Home | History | Annotate | Download | only in x86
      1 /*
      2  * Copyright (C) 2012 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "codegen_x86.h"
     18 #include "dex/quick/mir_to_lir-inl.h"
     19 #include "x86_lir.h"
     20 
     21 namespace art {
     22 
     23 #define MAX_ASSEMBLER_RETRIES 50
     24 
     25 const X86EncodingMap X86Mir2Lir::EncodingMap[kX86Last] = {
     26   { kX8632BitData, kData,    IS_UNARY_OP,            { 0, 0, 0x00, 0, 0, 0, 0, 4 }, "data",  "0x!0d" },
     27   { kX86Bkpt,      kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xCC, 0, 0, 0, 0, 0 }, "int 3", "" },
     28   { kX86Nop,       kNop,     IS_UNARY_OP,            { 0, 0, 0x90, 0, 0, 0, 0, 0 }, "nop",   "" },
     29 
     30 #define ENCODING_MAP(opname, mem_use, reg_def, uses_ccodes, \
     31                      rm8_r8, rm32_r32, \
     32                      r8_rm8, r32_rm32, \
     33                      ax8_i8, ax32_i32, \
     34                      rm8_i8, rm8_i8_modrm, \
     35                      rm32_i32, rm32_i32_modrm, \
     36                      rm32_i8, rm32_i8_modrm) \
     37 { kX86 ## opname ## 8MR, kMemReg,    mem_use | IS_TERTIARY_OP |           REG_USE02  | SETS_CCODES | uses_ccodes, { 0,             0, rm8_r8, 0, 0, 0,            0,      0 }, #opname "8MR", "[!0r+!1d],!2r" }, \
     38 { kX86 ## opname ## 8AR, kArrayReg,  mem_use | IS_QUIN_OP     |           REG_USE014 | SETS_CCODES | uses_ccodes, { 0,             0, rm8_r8, 0, 0, 0,            0,      0 }, #opname "8AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
     39 { kX86 ## opname ## 8TR, kThreadReg, mem_use | IS_BINARY_OP   |           REG_USE1   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_r8, 0, 0, 0,            0,      0 }, #opname "8TR", "fs:[!0d],!1r" }, \
     40 { kX86 ## opname ## 8RR, kRegReg,              IS_BINARY_OP   | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r8_rm8, 0, 0, 0,            0,      0 }, #opname "8RR", "!0r,!1r" }, \
     41 { kX86 ## opname ## 8RM, kRegMem,    IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r8_rm8, 0, 0, 0,            0,      0 }, #opname "8RM", "!0r,[!1r+!2d]" }, \
     42 { kX86 ## opname ## 8RA, kRegArray,  IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0,             0, r8_rm8, 0, 0, 0,            0,      0 }, #opname "8RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
     43 { kX86 ## opname ## 8RT, kRegThread, IS_LOAD | IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r8_rm8, 0, 0, 0,            0,      0 }, #opname "8RT", "!0r,fs:[!1d]" }, \
     44 { kX86 ## opname ## 8RI, kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm8_i8, 0, 0, rm8_i8_modrm, ax8_i8, 1 }, #opname "8RI", "!0r,!1d" }, \
     45 { kX86 ## opname ## 8MI, kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm8_i8, 0, 0, rm8_i8_modrm, 0,      1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
     46 { kX86 ## opname ## 8AI, kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, rm8_i8, 0, 0, rm8_i8_modrm, 0,      1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
     47 { kX86 ## opname ## 8TI, kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0,      1 }, #opname "8TI", "fs:[!0d],!1d" }, \
     48   \
     49 { kX86 ## opname ## 16MR,  kMemReg,    mem_use | IS_TERTIARY_OP |           REG_USE02  | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_r32, 0, 0, 0,              0,        0 }, #opname "16MR", "[!0r+!1d],!2r" }, \
     50 { kX86 ## opname ## 16AR,  kArrayReg,  mem_use | IS_QUIN_OP     |           REG_USE014 | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_r32, 0, 0, 0,              0,        0 }, #opname "16AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
     51 { kX86 ## opname ## 16TR,  kThreadReg, mem_use | IS_BINARY_OP   |           REG_USE1   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_r32, 0, 0, 0,              0,        0 }, #opname "16TR", "fs:[!0d],!1r" }, \
     52 { kX86 ## opname ## 16RR,  kRegReg,              IS_BINARY_OP   | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    r32_rm32, 0, 0, 0,              0,        0 }, #opname "16RR", "!0r,!1r" }, \
     53 { kX86 ## opname ## 16RM,  kRegMem,    IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    r32_rm32, 0, 0, 0,              0,        0 }, #opname "16RM", "!0r,[!1r+!2d]" }, \
     54 { kX86 ## opname ## 16RA,  kRegArray,  IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0x66,          0,    r32_rm32, 0, 0, 0,              0,        0 }, #opname "16RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
     55 { kX86 ## opname ## 16RT,  kRegThread, IS_LOAD | IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, r32_rm32, 0, 0, 0,              0,        0 }, #opname "16RT", "!0r,fs:[!1d]" }, \
     56 { kX86 ## opname ## 16RI,  kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 2 }, #opname "16RI", "!0r,!1d" }, \
     57 { kX86 ## opname ## 16MI,  kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i32, 0, 0, rm32_i32_modrm, 0,        2 }, #opname "16MI", "[!0r+!1d],!2d" }, \
     58 { kX86 ## opname ## 16AI,  kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i32, 0, 0, rm32_i32_modrm, 0,        2 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
     59 { kX86 ## opname ## 16TI,  kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i32, 0, 0, rm32_i32_modrm, 0,        2 }, #opname "16TI", "fs:[!0d],!1d" }, \
     60 { kX86 ## opname ## 16RI8, kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "16RI8", "!0r,!1d" }, \
     61 { kX86 ## opname ## 16MI8, kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "16MI8", "[!0r+!1d],!2d" }, \
     62 { kX86 ## opname ## 16AI8, kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "16AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
     63 { kX86 ## opname ## 16TI8, kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "16TI8", "fs:[!0d],!1d" }, \
     64   \
     65 { kX86 ## opname ## 32MR,  kMemReg,    mem_use | IS_TERTIARY_OP |           REG_USE02  | SETS_CCODES | uses_ccodes, { 0,             0, rm32_r32, 0, 0, 0,              0,        0 }, #opname "32MR", "[!0r+!1d],!2r" }, \
     66 { kX86 ## opname ## 32AR,  kArrayReg,  mem_use | IS_QUIN_OP     |           REG_USE014 | SETS_CCODES | uses_ccodes, { 0,             0, rm32_r32, 0, 0, 0,              0,        0 }, #opname "32AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
     67 { kX86 ## opname ## 32TR,  kThreadReg, mem_use | IS_BINARY_OP   |           REG_USE1   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_r32, 0, 0, 0,              0,        0 }, #opname "32TR", "fs:[!0d],!1r" }, \
     68 { kX86 ## opname ## 32RR,  kRegReg,              IS_BINARY_OP   | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r32_rm32, 0, 0, 0,              0,        0 }, #opname "32RR", "!0r,!1r" }, \
     69 { kX86 ## opname ## 32RM,  kRegMem,    IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r32_rm32, 0, 0, 0,              0,        0 }, #opname "32RM", "!0r,[!1r+!2d]" }, \
     70 { kX86 ## opname ## 32RA,  kRegArray,  IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0,             0, r32_rm32, 0, 0, 0,              0,        0 }, #opname "32RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
     71 { kX86 ## opname ## 32RT,  kRegThread, IS_LOAD | IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r32_rm32, 0, 0, 0,              0,        0 }, #opname "32RT", "!0r,fs:[!1d]" }, \
     72 { kX86 ## opname ## 32RI,  kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4 }, #opname "32RI", "!0r,!1d" }, \
     73 { kX86 ## opname ## 32MI,  kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4 }, #opname "32MI", "[!0r+!1d],!2d" }, \
     74 { kX86 ## opname ## 32AI,  kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
     75 { kX86 ## opname ## 32TI,  kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4 }, #opname "32TI", "fs:[!0d],!1d" }, \
     76 { kX86 ## opname ## 32RI8, kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "32RI8", "!0r,!1d" }, \
     77 { kX86 ## opname ## 32MI8, kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "32MI8", "[!0r+!1d],!2d" }, \
     78 { kX86 ## opname ## 32AI8, kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "32AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
     79 { kX86 ## opname ## 32TI8, kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "32TI8", "fs:[!0d],!1d" }
     80 
     81 ENCODING_MAP(Add, IS_LOAD | IS_STORE, REG_DEF0, 0,
     82   0x00 /* RegMem8/Reg8 */,     0x01 /* RegMem32/Reg32 */,
     83   0x02 /* Reg8/RegMem8 */,     0x03 /* Reg32/RegMem32 */,
     84   0x04 /* Rax8/imm8 opcode */, 0x05 /* Rax32/imm32 */,
     85   0x80, 0x0 /* RegMem8/imm8 */,
     86   0x81, 0x0 /* RegMem32/imm32 */, 0x83, 0x0 /* RegMem32/imm8 */),
     87 ENCODING_MAP(Or, IS_LOAD | IS_STORE, REG_DEF0, 0,
     88   0x08 /* RegMem8/Reg8 */,     0x09 /* RegMem32/Reg32 */,
     89   0x0A /* Reg8/RegMem8 */,     0x0B /* Reg32/RegMem32 */,
     90   0x0C /* Rax8/imm8 opcode */, 0x0D /* Rax32/imm32 */,
     91   0x80, 0x1 /* RegMem8/imm8 */,
     92   0x81, 0x1 /* RegMem32/imm32 */, 0x83, 0x1 /* RegMem32/imm8 */),
     93 ENCODING_MAP(Adc, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
     94   0x10 /* RegMem8/Reg8 */,     0x11 /* RegMem32/Reg32 */,
     95   0x12 /* Reg8/RegMem8 */,     0x13 /* Reg32/RegMem32 */,
     96   0x14 /* Rax8/imm8 opcode */, 0x15 /* Rax32/imm32 */,
     97   0x80, 0x2 /* RegMem8/imm8 */,
     98   0x81, 0x2 /* RegMem32/imm32 */, 0x83, 0x2 /* RegMem32/imm8 */),
     99 ENCODING_MAP(Sbb, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
    100   0x18 /* RegMem8/Reg8 */,     0x19 /* RegMem32/Reg32 */,
    101   0x1A /* Reg8/RegMem8 */,     0x1B /* Reg32/RegMem32 */,
    102   0x1C /* Rax8/imm8 opcode */, 0x1D /* Rax32/imm32 */,
    103   0x80, 0x3 /* RegMem8/imm8 */,
    104   0x81, 0x3 /* RegMem32/imm32 */, 0x83, 0x3 /* RegMem32/imm8 */),
    105 ENCODING_MAP(And, IS_LOAD | IS_STORE, REG_DEF0, 0,
    106   0x20 /* RegMem8/Reg8 */,     0x21 /* RegMem32/Reg32 */,
    107   0x22 /* Reg8/RegMem8 */,     0x23 /* Reg32/RegMem32 */,
    108   0x24 /* Rax8/imm8 opcode */, 0x25 /* Rax32/imm32 */,
    109   0x80, 0x4 /* RegMem8/imm8 */,
    110   0x81, 0x4 /* RegMem32/imm32 */, 0x83, 0x4 /* RegMem32/imm8 */),
    111 ENCODING_MAP(Sub, IS_LOAD | IS_STORE, REG_DEF0, 0,
    112   0x28 /* RegMem8/Reg8 */,     0x29 /* RegMem32/Reg32 */,
    113   0x2A /* Reg8/RegMem8 */,     0x2B /* Reg32/RegMem32 */,
    114   0x2C /* Rax8/imm8 opcode */, 0x2D /* Rax32/imm32 */,
    115   0x80, 0x5 /* RegMem8/imm8 */,
    116   0x81, 0x5 /* RegMem32/imm32 */, 0x83, 0x5 /* RegMem32/imm8 */),
    117 ENCODING_MAP(Xor, IS_LOAD | IS_STORE, REG_DEF0, 0,
    118   0x30 /* RegMem8/Reg8 */,     0x31 /* RegMem32/Reg32 */,
    119   0x32 /* Reg8/RegMem8 */,     0x33 /* Reg32/RegMem32 */,
    120   0x34 /* Rax8/imm8 opcode */, 0x35 /* Rax32/imm32 */,
    121   0x80, 0x6 /* RegMem8/imm8 */,
    122   0x81, 0x6 /* RegMem32/imm32 */, 0x83, 0x6 /* RegMem32/imm8 */),
    123 ENCODING_MAP(Cmp, IS_LOAD, 0, 0,
    124   0x38 /* RegMem8/Reg8 */,     0x39 /* RegMem32/Reg32 */,
    125   0x3A /* Reg8/RegMem8 */,     0x3B /* Reg32/RegMem32 */,
    126   0x3C /* Rax8/imm8 opcode */, 0x3D /* Rax32/imm32 */,
    127   0x80, 0x7 /* RegMem8/imm8 */,
    128   0x81, 0x7 /* RegMem32/imm32 */, 0x83, 0x7 /* RegMem32/imm8 */),
    129 #undef ENCODING_MAP
    130 
    131   { kX86Imul16RRI,   kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RRI", "!0r,!1r,!2d" },
    132   { kX86Imul16RMI,   kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RMI", "!0r,[!1r+!2d],!3d" },
    133   { kX86Imul16RAI,   kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
    134 
    135   { kX86Imul32RRI,   kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RRI", "!0r,!1r,!2d" },
    136   { kX86Imul32RMI,   kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RMI", "!0r,[!1r+!2d],!3d" },
    137   { kX86Imul32RAI,   kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
    138   { kX86Imul32RRI8,  kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RRI8", "!0r,!1r,!2d" },
    139   { kX86Imul32RMI8,  kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RMI8", "!0r,[!1r+!2d],!3d" },
    140   { kX86Imul32RAI8,  kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RAI8", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
    141 
    142   { kX86Mov8MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,      { 0,             0, 0x88, 0, 0, 0, 0, 0 }, "Mov8MR", "[!0r+!1d],!2r" },
    143   { kX86Mov8AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,     { 0,             0, 0x88, 0, 0, 0, 0, 0 }, "Mov8AR", "[!0r+!1r<<!2d+!3d],!4r" },
    144   { kX86Mov8TR, kThreadReg, IS_STORE | IS_BINARY_OP   | REG_USE1,       { THREAD_PREFIX, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8TR", "fs:[!0d],!1r" },
    145   { kX86Mov8RR, kRegReg,               IS_BINARY_OP   | REG_DEF0_USE1,  { 0,             0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RR", "!0r,!1r" },
    146   { kX86Mov8RM, kRegMem,    IS_LOAD  | IS_TERTIARY_OP | REG_DEF0_USE1,  { 0,             0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RM", "!0r,[!1r+!2d]" },
    147   { kX86Mov8RA, kRegArray,  IS_LOAD  | IS_QUIN_OP     | REG_DEF0_USE12, { 0,             0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RA", "!0r,[!1r+!2r<<!3d+!4d]" },
    148   { kX86Mov8RT, kRegThread, IS_LOAD  | IS_BINARY_OP   | REG_DEF0,       { THREAD_PREFIX, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RT", "!0r,fs:[!1d]" },
    149   { kX86Mov8RI, kMovRegImm,            IS_BINARY_OP   | REG_DEF0,       { 0,             0, 0xB0, 0, 0, 0, 0, 1 }, "Mov8RI", "!0r,!1d" },
    150   { kX86Mov8MI, kMemImm,    IS_STORE | IS_TERTIARY_OP | REG_USE0,       { 0,             0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8MI", "[!0r+!1d],!2d" },
    151   { kX86Mov8AI, kArrayImm,  IS_STORE | IS_QUIN_OP     | REG_USE01,      { 0,             0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8AI", "[!0r+!1r<<!2d+!3d],!4d" },
    152   { kX86Mov8TI, kThreadImm, IS_STORE | IS_BINARY_OP,                    { THREAD_PREFIX, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8TI", "fs:[!0d],!1d" },
    153 
    154   { kX86Mov16MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,      { 0x66,          0,    0x89, 0, 0, 0, 0, 0 }, "Mov16MR", "[!0r+!1d],!2r" },
    155   { kX86Mov16AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,     { 0x66,          0,    0x89, 0, 0, 0, 0, 0 }, "Mov16AR", "[!0r+!1r<<!2d+!3d],!4r" },
    156   { kX86Mov16TR, kThreadReg, IS_STORE | IS_BINARY_OP   | REG_USE1,       { THREAD_PREFIX, 0x66, 0x89, 0, 0, 0, 0, 0 }, "Mov16TR", "fs:[!0d],!1r" },
    157   { kX86Mov16RR, kRegReg,               IS_BINARY_OP   | REG_DEF0_USE1,  { 0x66,          0,    0x8B, 0, 0, 0, 0, 0 }, "Mov16RR", "!0r,!1r" },
    158   { kX86Mov16RM, kRegMem,    IS_LOAD  | IS_TERTIARY_OP | REG_DEF0_USE1,  { 0x66,          0,    0x8B, 0, 0, 0, 0, 0 }, "Mov16RM", "!0r,[!1r+!2d]" },
    159   { kX86Mov16RA, kRegArray,  IS_LOAD  | IS_QUIN_OP     | REG_DEF0_USE12, { 0x66,          0,    0x8B, 0, 0, 0, 0, 0 }, "Mov16RA", "!0r,[!1r+!2r<<!3d+!4d]" },
    160   { kX86Mov16RT, kRegThread, IS_LOAD  | IS_BINARY_OP   | REG_DEF0,       { THREAD_PREFIX, 0x66, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RT", "!0r,fs:[!1d]" },
    161   { kX86Mov16RI, kMovRegImm,            IS_BINARY_OP   | REG_DEF0,       { 0x66,          0,    0xB8, 0, 0, 0, 0, 2 }, "Mov16RI", "!0r,!1d" },
    162   { kX86Mov16MI, kMemImm,    IS_STORE | IS_TERTIARY_OP | REG_USE0,       { 0x66,          0,    0xC7, 0, 0, 0, 0, 2 }, "Mov16MI", "[!0r+!1d],!2d" },
    163   { kX86Mov16AI, kArrayImm,  IS_STORE | IS_QUIN_OP     | REG_USE01,      { 0x66,          0,    0xC7, 0, 0, 0, 0, 2 }, "Mov16AI", "[!0r+!1r<<!2d+!3d],!4d" },
    164   { kX86Mov16TI, kThreadImm, IS_STORE | IS_BINARY_OP,                    { THREAD_PREFIX, 0x66, 0xC7, 0, 0, 0, 0, 2 }, "Mov16TI", "fs:[!0d],!1d" },
    165 
    166   { kX86Mov32MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,      { 0,             0, 0x89, 0, 0, 0, 0, 0 }, "Mov32MR", "[!0r+!1d],!2r" },
    167   { kX86Mov32AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,     { 0,             0, 0x89, 0, 0, 0, 0, 0 }, "Mov32AR", "[!0r+!1r<<!2d+!3d],!4r" },
    168   { kX86Mov32TR, kThreadReg, IS_STORE | IS_BINARY_OP   | REG_USE1,       { THREAD_PREFIX, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32TR", "fs:[!0d],!1r" },
    169   { kX86Mov32RR, kRegReg,               IS_BINARY_OP   | REG_DEF0_USE1,  { 0,             0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RR", "!0r,!1r" },
    170   { kX86Mov32RM, kRegMem,    IS_LOAD  | IS_TERTIARY_OP | REG_DEF0_USE1,  { 0,             0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RM", "!0r,[!1r+!2d]" },
    171   { kX86Mov32RA, kRegArray,  IS_LOAD  | IS_QUIN_OP     | REG_DEF0_USE12, { 0,             0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
    172   { kX86Mov32RT, kRegThread, IS_LOAD  | IS_BINARY_OP   | REG_DEF0,       { THREAD_PREFIX, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RT", "!0r,fs:[!1d]" },
    173   { kX86Mov32RI, kMovRegImm,            IS_BINARY_OP   | REG_DEF0,       { 0,             0, 0xB8, 0, 0, 0, 0, 4 }, "Mov32RI", "!0r,!1d" },
    174   { kX86Mov32MI, kMemImm,    IS_STORE | IS_TERTIARY_OP | REG_USE0,       { 0,             0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32MI", "[!0r+!1d],!2d" },
    175   { kX86Mov32AI, kArrayImm,  IS_STORE | IS_QUIN_OP     | REG_USE01,      { 0,             0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32AI", "[!0r+!1r<<!2d+!3d],!4d" },
    176   { kX86Mov32TI, kThreadImm, IS_STORE | IS_BINARY_OP,                    { THREAD_PREFIX, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32TI", "fs:[!0d],!1d" },
    177 
    178   { kX86Lea32RA, kRegArray, IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8D, 0, 0, 0, 0, 0 }, "Lea32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
    179 
    180 #define SHIFT_ENCODING_MAP(opname, modrm_opcode) \
    181 { kX86 ## opname ## 8RI, kShiftRegImm,                        IS_BINARY_OP   | REG_DEF0_USE0 |            SETS_CCODES, { 0,    0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8RI", "!0r,!1d" }, \
    182 { kX86 ## opname ## 8MI, kShiftMemImm,   IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      |            SETS_CCODES, { 0,    0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
    183 { kX86 ## opname ## 8AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     |            SETS_CCODES, { 0,    0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
    184 { kX86 ## opname ## 8RC, kShiftRegCl,                         IS_BINARY_OP   | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0,    0, 0xD2, 0, 0, modrm_opcode, 0,    1 }, #opname "8RC", "!0r,cl" }, \
    185 { kX86 ## opname ## 8MC, kShiftMemCl,    IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      | REG_USEC | SETS_CCODES, { 0,    0, 0xD2, 0, 0, modrm_opcode, 0,    1 }, #opname "8MC", "[!0r+!1d],cl" }, \
    186 { kX86 ## opname ## 8AC, kShiftArrayCl,  IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     | REG_USEC | SETS_CCODES, { 0,    0, 0xD2, 0, 0, modrm_opcode, 0,    1 }, #opname "8AC", "[!0r+!1r<<!2d+!3d],cl" }, \
    187   \
    188 { kX86 ## opname ## 16RI, kShiftRegImm,                        IS_BINARY_OP   | REG_DEF0_USE0 |            SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16RI", "!0r,!1d" }, \
    189 { kX86 ## opname ## 16MI, kShiftMemImm,   IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      |            SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16MI", "[!0r+!1d],!2d" }, \
    190 { kX86 ## opname ## 16AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     |            SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
    191 { kX86 ## opname ## 16RC, kShiftRegCl,                         IS_BINARY_OP   | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0,    1 }, #opname "16RC", "!0r,cl" }, \
    192 { kX86 ## opname ## 16MC, kShiftMemCl,    IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0,    1 }, #opname "16MC", "[!0r+!1d],cl" }, \
    193 { kX86 ## opname ## 16AC, kShiftArrayCl,  IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0,    1 }, #opname "16AC", "[!0r+!1r<<!2d+!3d],cl" }, \
    194   \
    195 { kX86 ## opname ## 32RI, kShiftRegImm,                        IS_BINARY_OP   | REG_DEF0_USE0 |            SETS_CCODES, { 0,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32RI", "!0r,!1d" }, \
    196 { kX86 ## opname ## 32MI, kShiftMemImm,   IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      |            SETS_CCODES, { 0,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32MI", "[!0r+!1d],!2d" }, \
    197 { kX86 ## opname ## 32AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     |            SETS_CCODES, { 0,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
    198 { kX86 ## opname ## 32RC, kShiftRegCl,                         IS_BINARY_OP   | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0,    0, 0xD3, 0, 0, modrm_opcode, 0,    0 }, #opname "32RC", "!0r,cl" }, \
    199 { kX86 ## opname ## 32MC, kShiftMemCl,    IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      | REG_USEC | SETS_CCODES, { 0,    0, 0xD3, 0, 0, modrm_opcode, 0,    0 }, #opname "32MC", "[!0r+!1d],cl" }, \
    200 { kX86 ## opname ## 32AC, kShiftArrayCl,  IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     | REG_USEC | SETS_CCODES, { 0,    0, 0xD3, 0, 0, modrm_opcode, 0,    0 }, #opname "32AC", "[!0r+!1r<<!2d+!3d],cl" }
    201 
    202   SHIFT_ENCODING_MAP(Rol, 0x0),
    203   SHIFT_ENCODING_MAP(Ror, 0x1),
    204   SHIFT_ENCODING_MAP(Rcl, 0x2),
    205   SHIFT_ENCODING_MAP(Rcr, 0x3),
    206   SHIFT_ENCODING_MAP(Sal, 0x4),
    207   SHIFT_ENCODING_MAP(Shr, 0x5),
    208   SHIFT_ENCODING_MAP(Sar, 0x7),
    209 #undef SHIFT_ENCODING_MAP
    210 
    211   { kX86Cmc, kNullary, NO_OPERAND, { 0, 0, 0xF5, 0, 0, 0, 0, 0}, "Cmc", "" },
    212 
    213   { kX86Test8RI,  kRegImm,             IS_BINARY_OP   | REG_USE0  | SETS_CCODES, { 0,    0, 0xF6, 0, 0, 0, 0, 1}, "Test8RI", "!0r,!1d" },
    214   { kX86Test8MI,  kMemImm,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { 0,    0, 0xF6, 0, 0, 0, 0, 1}, "Test8MI", "[!0r+!1d],!2d" },
    215   { kX86Test8AI,  kArrayImm, IS_LOAD | IS_QUIN_OP     | REG_USE01 | SETS_CCODES, { 0,    0, 0xF6, 0, 0, 0, 0, 1}, "Test8AI", "[!0r+!1r<<!2d+!3d],!4d" },
    216   { kX86Test16RI, kRegImm,             IS_BINARY_OP   | REG_USE0  | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16RI", "!0r,!1d" },
    217   { kX86Test16MI, kMemImm,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16MI", "[!0r+!1d],!2d" },
    218   { kX86Test16AI, kArrayImm, IS_LOAD | IS_QUIN_OP     | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16AI", "[!0r+!1r<<!2d+!3d],!4d" },
    219   { kX86Test32RI, kRegImm,             IS_BINARY_OP   | REG_USE0  | SETS_CCODES, { 0,    0, 0xF7, 0, 0, 0, 0, 4}, "Test32RI", "!0r,!1d" },
    220   { kX86Test32MI, kMemImm,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { 0,    0, 0xF7, 0, 0, 0, 0, 4}, "Test32MI", "[!0r+!1d],!2d" },
    221   { kX86Test32AI, kArrayImm, IS_LOAD | IS_QUIN_OP     | REG_USE01 | SETS_CCODES, { 0,    0, 0xF7, 0, 0, 0, 0, 4}, "Test32AI", "[!0r+!1r<<!2d+!3d],!4d" },
    222   { kX86Test32RR, kRegReg,             IS_BINARY_OP   | REG_USE01 | SETS_CCODES, { 0,    0, 0x85, 0, 0, 0, 0, 0}, "Test32RR", "!0r,!1r" },
    223 
    224 #define UNARY_ENCODING_MAP(opname, modrm, is_store, sets_ccodes, \
    225                            reg, reg_kind, reg_flags, \
    226                            mem, mem_kind, mem_flags, \
    227                            arr, arr_kind, arr_flags, imm, \
    228                            b_flags, hw_flags, w_flags, \
    229                            b_format, hw_format, w_format) \
    230 { kX86 ## opname ## 8 ## reg,  reg_kind,                      reg_flags | b_flags  | sets_ccodes, { 0,    0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #reg, #b_format "!0r" }, \
    231 { kX86 ## opname ## 8 ## mem,  mem_kind, IS_LOAD | is_store | mem_flags | b_flags  | sets_ccodes, { 0,    0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #mem, #b_format "[!0r+!1d]" }, \
    232 { kX86 ## opname ## 8 ## arr,  arr_kind, IS_LOAD | is_store | arr_flags | b_flags  | sets_ccodes, { 0,    0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #arr, #b_format "[!0r+!1r<<!2d+!3d]" }, \
    233 { kX86 ## opname ## 16 ## reg, reg_kind,                      reg_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #reg, #hw_format "!0r" }, \
    234 { kX86 ## opname ## 16 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #mem, #hw_format "[!0r+!1d]" }, \
    235 { kX86 ## opname ## 16 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #arr, #hw_format "[!0r+!1r<<!2d+!3d]" }, \
    236 { kX86 ## opname ## 32 ## reg, reg_kind,                      reg_flags | w_flags  | sets_ccodes, { 0,    0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #reg, #w_format "!0r" }, \
    237 { kX86 ## opname ## 32 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | w_flags  | sets_ccodes, { 0,    0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #mem, #w_format "[!0r+!1d]" }, \
    238 { kX86 ## opname ## 32 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | w_flags  | sets_ccodes, { 0,    0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #arr, #w_format "[!0r+!1r<<!2d+!3d]" }
    239 
    240   UNARY_ENCODING_MAP(Not, 0x2, IS_STORE, 0,           R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
    241   UNARY_ENCODING_MAP(Neg, 0x3, IS_STORE, SETS_CCODES, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
    242 
    243   UNARY_ENCODING_MAP(Mul,     0x4, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA,  REG_DEFAD_USEA,  "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
    244   UNARY_ENCODING_MAP(Imul,    0x5, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA,  REG_DEFAD_USEA,  "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
    245   UNARY_ENCODING_MAP(Divmod,  0x6, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
    246   UNARY_ENCODING_MAP(Idivmod, 0x7, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
    247 #undef UNARY_ENCODING_MAP
    248 
    249 #define EXT_0F_ENCODING_MAP(opname, prefix, opcode, reg_def) \
    250 { kX86 ## opname ## RR, kRegReg,             IS_BINARY_OP   | reg_def | REG_USE01,  { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RR", "!0r,!1r" }, \
    251 { kX86 ## opname ## RM, kRegMem,   IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01,  { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RM", "!0r,[!1r+!2d]" }, \
    252 { kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
    253 
    254   EXT_0F_ENCODING_MAP(Movsd, 0xF2, 0x10, REG_DEF0),
    255   { kX86MovsdMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdMR", "[!0r+!1d],!2r" },
    256   { kX86MovsdAR, kArrayReg, IS_STORE | IS_QUIN_OP     | REG_USE014, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdAR", "[!0r+!1r<<!2d+!3d],!4r" },
    257 
    258   EXT_0F_ENCODING_MAP(Movss, 0xF3, 0x10, REG_DEF0),
    259   { kX86MovssMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssMR", "[!0r+!1d],!2r" },
    260   { kX86MovssAR, kArrayReg, IS_STORE | IS_QUIN_OP     | REG_USE014, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssAR", "[!0r+!1r<<!2d+!3d],!4r" },
    261 
    262   EXT_0F_ENCODING_MAP(Cvtsi2sd,  0xF2, 0x2A, REG_DEF0),
    263   EXT_0F_ENCODING_MAP(Cvtsi2ss,  0xF3, 0x2A, REG_DEF0),
    264   EXT_0F_ENCODING_MAP(Cvttsd2si, 0xF2, 0x2C, REG_DEF0),
    265   EXT_0F_ENCODING_MAP(Cvttss2si, 0xF3, 0x2C, REG_DEF0),
    266   EXT_0F_ENCODING_MAP(Cvtsd2si,  0xF2, 0x2D, REG_DEF0),
    267   EXT_0F_ENCODING_MAP(Cvtss2si,  0xF3, 0x2D, REG_DEF0),
    268   EXT_0F_ENCODING_MAP(Ucomisd,   0x66, 0x2E, SETS_CCODES),
    269   EXT_0F_ENCODING_MAP(Ucomiss,   0x00, 0x2E, SETS_CCODES),
    270   EXT_0F_ENCODING_MAP(Comisd,    0x66, 0x2F, SETS_CCODES),
    271   EXT_0F_ENCODING_MAP(Comiss,    0x00, 0x2F, SETS_CCODES),
    272   EXT_0F_ENCODING_MAP(Orps,      0x00, 0x56, REG_DEF0),
    273   EXT_0F_ENCODING_MAP(Xorps,     0x00, 0x57, REG_DEF0),
    274   EXT_0F_ENCODING_MAP(Addsd,     0xF2, 0x58, REG_DEF0),
    275   EXT_0F_ENCODING_MAP(Addss,     0xF3, 0x58, REG_DEF0),
    276   EXT_0F_ENCODING_MAP(Mulsd,     0xF2, 0x59, REG_DEF0),
    277   EXT_0F_ENCODING_MAP(Mulss,     0xF3, 0x59, REG_DEF0),
    278   EXT_0F_ENCODING_MAP(Cvtsd2ss,  0xF2, 0x5A, REG_DEF0),
    279   EXT_0F_ENCODING_MAP(Cvtss2sd,  0xF3, 0x5A, REG_DEF0),
    280   EXT_0F_ENCODING_MAP(Subsd,     0xF2, 0x5C, REG_DEF0),
    281   EXT_0F_ENCODING_MAP(Subss,     0xF3, 0x5C, REG_DEF0),
    282   EXT_0F_ENCODING_MAP(Divsd,     0xF2, 0x5E, REG_DEF0),
    283   EXT_0F_ENCODING_MAP(Divss,     0xF3, 0x5E, REG_DEF0),
    284 
    285   { kX86PsrlqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 2, 0, 1 }, "PsrlqRI", "!0r,!1d" },
    286   { kX86PsllqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 6, 0, 1 }, "PsllqRI", "!0r,!1d" },
    287 
    288   EXT_0F_ENCODING_MAP(Movdxr,    0x66, 0x6E, REG_DEF0),
    289   { kX86MovdrxRR, kRegRegStore, IS_BINARY_OP | REG_DEF0   | REG_USE01,  { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxRR", "!0r,!1r" },
    290   { kX86MovdrxMR, kMemReg,      IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxMR", "[!0r+!1d],!2r" },
    291   { kX86MovdrxAR, kArrayReg,    IS_STORE | IS_QUIN_OP     | REG_USE014, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxAR", "[!0r+!1r<<!2d+!3d],!4r" },
    292 
    293   { kX86Set8R, kRegCond,              IS_BINARY_OP   | REG_DEF0  | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8R", "!1c !0r" },
    294   { kX86Set8M, kMemCond,   IS_STORE | IS_TERTIARY_OP | REG_USE0  | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8M", "!2c [!0r+!1d]" },
    295   { kX86Set8A, kArrayCond, IS_STORE | IS_QUIN_OP     | REG_USE01 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8A", "!4c [!0r+!1r<<!2d+!3d]" },
    296 
    297   // TODO: load/store?
    298   // Encode the modrm opcode as an extra opcode byte to avoid computation during assembly.
    299   { kX86Mfence, kReg,                 NO_OPERAND,     { 0, 0, 0x0F, 0xAE, 0, 6, 0, 0 }, "Mfence", "" },
    300 
    301   EXT_0F_ENCODING_MAP(Imul16,  0x66, 0xAF, REG_DEF0 | SETS_CCODES),
    302   EXT_0F_ENCODING_MAP(Imul32,  0x00, 0xAF, REG_DEF0 | SETS_CCODES),
    303 
    304   { kX86CmpxchgRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "!0r,!1r" },
    305   { kX86CmpxchgMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1d],!2r" },
    306   { kX86CmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
    307   { kX86LockCmpxchgRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "!0r,!1r" },
    308   { kX86LockCmpxchgMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1d],!2r" },
    309   { kX86LockCmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
    310 
    311   EXT_0F_ENCODING_MAP(Movzx8,  0x00, 0xB6, REG_DEF0),
    312   EXT_0F_ENCODING_MAP(Movzx16, 0x00, 0xB7, REG_DEF0),
    313   EXT_0F_ENCODING_MAP(Movsx8,  0x00, 0xBE, REG_DEF0),
    314   EXT_0F_ENCODING_MAP(Movsx16, 0x00, 0xBF, REG_DEF0),
    315 #undef EXT_0F_ENCODING_MAP
    316 
    317   { kX86Jcc8,  kJcc,  IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0,             0, 0x70, 0,    0, 0, 0, 0 }, "Jcc8",  "!1c !0t" },
    318   { kX86Jcc32, kJcc,  IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0,             0, 0x0F, 0x80, 0, 0, 0, 0 }, "Jcc32", "!1c !0t" },
    319   { kX86Jmp8,  kJmp,  IS_UNARY_OP  | IS_BRANCH | NEEDS_FIXUP,               { 0,             0, 0xEB, 0,    0, 0, 0, 0 }, "Jmp8",  "!0t" },
    320   { kX86Jmp32, kJmp,  IS_UNARY_OP  | IS_BRANCH | NEEDS_FIXUP,               { 0,             0, 0xE9, 0,    0, 0, 0, 0 }, "Jmp32", "!0t" },
    321   { kX86JmpR,  kJmp,  IS_UNARY_OP  | IS_BRANCH | REG_USE0,                  { 0,             0, 0xFF, 0,    0, 4, 0, 0 }, "JmpR",  "!0r" },
    322   { kX86JmpT,  kJmp,  IS_UNARY_OP  | IS_BRANCH | IS_LOAD,                   { THREAD_PREFIX, 0, 0xFF, 0,    0, 4, 0, 0 }, "JmpT",  "fs:[!0d]" },
    323   { kX86CallR, kCall, IS_UNARY_OP  | IS_BRANCH | REG_USE0,                  { 0,             0, 0xE8, 0,    0, 0, 0, 0 }, "CallR", "!0r" },
    324   { kX86CallM, kCall, IS_BINARY_OP | IS_BRANCH | IS_LOAD | REG_USE0,        { 0,             0, 0xFF, 0,    0, 2, 0, 0 }, "CallM", "[!0r+!1d]" },
    325   { kX86CallA, kCall, IS_QUAD_OP   | IS_BRANCH | IS_LOAD | REG_USE01,       { 0,             0, 0xFF, 0,    0, 2, 0, 0 }, "CallA", "[!0r+!1r<<!2d+!3d]" },
    326   { kX86CallT, kCall, IS_UNARY_OP  | IS_BRANCH | IS_LOAD,                   { THREAD_PREFIX, 0, 0xFF, 0,    0, 2, 0, 0 }, "CallT", "fs:[!0d]" },
    327   { kX86Ret,   kNullary, NO_OPERAND | IS_BRANCH,                            { 0,             0, 0xC3, 0,    0, 0, 0, 0 }, "Ret", "" },
    328 
    329   { kX86StartOfMethod, kMacro,  IS_UNARY_OP | SETS_CCODES,             { 0, 0, 0,    0, 0, 0, 0, 0 }, "StartOfMethod", "!0r" },
    330   { kX86PcRelLoadRA,   kPcRel,  IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "PcRelLoadRA",   "!0r,[!1r+!2r<<!3d+!4p]" },
    331   { kX86PcRelAdr,      kPcRel,  IS_LOAD | IS_BINARY_OP | REG_DEF0,     { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "PcRelAdr",      "!0r,!1d" },
    332 };
    333 
    334 static size_t ComputeSize(const X86EncodingMap* entry, int base, int displacement, bool has_sib) {
    335   size_t size = 0;
    336   if (entry->skeleton.prefix1 > 0) {
    337     ++size;
    338     if (entry->skeleton.prefix2 > 0) {
    339       ++size;
    340     }
    341   }
    342   ++size;  // opcode
    343   if (entry->skeleton.opcode == 0x0F) {
    344     ++size;
    345     if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
    346       ++size;
    347     }
    348   }
    349   ++size;  // modrm
    350   if (has_sib || base == rX86_SP) {
    351     // SP requires a SIB byte.
    352     ++size;
    353   }
    354   if (displacement != 0 || base == rBP) {
    355     // BP requires an explicit displacement, even when it's 0.
    356     if (entry->opcode != kX86Lea32RA) {
    357       DCHECK_NE(entry->flags & (IS_LOAD | IS_STORE), 0ULL) << entry->name;
    358     }
    359     size += IS_SIMM8(displacement) ? 1 : 4;
    360   }
    361   size += entry->skeleton.immediate_bytes;
    362   return size;
    363 }
    364 
    365 int X86Mir2Lir::GetInsnSize(LIR* lir) {
    366   const X86EncodingMap* entry = &X86Mir2Lir::EncodingMap[lir->opcode];
    367   switch (entry->kind) {
    368     case kData:
    369       return 4;  // 4 bytes of data
    370     case kNop:
    371       return lir->operands[0];  // length of nop is sole operand
    372     case kNullary:
    373       return 1;  // 1 byte of opcode
    374     case kReg:  // lir operands - 0: reg
    375       return ComputeSize(entry, 0, 0, false);
    376     case kMem:  // lir operands - 0: base, 1: disp
    377       return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
    378     case kArray:  // lir operands - 0: base, 1: index, 2: scale, 3: disp
    379       return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
    380     case kMemReg:  // lir operands - 0: base, 1: disp, 2: reg
    381       return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
    382     case kArrayReg:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
    383       return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
    384     case kThreadReg:  // lir operands - 0: disp, 1: reg
    385       return ComputeSize(entry, 0, lir->operands[0], false);
    386     case kRegReg:
    387       return ComputeSize(entry, 0, 0, false);
    388     case kRegRegStore:
    389       return ComputeSize(entry, 0, 0, false);
    390     case kRegMem:  // lir operands - 0: reg, 1: base, 2: disp
    391       return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
    392     case kRegArray:   // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
    393       return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
    394     case kRegThread:  // lir operands - 0: reg, 1: disp
    395       return ComputeSize(entry, 0, 0x12345678, false);  // displacement size is always 32bit
    396     case kRegImm: {  // lir operands - 0: reg, 1: immediate
    397       size_t size = ComputeSize(entry, 0, 0, false);
    398       if (entry->skeleton.ax_opcode == 0) {
    399         return size;
    400       } else {
    401         // AX opcodes don't require the modrm byte.
    402         int reg = lir->operands[0];
    403         return size - (reg == rAX ? 1 : 0);
    404       }
    405     }
    406     case kMemImm:  // lir operands - 0: base, 1: disp, 2: immediate
    407       return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
    408     case kArrayImm:  // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
    409       return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
    410     case kThreadImm:  // lir operands - 0: disp, 1: imm
    411       return ComputeSize(entry, 0, 0x12345678, false);  // displacement size is always 32bit
    412     case kRegRegImm:  // lir operands - 0: reg, 1: reg, 2: imm
    413       return ComputeSize(entry, 0, 0, false);
    414     case kRegMemImm:  // lir operands - 0: reg, 1: base, 2: disp, 3: imm
    415       return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
    416     case kRegArrayImm:  // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp, 5: imm
    417       return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
    418     case kMovRegImm:  // lir operands - 0: reg, 1: immediate
    419       return 1 + entry->skeleton.immediate_bytes;
    420     case kShiftRegImm:  // lir operands - 0: reg, 1: immediate
    421       // Shift by immediate one has a shorter opcode.
    422       return ComputeSize(entry, 0, 0, false) - (lir->operands[1] == 1 ? 1 : 0);
    423     case kShiftMemImm:  // lir operands - 0: base, 1: disp, 2: immediate
    424       // Shift by immediate one has a shorter opcode.
    425       return ComputeSize(entry, lir->operands[0], lir->operands[1], false) -
    426              (lir->operands[2] == 1 ? 1 : 0);
    427     case kShiftArrayImm:  // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
    428       // Shift by immediate one has a shorter opcode.
    429       return ComputeSize(entry, lir->operands[0], lir->operands[3], true) -
    430              (lir->operands[4] == 1 ? 1 : 0);
    431     case kShiftRegCl:
    432       return ComputeSize(entry, 0, 0, false);
    433     case kShiftMemCl:  // lir operands - 0: base, 1: disp, 2: cl
    434       return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
    435     case kShiftArrayCl:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
    436       return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
    437     case kRegCond:  // lir operands - 0: reg, 1: cond
    438       return ComputeSize(entry, 0, 0, false);
    439     case kMemCond:  // lir operands - 0: base, 1: disp, 2: cond
    440       return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
    441     case kArrayCond:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: cond
    442       return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
    443     case kJcc:
    444       if (lir->opcode == kX86Jcc8) {
    445         return 2;  // opcode + rel8
    446       } else {
    447         DCHECK(lir->opcode == kX86Jcc32);
    448         return 6;  // 2 byte opcode + rel32
    449       }
    450     case kJmp:
    451       if (lir->opcode == kX86Jmp8) {
    452         return 2;  // opcode + rel8
    453       } else if (lir->opcode == kX86Jmp32) {
    454         return 5;  // opcode + rel32
    455       } else if (lir->opcode == kX86JmpT) {
    456         return ComputeSize(entry, 0, 0x12345678, false);  // displacement size is always 32bit
    457       } else {
    458         DCHECK(lir->opcode == kX86JmpR);
    459         return 2;  // opcode + modrm
    460       }
    461     case kCall:
    462       switch (lir->opcode) {
    463         case kX86CallR: return 2;  // opcode modrm
    464         case kX86CallM:  // lir operands - 0: base, 1: disp
    465           return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
    466         case kX86CallA:  // lir operands - 0: base, 1: index, 2: scale, 3: disp
    467           return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
    468         case kX86CallT:  // lir operands - 0: disp
    469           return ComputeSize(entry, 0, 0x12345678, false);  // displacement size is always 32bit
    470         default:
    471           break;
    472       }
    473       break;
    474     case kPcRel:
    475       if (entry->opcode == kX86PcRelLoadRA) {
    476         // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
    477         return ComputeSize(entry, lir->operands[1], 0x12345678, true);
    478       } else {
    479         DCHECK(entry->opcode == kX86PcRelAdr);
    480         return 5;  // opcode with reg + 4 byte immediate
    481       }
    482     case kMacro:
    483       DCHECK_EQ(lir->opcode, static_cast<int>(kX86StartOfMethod));
    484       return 5 /* call opcode + 4 byte displacement */ + 1 /* pop reg */ +
    485           ComputeSize(&X86Mir2Lir::EncodingMap[kX86Sub32RI], 0, 0, false) -
    486           (lir->operands[0] == rAX  ? 1 : 0);  // shorter ax encoding
    487     default:
    488       break;
    489   }
    490   UNIMPLEMENTED(FATAL) << "Unimplemented size encoding for: " << entry->name;
    491   return 0;
    492 }
    493 
    494 static uint8_t ModrmForDisp(int base, int disp) {
    495   // BP requires an explicit disp, so do not omit it in the 0 case
    496   if (disp == 0 && base != rBP) {
    497     return 0;
    498   } else if (IS_SIMM8(disp)) {
    499     return 1;
    500   } else {
    501     return 2;
    502   }
    503 }
    504 
    505 void X86Mir2Lir::EmitDisp(int base, int disp) {
    506   // BP requires an explicit disp, so do not omit it in the 0 case
    507   if (disp == 0 && base != rBP) {
    508     return;
    509   } else if (IS_SIMM8(disp)) {
    510     code_buffer_.push_back(disp & 0xFF);
    511   } else {
    512     code_buffer_.push_back(disp & 0xFF);
    513     code_buffer_.push_back((disp >> 8) & 0xFF);
    514     code_buffer_.push_back((disp >> 16) & 0xFF);
    515     code_buffer_.push_back((disp >> 24) & 0xFF);
    516   }
    517 }
    518 
    519 void X86Mir2Lir::EmitOpReg(const X86EncodingMap* entry, uint8_t reg) {
    520   if (entry->skeleton.prefix1 != 0) {
    521     code_buffer_.push_back(entry->skeleton.prefix1);
    522     if (entry->skeleton.prefix2 != 0) {
    523       code_buffer_.push_back(entry->skeleton.prefix2);
    524     }
    525   } else {
    526     DCHECK_EQ(0, entry->skeleton.prefix2);
    527   }
    528   code_buffer_.push_back(entry->skeleton.opcode);
    529   if (entry->skeleton.opcode == 0x0F) {
    530     code_buffer_.push_back(entry->skeleton.extra_opcode1);
    531     if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
    532       code_buffer_.push_back(entry->skeleton.extra_opcode2);
    533     } else {
    534       DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    535     }
    536   } else {
    537     DCHECK_EQ(0, entry->skeleton.extra_opcode1);
    538     DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    539   }
    540   if (X86_FPREG(reg)) {
    541     reg = reg & X86_FP_REG_MASK;
    542   }
    543   if (reg >= 4) {
    544     DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
    545         << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
    546   }
    547   DCHECK_LT(reg, 8);
    548   uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
    549   code_buffer_.push_back(modrm);
    550   DCHECK_EQ(0, entry->skeleton.ax_opcode);
    551   DCHECK_EQ(0, entry->skeleton.immediate_bytes);
    552 }
    553 
    554 void X86Mir2Lir::EmitOpMem(const X86EncodingMap* entry, uint8_t base, int disp) {
    555   if (entry->skeleton.prefix1 != 0) {
    556     code_buffer_.push_back(entry->skeleton.prefix1);
    557     if (entry->skeleton.prefix2 != 0) {
    558       code_buffer_.push_back(entry->skeleton.prefix2);
    559     }
    560   } else {
    561     DCHECK_EQ(0, entry->skeleton.prefix2);
    562   }
    563   code_buffer_.push_back(entry->skeleton.opcode);
    564   DCHECK_EQ(0, entry->skeleton.extra_opcode1);
    565   DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    566   DCHECK_LT(entry->skeleton.modrm_opcode, 8);
    567   DCHECK_LT(base, 8);
    568   uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (entry->skeleton.modrm_opcode << 3) | base;
    569   code_buffer_.push_back(modrm);
    570   EmitDisp(base, disp);
    571   DCHECK_EQ(0, entry->skeleton.ax_opcode);
    572   DCHECK_EQ(0, entry->skeleton.immediate_bytes);
    573 }
    574 
    575 void X86Mir2Lir::EmitMemReg(const X86EncodingMap* entry,
    576                        uint8_t base, int disp, uint8_t reg) {
    577   if (entry->skeleton.prefix1 != 0) {
    578     code_buffer_.push_back(entry->skeleton.prefix1);
    579     if (entry->skeleton.prefix2 != 0) {
    580       code_buffer_.push_back(entry->skeleton.prefix2);
    581     }
    582   } else {
    583     DCHECK_EQ(0, entry->skeleton.prefix2);
    584   }
    585   code_buffer_.push_back(entry->skeleton.opcode);
    586   if (entry->skeleton.opcode == 0x0F) {
    587     code_buffer_.push_back(entry->skeleton.extra_opcode1);
    588     if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
    589       code_buffer_.push_back(entry->skeleton.extra_opcode2);
    590     } else {
    591       DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    592     }
    593   } else {
    594     DCHECK_EQ(0, entry->skeleton.extra_opcode1);
    595     DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    596   }
    597   if (X86_FPREG(reg)) {
    598     reg = reg & X86_FP_REG_MASK;
    599   }
    600   if (reg >= 4) {
    601     DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
    602         << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
    603   }
    604   DCHECK_LT(reg, 8);
    605   DCHECK_LT(base, 8);
    606   uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg << 3) | base;
    607   code_buffer_.push_back(modrm);
    608   if (base == rX86_SP) {
    609     // Special SIB for SP base
    610     code_buffer_.push_back(0 << 6 | (rX86_SP << 3) | rX86_SP);
    611   }
    612   EmitDisp(base, disp);
    613   DCHECK_EQ(0, entry->skeleton.modrm_opcode);
    614   DCHECK_EQ(0, entry->skeleton.ax_opcode);
    615   DCHECK_EQ(0, entry->skeleton.immediate_bytes);
    616 }
    617 
    618 void X86Mir2Lir::EmitRegMem(const X86EncodingMap* entry,
    619                        uint8_t reg, uint8_t base, int disp) {
    620   // Opcode will flip operands.
    621   EmitMemReg(entry, base, disp, reg);
    622 }
    623 
    624 void X86Mir2Lir::EmitRegArray(const X86EncodingMap* entry, uint8_t reg, uint8_t base, uint8_t index,
    625                   int scale, int disp) {
    626   if (entry->skeleton.prefix1 != 0) {
    627     code_buffer_.push_back(entry->skeleton.prefix1);
    628     if (entry->skeleton.prefix2 != 0) {
    629       code_buffer_.push_back(entry->skeleton.prefix2);
    630     }
    631   } else {
    632     DCHECK_EQ(0, entry->skeleton.prefix2);
    633   }
    634   code_buffer_.push_back(entry->skeleton.opcode);
    635   if (entry->skeleton.opcode == 0x0F) {
    636     code_buffer_.push_back(entry->skeleton.extra_opcode1);
    637     if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
    638       code_buffer_.push_back(entry->skeleton.extra_opcode2);
    639     } else {
    640       DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    641     }
    642   } else {
    643     DCHECK_EQ(0, entry->skeleton.extra_opcode1);
    644     DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    645   }
    646   if (X86_FPREG(reg)) {
    647     reg = reg & X86_FP_REG_MASK;
    648   }
    649   DCHECK_LT(reg, 8);
    650   uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg << 3) | rX86_SP;
    651   code_buffer_.push_back(modrm);
    652   DCHECK_LT(scale, 4);
    653   DCHECK_LT(index, 8);
    654   DCHECK_LT(base, 8);
    655   uint8_t sib = (scale << 6) | (index << 3) | base;
    656   code_buffer_.push_back(sib);
    657   EmitDisp(base, disp);
    658   DCHECK_EQ(0, entry->skeleton.modrm_opcode);
    659   DCHECK_EQ(0, entry->skeleton.ax_opcode);
    660   DCHECK_EQ(0, entry->skeleton.immediate_bytes);
    661 }
    662 
    663 void X86Mir2Lir::EmitArrayReg(const X86EncodingMap* entry, uint8_t base, uint8_t index, int scale, int disp,
    664                   uint8_t reg) {
    665   // Opcode will flip operands.
    666   EmitRegArray(entry, reg, base, index, scale, disp);
    667 }
    668 
    669 void X86Mir2Lir::EmitRegThread(const X86EncodingMap* entry, uint8_t reg, int disp) {
    670   DCHECK_NE(entry->skeleton.prefix1, 0);
    671   code_buffer_.push_back(entry->skeleton.prefix1);
    672   if (entry->skeleton.prefix2 != 0) {
    673     code_buffer_.push_back(entry->skeleton.prefix2);
    674   }
    675   code_buffer_.push_back(entry->skeleton.opcode);
    676   if (entry->skeleton.opcode == 0x0F) {
    677     code_buffer_.push_back(entry->skeleton.extra_opcode1);
    678     if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
    679       code_buffer_.push_back(entry->skeleton.extra_opcode2);
    680     } else {
    681       DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    682     }
    683   } else {
    684     DCHECK_EQ(0, entry->skeleton.extra_opcode1);
    685     DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    686   }
    687   if (X86_FPREG(reg)) {
    688     reg = reg & X86_FP_REG_MASK;
    689   }
    690   if (reg >= 4) {
    691     DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
    692         << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
    693   }
    694   DCHECK_LT(reg, 8);
    695   uint8_t modrm = (0 << 6) | (reg << 3) | rBP;
    696   code_buffer_.push_back(modrm);
    697   code_buffer_.push_back(disp & 0xFF);
    698   code_buffer_.push_back((disp >> 8) & 0xFF);
    699   code_buffer_.push_back((disp >> 16) & 0xFF);
    700   code_buffer_.push_back((disp >> 24) & 0xFF);
    701   DCHECK_EQ(0, entry->skeleton.modrm_opcode);
    702   DCHECK_EQ(0, entry->skeleton.ax_opcode);
    703   DCHECK_EQ(0, entry->skeleton.immediate_bytes);
    704 }
    705 
    706 void X86Mir2Lir::EmitRegReg(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2) {
    707   if (entry->skeleton.prefix1 != 0) {
    708     code_buffer_.push_back(entry->skeleton.prefix1);
    709     if (entry->skeleton.prefix2 != 0) {
    710       code_buffer_.push_back(entry->skeleton.prefix2);
    711     }
    712   } else {
    713     DCHECK_EQ(0, entry->skeleton.prefix2);
    714   }
    715   code_buffer_.push_back(entry->skeleton.opcode);
    716   if (entry->skeleton.opcode == 0x0F) {
    717     code_buffer_.push_back(entry->skeleton.extra_opcode1);
    718     if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
    719       code_buffer_.push_back(entry->skeleton.extra_opcode2);
    720     } else {
    721       DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    722     }
    723   } else {
    724     DCHECK_EQ(0, entry->skeleton.extra_opcode1);
    725     DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    726   }
    727   if (X86_FPREG(reg1)) {
    728     reg1 = reg1 & X86_FP_REG_MASK;
    729   }
    730   if (X86_FPREG(reg2)) {
    731     reg2 = reg2 & X86_FP_REG_MASK;
    732   }
    733   DCHECK_LT(reg1, 8);
    734   DCHECK_LT(reg2, 8);
    735   uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
    736   code_buffer_.push_back(modrm);
    737   DCHECK_EQ(0, entry->skeleton.modrm_opcode);
    738   DCHECK_EQ(0, entry->skeleton.ax_opcode);
    739   DCHECK_EQ(0, entry->skeleton.immediate_bytes);
    740 }
    741 
    742 void X86Mir2Lir::EmitRegRegImm(const X86EncodingMap* entry,
    743                           uint8_t reg1, uint8_t reg2, int32_t imm) {
    744   if (entry->skeleton.prefix1 != 0) {
    745     code_buffer_.push_back(entry->skeleton.prefix1);
    746     if (entry->skeleton.prefix2 != 0) {
    747       code_buffer_.push_back(entry->skeleton.prefix2);
    748     }
    749   } else {
    750     DCHECK_EQ(0, entry->skeleton.prefix2);
    751   }
    752   code_buffer_.push_back(entry->skeleton.opcode);
    753   if (entry->skeleton.opcode == 0x0F) {
    754     code_buffer_.push_back(entry->skeleton.extra_opcode1);
    755     if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
    756       code_buffer_.push_back(entry->skeleton.extra_opcode2);
    757     } else {
    758       DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    759     }
    760   } else {
    761     DCHECK_EQ(0, entry->skeleton.extra_opcode1);
    762     DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    763   }
    764   if (X86_FPREG(reg1)) {
    765     reg1 = reg1 & X86_FP_REG_MASK;
    766   }
    767   if (X86_FPREG(reg2)) {
    768     reg2 = reg2 & X86_FP_REG_MASK;
    769   }
    770   DCHECK_LT(reg1, 8);
    771   DCHECK_LT(reg2, 8);
    772   uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
    773   code_buffer_.push_back(modrm);
    774   DCHECK_EQ(0, entry->skeleton.modrm_opcode);
    775   DCHECK_EQ(0, entry->skeleton.ax_opcode);
    776   switch (entry->skeleton.immediate_bytes) {
    777     case 1:
    778       DCHECK(IS_SIMM8(imm));
    779       code_buffer_.push_back(imm & 0xFF);
    780       break;
    781     case 2:
    782       DCHECK(IS_SIMM16(imm));
    783       code_buffer_.push_back(imm & 0xFF);
    784       code_buffer_.push_back((imm >> 8) & 0xFF);
    785       break;
    786     case 4:
    787       code_buffer_.push_back(imm & 0xFF);
    788       code_buffer_.push_back((imm >> 8) & 0xFF);
    789       code_buffer_.push_back((imm >> 16) & 0xFF);
    790       code_buffer_.push_back((imm >> 24) & 0xFF);
    791       break;
    792     default:
    793       LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
    794                  << ") for instruction: " << entry->name;
    795       break;
    796   }
    797 }
    798 
    799 void X86Mir2Lir::EmitRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
    800   if (entry->skeleton.prefix1 != 0) {
    801     code_buffer_.push_back(entry->skeleton.prefix1);
    802     if (entry->skeleton.prefix2 != 0) {
    803       code_buffer_.push_back(entry->skeleton.prefix2);
    804     }
    805   } else {
    806     DCHECK_EQ(0, entry->skeleton.prefix2);
    807   }
    808   if (reg == rAX && entry->skeleton.ax_opcode != 0) {
    809     code_buffer_.push_back(entry->skeleton.ax_opcode);
    810   } else {
    811     code_buffer_.push_back(entry->skeleton.opcode);
    812     if (entry->skeleton.opcode == 0x0F) {
    813       code_buffer_.push_back(entry->skeleton.extra_opcode1);
    814       if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
    815         code_buffer_.push_back(entry->skeleton.extra_opcode2);
    816       } else {
    817         DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    818       }
    819     } else {
    820       DCHECK_EQ(0, entry->skeleton.extra_opcode1);
    821       DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    822     }
    823     if (X86_FPREG(reg)) {
    824       reg = reg & X86_FP_REG_MASK;
    825     }
    826     uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
    827     code_buffer_.push_back(modrm);
    828   }
    829   switch (entry->skeleton.immediate_bytes) {
    830     case 1:
    831       DCHECK(IS_SIMM8(imm));
    832       code_buffer_.push_back(imm & 0xFF);
    833       break;
    834     case 2:
    835       DCHECK(IS_SIMM16(imm));
    836       code_buffer_.push_back(imm & 0xFF);
    837       code_buffer_.push_back((imm >> 8) & 0xFF);
    838       break;
    839     case 4:
    840       code_buffer_.push_back(imm & 0xFF);
    841       code_buffer_.push_back((imm >> 8) & 0xFF);
    842       code_buffer_.push_back((imm >> 16) & 0xFF);
    843       code_buffer_.push_back((imm >> 24) & 0xFF);
    844       break;
    845     default:
    846       LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
    847           << ") for instruction: " << entry->name;
    848       break;
    849   }
    850 }
    851 
    852 void X86Mir2Lir::EmitThreadImm(const X86EncodingMap* entry, int disp, int imm) {
    853   if (entry->skeleton.prefix1 != 0) {
    854     code_buffer_.push_back(entry->skeleton.prefix1);
    855     if (entry->skeleton.prefix2 != 0) {
    856       code_buffer_.push_back(entry->skeleton.prefix2);
    857     }
    858   } else {
    859     DCHECK_EQ(0, entry->skeleton.prefix2);
    860   }
    861   code_buffer_.push_back(entry->skeleton.opcode);
    862   if (entry->skeleton.opcode == 0x0F) {
    863     code_buffer_.push_back(entry->skeleton.extra_opcode1);
    864     if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
    865       code_buffer_.push_back(entry->skeleton.extra_opcode2);
    866     } else {
    867       DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    868     }
    869   } else {
    870     DCHECK_EQ(0, entry->skeleton.extra_opcode1);
    871     DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    872   }
    873   uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
    874   code_buffer_.push_back(modrm);
    875   code_buffer_.push_back(disp & 0xFF);
    876   code_buffer_.push_back((disp >> 8) & 0xFF);
    877   code_buffer_.push_back((disp >> 16) & 0xFF);
    878   code_buffer_.push_back((disp >> 24) & 0xFF);
    879   switch (entry->skeleton.immediate_bytes) {
    880     case 1:
    881       DCHECK(IS_SIMM8(imm));
    882       code_buffer_.push_back(imm & 0xFF);
    883       break;
    884     case 2:
    885       DCHECK(IS_SIMM16(imm));
    886       code_buffer_.push_back(imm & 0xFF);
    887       code_buffer_.push_back((imm >> 8) & 0xFF);
    888       break;
    889     case 4:
    890       code_buffer_.push_back(imm & 0xFF);
    891       code_buffer_.push_back((imm >> 8) & 0xFF);
    892       code_buffer_.push_back((imm >> 16) & 0xFF);
    893       code_buffer_.push_back((imm >> 24) & 0xFF);
    894       break;
    895     default:
    896       LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
    897           << ") for instruction: " << entry->name;
    898       break;
    899   }
    900   DCHECK_EQ(entry->skeleton.ax_opcode, 0);
    901 }
    902 
    903 void X86Mir2Lir::EmitMovRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
    904   DCHECK_LT(reg, 8);
    905   code_buffer_.push_back(0xB8 + reg);
    906   code_buffer_.push_back(imm & 0xFF);
    907   code_buffer_.push_back((imm >> 8) & 0xFF);
    908   code_buffer_.push_back((imm >> 16) & 0xFF);
    909   code_buffer_.push_back((imm >> 24) & 0xFF);
    910 }
    911 
    912 void X86Mir2Lir::EmitShiftRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
    913   if (entry->skeleton.prefix1 != 0) {
    914     code_buffer_.push_back(entry->skeleton.prefix1);
    915     if (entry->skeleton.prefix2 != 0) {
    916       code_buffer_.push_back(entry->skeleton.prefix2);
    917     }
    918   } else {
    919     DCHECK_EQ(0, entry->skeleton.prefix2);
    920   }
    921   if (imm != 1) {
    922     code_buffer_.push_back(entry->skeleton.opcode);
    923   } else {
    924     // Shorter encoding for 1 bit shift
    925     code_buffer_.push_back(entry->skeleton.ax_opcode);
    926   }
    927   if (entry->skeleton.opcode == 0x0F) {
    928     code_buffer_.push_back(entry->skeleton.extra_opcode1);
    929     if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
    930       code_buffer_.push_back(entry->skeleton.extra_opcode2);
    931     } else {
    932       DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    933     }
    934   } else {
    935     DCHECK_EQ(0, entry->skeleton.extra_opcode1);
    936     DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    937   }
    938   if (reg >= 4) {
    939     DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
    940         << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
    941   }
    942   DCHECK_LT(reg, 8);
    943   uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
    944   code_buffer_.push_back(modrm);
    945   if (imm != 1) {
    946     DCHECK_EQ(entry->skeleton.immediate_bytes, 1);
    947     DCHECK(IS_SIMM8(imm));
    948     code_buffer_.push_back(imm & 0xFF);
    949   }
    950 }
    951 
    952 void X86Mir2Lir::EmitShiftRegCl(const X86EncodingMap* entry, uint8_t reg, uint8_t cl) {
    953   DCHECK_EQ(cl, static_cast<uint8_t>(rCX));
    954   if (entry->skeleton.prefix1 != 0) {
    955     code_buffer_.push_back(entry->skeleton.prefix1);
    956     if (entry->skeleton.prefix2 != 0) {
    957       code_buffer_.push_back(entry->skeleton.prefix2);
    958     }
    959   } else {
    960     DCHECK_EQ(0, entry->skeleton.prefix2);
    961   }
    962   code_buffer_.push_back(entry->skeleton.opcode);
    963   DCHECK_EQ(0, entry->skeleton.extra_opcode1);
    964   DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    965   DCHECK_LT(reg, 8);
    966   uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
    967   code_buffer_.push_back(modrm);
    968   DCHECK_EQ(0, entry->skeleton.ax_opcode);
    969   DCHECK_EQ(0, entry->skeleton.immediate_bytes);
    970 }
    971 
    972 void X86Mir2Lir::EmitRegCond(const X86EncodingMap* entry, uint8_t reg, uint8_t condition) {
    973   if (entry->skeleton.prefix1 != 0) {
    974     code_buffer_.push_back(entry->skeleton.prefix1);
    975     if (entry->skeleton.prefix2 != 0) {
    976       code_buffer_.push_back(entry->skeleton.prefix2);
    977     }
    978   } else {
    979     DCHECK_EQ(0, entry->skeleton.prefix2);
    980   }
    981   DCHECK_EQ(0, entry->skeleton.ax_opcode);
    982   DCHECK_EQ(0x0F, entry->skeleton.opcode);
    983   code_buffer_.push_back(0x0F);
    984   DCHECK_EQ(0x90, entry->skeleton.extra_opcode1);
    985   code_buffer_.push_back(0x90 | condition);
    986   DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    987   DCHECK_LT(reg, 8);
    988   uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
    989   code_buffer_.push_back(modrm);
    990   DCHECK_EQ(entry->skeleton.immediate_bytes, 0);
    991 }
    992 
    993 void X86Mir2Lir::EmitJmp(const X86EncodingMap* entry, int rel) {
    994   if (entry->opcode == kX86Jmp8) {
    995     DCHECK(IS_SIMM8(rel));
    996     code_buffer_.push_back(0xEB);
    997     code_buffer_.push_back(rel & 0xFF);
    998   } else if (entry->opcode == kX86Jmp32) {
    999     code_buffer_.push_back(0xE9);
   1000     code_buffer_.push_back(rel & 0xFF);
   1001     code_buffer_.push_back((rel >> 8) & 0xFF);
   1002     code_buffer_.push_back((rel >> 16) & 0xFF);
   1003     code_buffer_.push_back((rel >> 24) & 0xFF);
   1004   } else {
   1005     DCHECK(entry->opcode == kX86JmpR);
   1006     code_buffer_.push_back(entry->skeleton.opcode);
   1007     uint8_t reg = static_cast<uint8_t>(rel);
   1008     DCHECK_LT(reg, 8);
   1009     uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
   1010     code_buffer_.push_back(modrm);
   1011   }
   1012 }
   1013 
   1014 void X86Mir2Lir::EmitJcc(const X86EncodingMap* entry, int rel, uint8_t cc) {
   1015   DCHECK_LT(cc, 16);
   1016   if (entry->opcode == kX86Jcc8) {
   1017     DCHECK(IS_SIMM8(rel));
   1018     code_buffer_.push_back(0x70 | cc);
   1019     code_buffer_.push_back(rel & 0xFF);
   1020   } else {
   1021     DCHECK(entry->opcode == kX86Jcc32);
   1022     code_buffer_.push_back(0x0F);
   1023     code_buffer_.push_back(0x80 | cc);
   1024     code_buffer_.push_back(rel & 0xFF);
   1025     code_buffer_.push_back((rel >> 8) & 0xFF);
   1026     code_buffer_.push_back((rel >> 16) & 0xFF);
   1027     code_buffer_.push_back((rel >> 24) & 0xFF);
   1028   }
   1029 }
   1030 
   1031 void X86Mir2Lir::EmitCallMem(const X86EncodingMap* entry, uint8_t base, int disp) {
   1032   if (entry->skeleton.prefix1 != 0) {
   1033     code_buffer_.push_back(entry->skeleton.prefix1);
   1034     if (entry->skeleton.prefix2 != 0) {
   1035       code_buffer_.push_back(entry->skeleton.prefix2);
   1036     }
   1037   } else {
   1038     DCHECK_EQ(0, entry->skeleton.prefix2);
   1039   }
   1040   code_buffer_.push_back(entry->skeleton.opcode);
   1041   if (entry->skeleton.opcode == 0x0F) {
   1042     code_buffer_.push_back(entry->skeleton.extra_opcode1);
   1043     if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
   1044       code_buffer_.push_back(entry->skeleton.extra_opcode2);
   1045     } else {
   1046       DCHECK_EQ(0, entry->skeleton.extra_opcode2);
   1047     }
   1048   } else {
   1049     DCHECK_EQ(0, entry->skeleton.extra_opcode1);
   1050     DCHECK_EQ(0, entry->skeleton.extra_opcode2);
   1051   }
   1052   uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (entry->skeleton.modrm_opcode << 3) | base;
   1053   code_buffer_.push_back(modrm);
   1054   if (base == rX86_SP) {
   1055     // Special SIB for SP base
   1056     code_buffer_.push_back(0 << 6 | (rX86_SP << 3) | rX86_SP);
   1057   }
   1058   EmitDisp(base, disp);
   1059   DCHECK_EQ(0, entry->skeleton.ax_opcode);
   1060   DCHECK_EQ(0, entry->skeleton.immediate_bytes);
   1061 }
   1062 
   1063 void X86Mir2Lir::EmitCallThread(const X86EncodingMap* entry, int disp) {
   1064   DCHECK_NE(entry->skeleton.prefix1, 0);
   1065   code_buffer_.push_back(entry->skeleton.prefix1);
   1066   if (entry->skeleton.prefix2 != 0) {
   1067     code_buffer_.push_back(entry->skeleton.prefix2);
   1068   }
   1069   code_buffer_.push_back(entry->skeleton.opcode);
   1070   if (entry->skeleton.opcode == 0x0F) {
   1071     code_buffer_.push_back(entry->skeleton.extra_opcode1);
   1072     if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
   1073       code_buffer_.push_back(entry->skeleton.extra_opcode2);
   1074     } else {
   1075       DCHECK_EQ(0, entry->skeleton.extra_opcode2);
   1076     }
   1077   } else {
   1078     DCHECK_EQ(0, entry->skeleton.extra_opcode1);
   1079     DCHECK_EQ(0, entry->skeleton.extra_opcode2);
   1080   }
   1081   uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
   1082   code_buffer_.push_back(modrm);
   1083   code_buffer_.push_back(disp & 0xFF);
   1084   code_buffer_.push_back((disp >> 8) & 0xFF);
   1085   code_buffer_.push_back((disp >> 16) & 0xFF);
   1086   code_buffer_.push_back((disp >> 24) & 0xFF);
   1087   DCHECK_EQ(0, entry->skeleton.ax_opcode);
   1088   DCHECK_EQ(0, entry->skeleton.immediate_bytes);
   1089 }
   1090 
   1091 void X86Mir2Lir::EmitPcRel(const X86EncodingMap* entry, uint8_t reg,
   1092                       int base_or_table, uint8_t index, int scale, int table_or_disp) {
   1093   int disp;
   1094   if (entry->opcode == kX86PcRelLoadRA) {
   1095     Mir2Lir::SwitchTable *tab_rec = reinterpret_cast<Mir2Lir::SwitchTable*>(table_or_disp);
   1096     disp = tab_rec->offset;
   1097   } else {
   1098     DCHECK(entry->opcode == kX86PcRelAdr);
   1099     Mir2Lir::FillArrayData *tab_rec = reinterpret_cast<Mir2Lir::FillArrayData*>(base_or_table);
   1100     disp = tab_rec->offset;
   1101   }
   1102   if (entry->skeleton.prefix1 != 0) {
   1103     code_buffer_.push_back(entry->skeleton.prefix1);
   1104     if (entry->skeleton.prefix2 != 0) {
   1105       code_buffer_.push_back(entry->skeleton.prefix2);
   1106     }
   1107   } else {
   1108     DCHECK_EQ(0, entry->skeleton.prefix2);
   1109   }
   1110   if (X86_FPREG(reg)) {
   1111     reg = reg & X86_FP_REG_MASK;
   1112   }
   1113   DCHECK_LT(reg, 8);
   1114   if (entry->opcode == kX86PcRelLoadRA) {
   1115     code_buffer_.push_back(entry->skeleton.opcode);
   1116     DCHECK_EQ(0, entry->skeleton.extra_opcode1);
   1117     DCHECK_EQ(0, entry->skeleton.extra_opcode2);
   1118     uint8_t modrm = (2 << 6) | (reg << 3) | rX86_SP;
   1119     code_buffer_.push_back(modrm);
   1120     DCHECK_LT(scale, 4);
   1121     DCHECK_LT(index, 8);
   1122     DCHECK_LT(base_or_table, 8);
   1123     uint8_t base = static_cast<uint8_t>(base_or_table);
   1124     uint8_t sib = (scale << 6) | (index << 3) | base;
   1125     code_buffer_.push_back(sib);
   1126     DCHECK_EQ(0, entry->skeleton.immediate_bytes);
   1127   } else {
   1128     code_buffer_.push_back(entry->skeleton.opcode + reg);
   1129   }
   1130   code_buffer_.push_back(disp & 0xFF);
   1131   code_buffer_.push_back((disp >> 8) & 0xFF);
   1132   code_buffer_.push_back((disp >> 16) & 0xFF);
   1133   code_buffer_.push_back((disp >> 24) & 0xFF);
   1134   DCHECK_EQ(0, entry->skeleton.modrm_opcode);
   1135   DCHECK_EQ(0, entry->skeleton.ax_opcode);
   1136 }
   1137 
   1138 void X86Mir2Lir::EmitMacro(const X86EncodingMap* entry, uint8_t reg, int offset) {
   1139   DCHECK(entry->opcode == kX86StartOfMethod) << entry->name;
   1140   code_buffer_.push_back(0xE8);  // call +0
   1141   code_buffer_.push_back(0);
   1142   code_buffer_.push_back(0);
   1143   code_buffer_.push_back(0);
   1144   code_buffer_.push_back(0);
   1145 
   1146   DCHECK_LT(reg, 8);
   1147   code_buffer_.push_back(0x58 + reg);  // pop reg
   1148 
   1149   EmitRegImm(&X86Mir2Lir::EncodingMap[kX86Sub32RI], reg, offset + 5 /* size of call +0 */);
   1150 }
   1151 
   1152 void X86Mir2Lir::EmitUnimplemented(const X86EncodingMap* entry, LIR* lir) {
   1153   UNIMPLEMENTED(WARNING) << "encoding kind for " << entry->name << " "
   1154                          << BuildInsnString(entry->fmt, lir, 0);
   1155   for (int i = 0; i < GetInsnSize(lir); ++i) {
   1156     code_buffer_.push_back(0xCC);  // push breakpoint instruction - int 3
   1157   }
   1158 }
   1159 
   1160 /*
   1161  * Assemble the LIR into binary instruction format.  Note that we may
   1162  * discover that pc-relative displacements may not fit the selected
   1163  * instruction.  In those cases we will try to substitute a new code
   1164  * sequence or request that the trace be shortened and retried.
   1165  */
   1166 AssemblerStatus X86Mir2Lir::AssembleInstructions(uintptr_t start_addr) {
   1167   LIR *lir;
   1168   AssemblerStatus res = kSuccess;  // Assume success
   1169 
   1170   const bool kVerbosePcFixup = false;
   1171   for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
   1172     if (lir->opcode < 0) {
   1173       continue;
   1174     }
   1175 
   1176     if (lir->flags.is_nop) {
   1177       continue;
   1178     }
   1179 
   1180     if (lir->flags.pcRelFixup) {
   1181       switch (lir->opcode) {
   1182         case kX86Jcc8: {
   1183           LIR *target_lir = lir->target;
   1184           DCHECK(target_lir != NULL);
   1185           int delta = 0;
   1186           uintptr_t pc;
   1187           if (IS_SIMM8(lir->operands[0])) {
   1188             pc = lir->offset + 2 /* opcode + rel8 */;
   1189           } else {
   1190             pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
   1191           }
   1192           uintptr_t target = target_lir->offset;
   1193           delta = target - pc;
   1194           if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
   1195             if (kVerbosePcFixup) {
   1196               LOG(INFO) << "Retry for JCC growth at " << lir->offset
   1197                   << " delta: " << delta << " old delta: " << lir->operands[0];
   1198             }
   1199             lir->opcode = kX86Jcc32;
   1200             SetupResourceMasks(lir);
   1201             res = kRetryAll;
   1202           }
   1203           if (kVerbosePcFixup) {
   1204             LOG(INFO) << "Source:";
   1205             DumpLIRInsn(lir, 0);
   1206             LOG(INFO) << "Target:";
   1207             DumpLIRInsn(target_lir, 0);
   1208             LOG(INFO) << "Delta " << delta;
   1209           }
   1210           lir->operands[0] = delta;
   1211           break;
   1212         }
   1213         case kX86Jcc32: {
   1214           LIR *target_lir = lir->target;
   1215           DCHECK(target_lir != NULL);
   1216           uintptr_t pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
   1217           uintptr_t target = target_lir->offset;
   1218           int delta = target - pc;
   1219           if (kVerbosePcFixup) {
   1220             LOG(INFO) << "Source:";
   1221             DumpLIRInsn(lir, 0);
   1222             LOG(INFO) << "Target:";
   1223             DumpLIRInsn(target_lir, 0);
   1224             LOG(INFO) << "Delta " << delta;
   1225           }
   1226           lir->operands[0] = delta;
   1227           break;
   1228         }
   1229         case kX86Jmp8: {
   1230           LIR *target_lir = lir->target;
   1231           DCHECK(target_lir != NULL);
   1232           int delta = 0;
   1233           uintptr_t pc;
   1234           if (IS_SIMM8(lir->operands[0])) {
   1235             pc = lir->offset + 2 /* opcode + rel8 */;
   1236           } else {
   1237             pc = lir->offset + 5 /* opcode + rel32 */;
   1238           }
   1239           uintptr_t target = target_lir->offset;
   1240           delta = target - pc;
   1241           if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && delta == 0) {
   1242             // Useless branch
   1243             lir->flags.is_nop = true;
   1244             if (kVerbosePcFixup) {
   1245               LOG(INFO) << "Retry for useless branch at " << lir->offset;
   1246             }
   1247             res = kRetryAll;
   1248           } else if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
   1249             if (kVerbosePcFixup) {
   1250               LOG(INFO) << "Retry for JMP growth at " << lir->offset;
   1251             }
   1252             lir->opcode = kX86Jmp32;
   1253             SetupResourceMasks(lir);
   1254             res = kRetryAll;
   1255           }
   1256           lir->operands[0] = delta;
   1257           break;
   1258         }
   1259         case kX86Jmp32: {
   1260           LIR *target_lir = lir->target;
   1261           DCHECK(target_lir != NULL);
   1262           uintptr_t pc = lir->offset + 5 /* opcode + rel32 */;
   1263           uintptr_t target = target_lir->offset;
   1264           int delta = target - pc;
   1265           lir->operands[0] = delta;
   1266           break;
   1267         }
   1268         default:
   1269           break;
   1270       }
   1271     }
   1272 
   1273     /*
   1274      * If one of the pc-relative instructions expanded we'll have
   1275      * to make another pass.  Don't bother to fully assemble the
   1276      * instruction.
   1277      */
   1278     if (res != kSuccess) {
   1279       continue;
   1280     }
   1281     CHECK_EQ(static_cast<size_t>(lir->offset), code_buffer_.size());
   1282     const X86EncodingMap *entry = &X86Mir2Lir::EncodingMap[lir->opcode];
   1283     size_t starting_cbuf_size = code_buffer_.size();
   1284     switch (entry->kind) {
   1285       case kData:  // 4 bytes of data
   1286         code_buffer_.push_back(lir->operands[0]);
   1287         break;
   1288       case kNullary:  // 1 byte of opcode
   1289         DCHECK_EQ(0, entry->skeleton.prefix1);
   1290         DCHECK_EQ(0, entry->skeleton.prefix2);
   1291         code_buffer_.push_back(entry->skeleton.opcode);
   1292         if (entry->skeleton.extra_opcode1 != 0) {
   1293           code_buffer_.push_back(entry->skeleton.extra_opcode1);
   1294           if (entry->skeleton.extra_opcode2 != 0) {
   1295             code_buffer_.push_back(entry->skeleton.extra_opcode2);
   1296           }
   1297         } else {
   1298           DCHECK_EQ(0, entry->skeleton.extra_opcode2);
   1299         }
   1300         DCHECK_EQ(0, entry->skeleton.modrm_opcode);
   1301         DCHECK_EQ(0, entry->skeleton.ax_opcode);
   1302         DCHECK_EQ(0, entry->skeleton.immediate_bytes);
   1303         break;
   1304       case kReg:  // lir operands - 0: reg
   1305         EmitOpReg(entry, lir->operands[0]);
   1306         break;
   1307       case kMem:  // lir operands - 0: base, 1: disp
   1308         EmitOpMem(entry, lir->operands[0], lir->operands[1]);
   1309         break;
   1310       case kMemReg:  // lir operands - 0: base, 1: disp, 2: reg
   1311         EmitMemReg(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
   1312         break;
   1313       case kArrayReg:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
   1314         EmitArrayReg(entry, lir->operands[0], lir->operands[1], lir->operands[2],
   1315                      lir->operands[3], lir->operands[4]);
   1316         break;
   1317       case kRegMem:  // lir operands - 0: reg, 1: base, 2: disp
   1318         EmitRegMem(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
   1319         break;
   1320       case kRegArray:  // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
   1321         EmitRegArray(entry, lir->operands[0], lir->operands[1], lir->operands[2],
   1322                      lir->operands[3], lir->operands[4]);
   1323         break;
   1324       case kRegThread:  // lir operands - 0: reg, 1: disp
   1325         EmitRegThread(entry, lir->operands[0], lir->operands[1]);
   1326         break;
   1327       case kRegReg:  // lir operands - 0: reg1, 1: reg2
   1328         EmitRegReg(entry, lir->operands[0], lir->operands[1]);
   1329         break;
   1330       case kRegRegStore:  // lir operands - 0: reg2, 1: reg1
   1331         EmitRegReg(entry, lir->operands[1], lir->operands[0]);
   1332         break;
   1333       case kRegRegImm:
   1334         EmitRegRegImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
   1335         break;
   1336       case kRegImm:  // lir operands - 0: reg, 1: immediate
   1337         EmitRegImm(entry, lir->operands[0], lir->operands[1]);
   1338         break;
   1339       case kThreadImm:  // lir operands - 0: disp, 1: immediate
   1340         EmitThreadImm(entry, lir->operands[0], lir->operands[1]);
   1341         break;
   1342       case kMovRegImm:  // lir operands - 0: reg, 1: immediate
   1343         EmitMovRegImm(entry, lir->operands[0], lir->operands[1]);
   1344         break;
   1345       case kShiftRegImm:  // lir operands - 0: reg, 1: immediate
   1346         EmitShiftRegImm(entry, lir->operands[0], lir->operands[1]);
   1347         break;
   1348       case kShiftRegCl:  // lir operands - 0: reg, 1: cl
   1349         EmitShiftRegCl(entry, lir->operands[0], lir->operands[1]);
   1350         break;
   1351       case kRegCond:  // lir operands - 0: reg, 1: condition
   1352         EmitRegCond(entry, lir->operands[0], lir->operands[1]);
   1353         break;
   1354       case kJmp:  // lir operands - 0: rel
   1355         if (entry->opcode == kX86JmpT) {
   1356           // This works since the instruction format for jmp and call is basically the same and
   1357           // EmitCallThread loads opcode info.
   1358           EmitCallThread(entry, lir->operands[0]);
   1359         } else {
   1360           EmitJmp(entry, lir->operands[0]);
   1361         }
   1362         break;
   1363       case kJcc:  // lir operands - 0: rel, 1: CC, target assigned
   1364         EmitJcc(entry, lir->operands[0], lir->operands[1]);
   1365         break;
   1366       case kCall:
   1367         switch (entry->opcode) {
   1368           case kX86CallM:  // lir operands - 0: base, 1: disp
   1369             EmitCallMem(entry, lir->operands[0], lir->operands[1]);
   1370             break;
   1371           case kX86CallT:  // lir operands - 0: disp
   1372             EmitCallThread(entry, lir->operands[0]);
   1373             break;
   1374           default:
   1375             EmitUnimplemented(entry, lir);
   1376             break;
   1377         }
   1378         break;
   1379       case kPcRel:  // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
   1380         EmitPcRel(entry, lir->operands[0], lir->operands[1], lir->operands[2],
   1381                   lir->operands[3], lir->operands[4]);
   1382         break;
   1383       case kMacro:
   1384         EmitMacro(entry, lir->operands[0], lir->offset);
   1385         break;
   1386       default:
   1387         EmitUnimplemented(entry, lir);
   1388         break;
   1389     }
   1390     CHECK_EQ(static_cast<size_t>(GetInsnSize(lir)),
   1391              code_buffer_.size() - starting_cbuf_size)
   1392         << "Instruction size mismatch for entry: " << X86Mir2Lir::EncodingMap[lir->opcode].name;
   1393   }
   1394   return res;
   1395 }
   1396 
   1397 }  // namespace art
   1398