietf-avtext-client-to-mixer-audio-level-05
    511   // with the intent that it can provide the RTP audio level indication.
    512   //
    513   // Frames passed to ProcessStream() with an |_energy| of zero are considered
    514   // to have been muted. The RMS of the frame will be interpreted as -127.
    515   virtual int RMS() = 0;
    516 
    517  protected:
    518   virtual ~LevelEstimator() {};
    519 };
    520 
    521 // The noise suppression (NS) component attempts to remove noise while
    522 // retaining speech. Recommended to be enabled on the client-side.
    523 //
    524 // Recommended to be enabled on the client-side.
    525 class NoiseSuppression {
    526  public:
    527   virtual int Enable(bool enable) = 0;
    528   virtual bool is_enabled() const = 0;
    529 
    530   // Determines the aggressiveness of the suppression. Increasing the level
    531   // will reduce the noise level at the expense of a higher speech distortion.
    532   enum Level {
    533     kLow,
    534     kModerate,
    535     kHigh,
    536     kVeryHigh
    537   };
    538 
    539   virtual int set_level(Level level) = 0;
    540   virtual Level level() const = 0;
    541 
    542  protected:
    543   virtual ~NoiseSuppression() {};
    544 };
    545 
    546 // The voice activity detection (VAD) component analyzes the stream to
    547 // determine if voice is present. A facility is also provided to pass in an
    548 // external VAD decision.
    549 //
    550 // In addition to |stream_has_voice()| the VAD decision is provided through the
    551 // |AudioFrame| passed to |ProcessStream()|. The |_vadActivity| member will be
    552 // modified to reflect the current decision.
    553 class VoiceDetection {
    554  public:
    555   virtual int Enable(bool enable) = 0;
    556   virtual bool is_enabled() const = 0;
    557 
    558   // Returns true if voice is detected in the current frame. Should be called
    559   // after |ProcessStream()|.
    560   virtual bool stream_has_voice() const = 0;
    561 
    562   // Some of the APM functionality requires a VAD decision. In the case that
    563   // a decision is externally available for the current frame, it can be passed
    564   // in here, before |ProcessStream()| is called.
    565   //
    566   // VoiceDetection does _not_ need to be enabled to use this. If it happens to
    567   // be enabled, detection will be skipped for any frame in which an external
    568   // VAD decision is provided.
    569   virtual int set_stream_has_voice(bool has_voice) = 0;
    570 
    571   // Specifies the likelihood that a frame will be declared to contain voice.
    572   // A higher value makes it more likely that speech will not be clipped, at
    573   // the expense of more noise being detected as voice.
    574   enum Likelihood {
    575     kVeryLowLikelihood,
    576     kLowLikelihood,
    577     kModerateLikelihood,
    578     kHighLikelihood
    579   };
    580 
    581   virtual int set_likelihood(Likelihood likelihood) = 0;
    582   virtual Likelihood likelihood() const = 0;
    583 
    584   // Sets the |size| of the frames in ms on which the VAD will operate. Larger
    585   // frames will improve detection accuracy, but reduce the frequency of
    586   // updates.
    587   //
    588   // This does not impact the size of frames passed to |ProcessStream()|.
    589   virtual int set_frame_size_ms(int size) = 0;
    590   virtual int frame_size_ms() const = 0;
    591 
    592  protected:
    593   virtual ~VoiceDetection() {};
    594 };
    595 }  // namespace webrtc
    596 
    597 #endif  // WEBRTC_MODULES_AUDIO_PROCESSING_MAIN_INTERFACE_AUDIO_PROCESSING_H_
    598