Home | History | Annotate | Download | only in ADT
      1 //===-- llvm/ADT/FoldingSet.h - Uniquing Hash Set ---------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines a hash set that can be used to remove duplication of nodes
     11 // in a graph.  This code was originally created by Chris Lattner for use with
     12 // SelectionDAGCSEMap, but was isolated to provide use across the llvm code set.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_ADT_FOLDINGSET_H
     17 #define LLVM_ADT_FOLDINGSET_H
     18 
     19 #include "llvm/ADT/SmallVector.h"
     20 #include "llvm/ADT/StringRef.h"
     21 #include "llvm/Support/DataTypes.h"
     22 
     23 namespace llvm {
     24   class APFloat;
     25   class APInt;
     26   class BumpPtrAllocator;
     27 
     28 /// This folding set used for two purposes:
     29 ///   1. Given information about a node we want to create, look up the unique
     30 ///      instance of the node in the set.  If the node already exists, return
     31 ///      it, otherwise return the bucket it should be inserted into.
     32 ///   2. Given a node that has already been created, remove it from the set.
     33 ///
     34 /// This class is implemented as a single-link chained hash table, where the
     35 /// "buckets" are actually the nodes themselves (the next pointer is in the
     36 /// node).  The last node points back to the bucket to simplify node removal.
     37 ///
     38 /// Any node that is to be included in the folding set must be a subclass of
     39 /// FoldingSetNode.  The node class must also define a Profile method used to
     40 /// establish the unique bits of data for the node.  The Profile method is
     41 /// passed a FoldingSetNodeID object which is used to gather the bits.  Just
     42 /// call one of the Add* functions defined in the FoldingSetImpl::NodeID class.
     43 /// NOTE: That the folding set does not own the nodes and it is the
     44 /// responsibility of the user to dispose of the nodes.
     45 ///
     46 /// Eg.
     47 ///    class MyNode : public FoldingSetNode {
     48 ///    private:
     49 ///      std::string Name;
     50 ///      unsigned Value;
     51 ///    public:
     52 ///      MyNode(const char *N, unsigned V) : Name(N), Value(V) {}
     53 ///       ...
     54 ///      void Profile(FoldingSetNodeID &ID) const {
     55 ///        ID.AddString(Name);
     56 ///        ID.AddInteger(Value);
     57 ///      }
     58 ///      ...
     59 ///    };
     60 ///
     61 /// To define the folding set itself use the FoldingSet template;
     62 ///
     63 /// Eg.
     64 ///    FoldingSet<MyNode> MyFoldingSet;
     65 ///
     66 /// Four public methods are available to manipulate the folding set;
     67 ///
     68 /// 1) If you have an existing node that you want add to the set but unsure
     69 /// that the node might already exist then call;
     70 ///
     71 ///    MyNode *M = MyFoldingSet.GetOrInsertNode(N);
     72 ///
     73 /// If The result is equal to the input then the node has been inserted.
     74 /// Otherwise, the result is the node existing in the folding set, and the
     75 /// input can be discarded (use the result instead.)
     76 ///
     77 /// 2) If you are ready to construct a node but want to check if it already
     78 /// exists, then call FindNodeOrInsertPos with a FoldingSetNodeID of the bits to
     79 /// check;
     80 ///
     81 ///   FoldingSetNodeID ID;
     82 ///   ID.AddString(Name);
     83 ///   ID.AddInteger(Value);
     84 ///   void *InsertPoint;
     85 ///
     86 ///    MyNode *M = MyFoldingSet.FindNodeOrInsertPos(ID, InsertPoint);
     87 ///
     88 /// If found then M with be non-NULL, else InsertPoint will point to where it
     89 /// should be inserted using InsertNode.
     90 ///
     91 /// 3) If you get a NULL result from FindNodeOrInsertPos then you can as a new
     92 /// node with FindNodeOrInsertPos;
     93 ///
     94 ///    InsertNode(N, InsertPoint);
     95 ///
     96 /// 4) Finally, if you want to remove a node from the folding set call;
     97 ///
     98 ///    bool WasRemoved = RemoveNode(N);
     99 ///
    100 /// The result indicates whether the node existed in the folding set.
    101 
    102 class FoldingSetNodeID;
    103 
    104 //===----------------------------------------------------------------------===//
    105 /// FoldingSetImpl - Implements the folding set functionality.  The main
    106 /// structure is an array of buckets.  Each bucket is indexed by the hash of
    107 /// the nodes it contains.  The bucket itself points to the nodes contained
    108 /// in the bucket via a singly linked list.  The last node in the list points
    109 /// back to the bucket to facilitate node removal.
    110 ///
    111 class FoldingSetImpl {
    112 protected:
    113   /// Buckets - Array of bucket chains.
    114   ///
    115   void **Buckets;
    116 
    117   /// NumBuckets - Length of the Buckets array.  Always a power of 2.
    118   ///
    119   unsigned NumBuckets;
    120 
    121   /// NumNodes - Number of nodes in the folding set. Growth occurs when NumNodes
    122   /// is greater than twice the number of buckets.
    123   unsigned NumNodes;
    124 
    125 public:
    126   explicit FoldingSetImpl(unsigned Log2InitSize = 6);
    127   virtual ~FoldingSetImpl();
    128 
    129   //===--------------------------------------------------------------------===//
    130   /// Node - This class is used to maintain the singly linked bucket list in
    131   /// a folding set.
    132   ///
    133   class Node {
    134   private:
    135     // NextInFoldingSetBucket - next link in the bucket list.
    136     void *NextInFoldingSetBucket;
    137 
    138   public:
    139 
    140     Node() : NextInFoldingSetBucket(0) {}
    141 
    142     // Accessors
    143     void *getNextInBucket() const { return NextInFoldingSetBucket; }
    144     void SetNextInBucket(void *N) { NextInFoldingSetBucket = N; }
    145   };
    146 
    147   /// clear - Remove all nodes from the folding set.
    148   void clear();
    149 
    150   /// RemoveNode - Remove a node from the folding set, returning true if one
    151   /// was removed or false if the node was not in the folding set.
    152   bool RemoveNode(Node *N);
    153 
    154   /// GetOrInsertNode - If there is an existing simple Node exactly
    155   /// equal to the specified node, return it.  Otherwise, insert 'N' and return
    156   /// it instead.
    157   Node *GetOrInsertNode(Node *N);
    158 
    159   /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
    160   /// return it.  If not, return the insertion token that will make insertion
    161   /// faster.
    162   Node *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
    163 
    164   /// InsertNode - Insert the specified node into the folding set, knowing that
    165   /// it is not already in the folding set.  InsertPos must be obtained from
    166   /// FindNodeOrInsertPos.
    167   void InsertNode(Node *N, void *InsertPos);
    168 
    169   /// InsertNode - Insert the specified node into the folding set, knowing that
    170   /// it is not already in the folding set.
    171   void InsertNode(Node *N) {
    172     Node *Inserted = GetOrInsertNode(N);
    173     (void)Inserted;
    174     assert(Inserted == N && "Node already inserted!");
    175   }
    176 
    177   /// size - Returns the number of nodes in the folding set.
    178   unsigned size() const { return NumNodes; }
    179 
    180   /// empty - Returns true if there are no nodes in the folding set.
    181   bool empty() const { return NumNodes == 0; }
    182 
    183 private:
    184 
    185   /// GrowHashTable - Double the size of the hash table and rehash everything.
    186   ///
    187   void GrowHashTable();
    188 
    189 protected:
    190 
    191   /// GetNodeProfile - Instantiations of the FoldingSet template implement
    192   /// this function to gather data bits for the given node.
    193   virtual void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const = 0;
    194   /// NodeEquals - Instantiations of the FoldingSet template implement
    195   /// this function to compare the given node with the given ID.
    196   virtual bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash,
    197                           FoldingSetNodeID &TempID) const=0;
    198   /// ComputeNodeHash - Instantiations of the FoldingSet template implement
    199   /// this function to compute a hash value for the given node.
    200   virtual unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const = 0;
    201 };
    202 
    203 //===----------------------------------------------------------------------===//
    204 
    205 template<typename T> struct FoldingSetTrait;
    206 
    207 /// DefaultFoldingSetTrait - This class provides default implementations
    208 /// for FoldingSetTrait implementations.
    209 ///
    210 template<typename T> struct DefaultFoldingSetTrait {
    211   static void Profile(const T &X, FoldingSetNodeID &ID) {
    212     X.Profile(ID);
    213   }
    214   static void Profile(T &X, FoldingSetNodeID &ID) {
    215     X.Profile(ID);
    216   }
    217 
    218   // Equals - Test if the profile for X would match ID, using TempID
    219   // to compute a temporary ID if necessary. The default implementation
    220   // just calls Profile and does a regular comparison. Implementations
    221   // can override this to provide more efficient implementations.
    222   static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash,
    223                             FoldingSetNodeID &TempID);
    224 
    225   // ComputeHash - Compute a hash value for X, using TempID to
    226   // compute a temporary ID if necessary. The default implementation
    227   // just calls Profile and does a regular hash computation.
    228   // Implementations can override this to provide more efficient
    229   // implementations.
    230   static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID);
    231 };
    232 
    233 /// FoldingSetTrait - This trait class is used to define behavior of how
    234 /// to "profile" (in the FoldingSet parlance) an object of a given type.
    235 /// The default behavior is to invoke a 'Profile' method on an object, but
    236 /// through template specialization the behavior can be tailored for specific
    237 /// types.  Combined with the FoldingSetNodeWrapper class, one can add objects
    238 /// to FoldingSets that were not originally designed to have that behavior.
    239 template<typename T> struct FoldingSetTrait
    240   : public DefaultFoldingSetTrait<T> {};
    241 
    242 template<typename T, typename Ctx> struct ContextualFoldingSetTrait;
    243 
    244 /// DefaultContextualFoldingSetTrait - Like DefaultFoldingSetTrait, but
    245 /// for ContextualFoldingSets.
    246 template<typename T, typename Ctx>
    247 struct DefaultContextualFoldingSetTrait {
    248   static void Profile(T &X, FoldingSetNodeID &ID, Ctx Context) {
    249     X.Profile(ID, Context);
    250   }
    251   static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash,
    252                             FoldingSetNodeID &TempID, Ctx Context);
    253   static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID,
    254                                      Ctx Context);
    255 };
    256 
    257 /// ContextualFoldingSetTrait - Like FoldingSetTrait, but for
    258 /// ContextualFoldingSets.
    259 template<typename T, typename Ctx> struct ContextualFoldingSetTrait
    260   : public DefaultContextualFoldingSetTrait<T, Ctx> {};
    261 
    262 //===--------------------------------------------------------------------===//
    263 /// FoldingSetNodeIDRef - This class describes a reference to an interned
    264 /// FoldingSetNodeID, which can be a useful to store node id data rather
    265 /// than using plain FoldingSetNodeIDs, since the 32-element SmallVector
    266 /// is often much larger than necessary, and the possibility of heap
    267 /// allocation means it requires a non-trivial destructor call.
    268 class FoldingSetNodeIDRef {
    269   const unsigned *Data;
    270   size_t Size;
    271 public:
    272   FoldingSetNodeIDRef() : Data(0), Size(0) {}
    273   FoldingSetNodeIDRef(const unsigned *D, size_t S) : Data(D), Size(S) {}
    274 
    275   /// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef,
    276   /// used to lookup the node in the FoldingSetImpl.
    277   unsigned ComputeHash() const;
    278 
    279   bool operator==(FoldingSetNodeIDRef) const;
    280 
    281   /// Used to compare the "ordering" of two nodes as defined by the
    282   /// profiled bits and their ordering defined by memcmp().
    283   bool operator<(FoldingSetNodeIDRef) const;
    284 
    285   const unsigned *getData() const { return Data; }
    286   size_t getSize() const { return Size; }
    287 };
    288 
    289 //===--------------------------------------------------------------------===//
    290 /// FoldingSetNodeID - This class is used to gather all the unique data bits of
    291 /// a node.  When all the bits are gathered this class is used to produce a
    292 /// hash value for the node.
    293 ///
    294 class FoldingSetNodeID {
    295   /// Bits - Vector of all the data bits that make the node unique.
    296   /// Use a SmallVector to avoid a heap allocation in the common case.
    297   SmallVector<unsigned, 32> Bits;
    298 
    299 public:
    300   FoldingSetNodeID() {}
    301 
    302   FoldingSetNodeID(FoldingSetNodeIDRef Ref)
    303     : Bits(Ref.getData(), Ref.getData() + Ref.getSize()) {}
    304 
    305   /// Add* - Add various data types to Bit data.
    306   ///
    307   void AddPointer(const void *Ptr);
    308   void AddInteger(signed I);
    309   void AddInteger(unsigned I);
    310   void AddInteger(long I);
    311   void AddInteger(unsigned long I);
    312   void AddInteger(long long I);
    313   void AddInteger(unsigned long long I);
    314   void AddBoolean(bool B) { AddInteger(B ? 1U : 0U); }
    315   void AddString(StringRef String);
    316   void AddNodeID(const FoldingSetNodeID &ID);
    317 
    318   template <typename T>
    319   inline void Add(const T &x) { FoldingSetTrait<T>::Profile(x, *this); }
    320 
    321   /// clear - Clear the accumulated profile, allowing this FoldingSetNodeID
    322   /// object to be used to compute a new profile.
    323   inline void clear() { Bits.clear(); }
    324 
    325   /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used
    326   /// to lookup the node in the FoldingSetImpl.
    327   unsigned ComputeHash() const;
    328 
    329   /// operator== - Used to compare two nodes to each other.
    330   ///
    331   bool operator==(const FoldingSetNodeID &RHS) const;
    332   bool operator==(const FoldingSetNodeIDRef RHS) const;
    333 
    334   /// Used to compare the "ordering" of two nodes as defined by the
    335   /// profiled bits and their ordering defined by memcmp().
    336   bool operator<(const FoldingSetNodeID &RHS) const;
    337   bool operator<(const FoldingSetNodeIDRef RHS) const;
    338 
    339   /// Intern - Copy this node's data to a memory region allocated from the
    340   /// given allocator and return a FoldingSetNodeIDRef describing the
    341   /// interned data.
    342   FoldingSetNodeIDRef Intern(BumpPtrAllocator &Allocator) const;
    343 };
    344 
    345 // Convenience type to hide the implementation of the folding set.
    346 typedef FoldingSetImpl::Node FoldingSetNode;
    347 template<class T> class FoldingSetIterator;
    348 template<class T> class FoldingSetBucketIterator;
    349 
    350 // Definitions of FoldingSetTrait and ContextualFoldingSetTrait functions, which
    351 // require the definition of FoldingSetNodeID.
    352 template<typename T>
    353 inline bool
    354 DefaultFoldingSetTrait<T>::Equals(T &X, const FoldingSetNodeID &ID,
    355                                   unsigned /*IDHash*/,
    356                                   FoldingSetNodeID &TempID) {
    357   FoldingSetTrait<T>::Profile(X, TempID);
    358   return TempID == ID;
    359 }
    360 template<typename T>
    361 inline unsigned
    362 DefaultFoldingSetTrait<T>::ComputeHash(T &X, FoldingSetNodeID &TempID) {
    363   FoldingSetTrait<T>::Profile(X, TempID);
    364   return TempID.ComputeHash();
    365 }
    366 template<typename T, typename Ctx>
    367 inline bool
    368 DefaultContextualFoldingSetTrait<T, Ctx>::Equals(T &X,
    369                                                  const FoldingSetNodeID &ID,
    370                                                  unsigned /*IDHash*/,
    371                                                  FoldingSetNodeID &TempID,
    372                                                  Ctx Context) {
    373   ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context);
    374   return TempID == ID;
    375 }
    376 template<typename T, typename Ctx>
    377 inline unsigned
    378 DefaultContextualFoldingSetTrait<T, Ctx>::ComputeHash(T &X,
    379                                                       FoldingSetNodeID &TempID,
    380                                                       Ctx Context) {
    381   ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context);
    382   return TempID.ComputeHash();
    383 }
    384 
    385 //===----------------------------------------------------------------------===//
    386 /// FoldingSet - This template class is used to instantiate a specialized
    387 /// implementation of the folding set to the node class T.  T must be a
    388 /// subclass of FoldingSetNode and implement a Profile function.
    389 ///
    390 template<class T> class FoldingSet : public FoldingSetImpl {
    391 private:
    392   /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
    393   /// way to convert nodes into a unique specifier.
    394   virtual void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const {
    395     T *TN = static_cast<T *>(N);
    396     FoldingSetTrait<T>::Profile(*TN, ID);
    397   }
    398   /// NodeEquals - Instantiations may optionally provide a way to compare a
    399   /// node with a specified ID.
    400   virtual bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash,
    401                           FoldingSetNodeID &TempID) const {
    402     T *TN = static_cast<T *>(N);
    403     return FoldingSetTrait<T>::Equals(*TN, ID, IDHash, TempID);
    404   }
    405   /// ComputeNodeHash - Instantiations may optionally provide a way to compute a
    406   /// hash value directly from a node.
    407   virtual unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const {
    408     T *TN = static_cast<T *>(N);
    409     return FoldingSetTrait<T>::ComputeHash(*TN, TempID);
    410   }
    411 
    412 public:
    413   explicit FoldingSet(unsigned Log2InitSize = 6)
    414   : FoldingSetImpl(Log2InitSize)
    415   {}
    416 
    417   typedef FoldingSetIterator<T> iterator;
    418   iterator begin() { return iterator(Buckets); }
    419   iterator end() { return iterator(Buckets+NumBuckets); }
    420 
    421   typedef FoldingSetIterator<const T> const_iterator;
    422   const_iterator begin() const { return const_iterator(Buckets); }
    423   const_iterator end() const { return const_iterator(Buckets+NumBuckets); }
    424 
    425   typedef FoldingSetBucketIterator<T> bucket_iterator;
    426 
    427   bucket_iterator bucket_begin(unsigned hash) {
    428     return bucket_iterator(Buckets + (hash & (NumBuckets-1)));
    429   }
    430 
    431   bucket_iterator bucket_end(unsigned hash) {
    432     return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true);
    433   }
    434 
    435   /// GetOrInsertNode - If there is an existing simple Node exactly
    436   /// equal to the specified node, return it.  Otherwise, insert 'N' and
    437   /// return it instead.
    438   T *GetOrInsertNode(Node *N) {
    439     return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N));
    440   }
    441 
    442   /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
    443   /// return it.  If not, return the insertion token that will make insertion
    444   /// faster.
    445   T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
    446     return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos));
    447   }
    448 };
    449 
    450 //===----------------------------------------------------------------------===//
    451 /// ContextualFoldingSet - This template class is a further refinement
    452 /// of FoldingSet which provides a context argument when calling
    453 /// Profile on its nodes.  Currently, that argument is fixed at
    454 /// initialization time.
    455 ///
    456 /// T must be a subclass of FoldingSetNode and implement a Profile
    457 /// function with signature
    458 ///   void Profile(llvm::FoldingSetNodeID &, Ctx);
    459 template <class T, class Ctx>
    460 class ContextualFoldingSet : public FoldingSetImpl {
    461   // Unfortunately, this can't derive from FoldingSet<T> because the
    462   // construction vtable for FoldingSet<T> requires
    463   // FoldingSet<T>::GetNodeProfile to be instantiated, which in turn
    464   // requires a single-argument T::Profile().
    465 
    466 private:
    467   Ctx Context;
    468 
    469   /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
    470   /// way to convert nodes into a unique specifier.
    471   virtual void GetNodeProfile(FoldingSetImpl::Node *N,
    472                               FoldingSetNodeID &ID) const {
    473     T *TN = static_cast<T *>(N);
    474     ContextualFoldingSetTrait<T, Ctx>::Profile(*TN, ID, Context);
    475   }
    476   virtual bool NodeEquals(FoldingSetImpl::Node *N,
    477                           const FoldingSetNodeID &ID, unsigned IDHash,
    478                           FoldingSetNodeID &TempID) const {
    479     T *TN = static_cast<T *>(N);
    480     return ContextualFoldingSetTrait<T, Ctx>::Equals(*TN, ID, IDHash, TempID,
    481                                                      Context);
    482   }
    483   virtual unsigned ComputeNodeHash(FoldingSetImpl::Node *N,
    484                                    FoldingSetNodeID &TempID) const {
    485     T *TN = static_cast<T *>(N);
    486     return ContextualFoldingSetTrait<T, Ctx>::ComputeHash(*TN, TempID, Context);
    487   }
    488 
    489 public:
    490   explicit ContextualFoldingSet(Ctx Context, unsigned Log2InitSize = 6)
    491   : FoldingSetImpl(Log2InitSize), Context(Context)
    492   {}
    493 
    494   Ctx getContext() const { return Context; }
    495 
    496 
    497   typedef FoldingSetIterator<T> iterator;
    498   iterator begin() { return iterator(Buckets); }
    499   iterator end() { return iterator(Buckets+NumBuckets); }
    500 
    501   typedef FoldingSetIterator<const T> const_iterator;
    502   const_iterator begin() const { return const_iterator(Buckets); }
    503   const_iterator end() const { return const_iterator(Buckets+NumBuckets); }
    504 
    505   typedef FoldingSetBucketIterator<T> bucket_iterator;
    506 
    507   bucket_iterator bucket_begin(unsigned hash) {
    508     return bucket_iterator(Buckets + (hash & (NumBuckets-1)));
    509   }
    510 
    511   bucket_iterator bucket_end(unsigned hash) {
    512     return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true);
    513   }
    514 
    515   /// GetOrInsertNode - If there is an existing simple Node exactly
    516   /// equal to the specified node, return it.  Otherwise, insert 'N'
    517   /// and return it instead.
    518   T *GetOrInsertNode(Node *N) {
    519     return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N));
    520   }
    521 
    522   /// FindNodeOrInsertPos - Look up the node specified by ID.  If it
    523   /// exists, return it.  If not, return the insertion token that will
    524   /// make insertion faster.
    525   T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
    526     return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos));
    527   }
    528 };
    529 
    530 //===----------------------------------------------------------------------===//
    531 /// FoldingSetVectorIterator - This implements an iterator for
    532 /// FoldingSetVector. It is only necessary because FoldingSetIterator provides
    533 /// a value_type of T, while the vector in FoldingSetVector exposes
    534 /// a value_type of T*. Fortunately, FoldingSetIterator doesn't expose very
    535 /// much besides operator* and operator->, so we just wrap the inner vector
    536 /// iterator and perform the extra dereference.
    537 template <class T, class VectorIteratorT>
    538 class FoldingSetVectorIterator {
    539   // Provide a typedef to workaround the lack of correct injected class name
    540   // support in older GCCs.
    541   typedef FoldingSetVectorIterator<T, VectorIteratorT> SelfT;
    542 
    543   VectorIteratorT Iterator;
    544 
    545 public:
    546   FoldingSetVectorIterator(VectorIteratorT I) : Iterator(I) {}
    547 
    548   bool operator==(const SelfT &RHS) const {
    549     return Iterator == RHS.Iterator;
    550   }
    551   bool operator!=(const SelfT &RHS) const {
    552     return Iterator != RHS.Iterator;
    553   }
    554 
    555   T &operator*() const { return **Iterator; }
    556 
    557   T *operator->() const { return *Iterator; }
    558 
    559   inline SelfT &operator++() {
    560     ++Iterator;
    561     return *this;
    562   }
    563   SelfT operator++(int) {
    564     SelfT tmp = *this;
    565     ++*this;
    566     return tmp;
    567   }
    568 };
    569 
    570 //===----------------------------------------------------------------------===//
    571 /// FoldingSetVector - This template class combines a FoldingSet and a vector
    572 /// to provide the interface of FoldingSet but with deterministic iteration
    573 /// order based on the insertion order. T must be a subclass of FoldingSetNode
    574 /// and implement a Profile function.
    575 template <class T, class VectorT = SmallVector<T*, 8> >
    576 class FoldingSetVector {
    577   FoldingSet<T> Set;
    578   VectorT Vector;
    579 
    580 public:
    581   explicit FoldingSetVector(unsigned Log2InitSize = 6)
    582       : Set(Log2InitSize) {
    583   }
    584 
    585   typedef FoldingSetVectorIterator<T, typename VectorT::iterator> iterator;
    586   iterator begin() { return Vector.begin(); }
    587   iterator end()   { return Vector.end(); }
    588 
    589   typedef FoldingSetVectorIterator<const T, typename VectorT::const_iterator>
    590     const_iterator;
    591   const_iterator begin() const { return Vector.begin(); }
    592   const_iterator end()   const { return Vector.end(); }
    593 
    594   /// clear - Remove all nodes from the folding set.
    595   void clear() { Set.clear(); Vector.clear(); }
    596 
    597   /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
    598   /// return it.  If not, return the insertion token that will make insertion
    599   /// faster.
    600   T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
    601     return Set.FindNodeOrInsertPos(ID, InsertPos);
    602   }
    603 
    604   /// GetOrInsertNode - If there is an existing simple Node exactly
    605   /// equal to the specified node, return it.  Otherwise, insert 'N' and
    606   /// return it instead.
    607   T *GetOrInsertNode(T *N) {
    608     T *Result = Set.GetOrInsertNode(N);
    609     if (Result == N) Vector.push_back(N);
    610     return Result;
    611   }
    612 
    613   /// InsertNode - Insert the specified node into the folding set, knowing that
    614   /// it is not already in the folding set.  InsertPos must be obtained from
    615   /// FindNodeOrInsertPos.
    616   void InsertNode(T *N, void *InsertPos) {
    617     Set.InsertNode(N, InsertPos);
    618     Vector.push_back(N);
    619   }
    620 
    621   /// InsertNode - Insert the specified node into the folding set, knowing that
    622   /// it is not already in the folding set.
    623   void InsertNode(T *N) {
    624     Set.InsertNode(N);
    625     Vector.push_back(N);
    626   }
    627 
    628   /// size - Returns the number of nodes in the folding set.
    629   unsigned size() const { return Set.size(); }
    630 
    631   /// empty - Returns true if there are no nodes in the folding set.
    632   bool empty() const { return Set.empty(); }
    633 };
    634 
    635 //===----------------------------------------------------------------------===//
    636 /// FoldingSetIteratorImpl - This is the common iterator support shared by all
    637 /// folding sets, which knows how to walk the folding set hash table.
    638 class FoldingSetIteratorImpl {
    639 protected:
    640   FoldingSetNode *NodePtr;
    641   FoldingSetIteratorImpl(void **Bucket);
    642   void advance();
    643 
    644 public:
    645   bool operator==(const FoldingSetIteratorImpl &RHS) const {
    646     return NodePtr == RHS.NodePtr;
    647   }
    648   bool operator!=(const FoldingSetIteratorImpl &RHS) const {
    649     return NodePtr != RHS.NodePtr;
    650   }
    651 };
    652 
    653 
    654 template<class T>
    655 class FoldingSetIterator : public FoldingSetIteratorImpl {
    656 public:
    657   explicit FoldingSetIterator(void **Bucket) : FoldingSetIteratorImpl(Bucket) {}
    658 
    659   T &operator*() const {
    660     return *static_cast<T*>(NodePtr);
    661   }
    662 
    663   T *operator->() const {
    664     return static_cast<T*>(NodePtr);
    665   }
    666 
    667   inline FoldingSetIterator &operator++() {          // Preincrement
    668     advance();
    669     return *this;
    670   }
    671   FoldingSetIterator operator++(int) {        // Postincrement
    672     FoldingSetIterator tmp = *this; ++*this; return tmp;
    673   }
    674 };
    675 
    676 //===----------------------------------------------------------------------===//
    677 /// FoldingSetBucketIteratorImpl - This is the common bucket iterator support
    678 /// shared by all folding sets, which knows how to walk a particular bucket
    679 /// of a folding set hash table.
    680 
    681 class FoldingSetBucketIteratorImpl {
    682 protected:
    683   void *Ptr;
    684 
    685   explicit FoldingSetBucketIteratorImpl(void **Bucket);
    686 
    687   FoldingSetBucketIteratorImpl(void **Bucket, bool)
    688     : Ptr(Bucket) {}
    689 
    690   void advance() {
    691     void *Probe = static_cast<FoldingSetNode*>(Ptr)->getNextInBucket();
    692     uintptr_t x = reinterpret_cast<uintptr_t>(Probe) & ~0x1;
    693     Ptr = reinterpret_cast<void*>(x);
    694   }
    695 
    696 public:
    697   bool operator==(const FoldingSetBucketIteratorImpl &RHS) const {
    698     return Ptr == RHS.Ptr;
    699   }
    700   bool operator!=(const FoldingSetBucketIteratorImpl &RHS) const {
    701     return Ptr != RHS.Ptr;
    702   }
    703 };
    704 
    705 
    706 template<class T>
    707 class FoldingSetBucketIterator : public FoldingSetBucketIteratorImpl {
    708 public:
    709   explicit FoldingSetBucketIterator(void **Bucket) :
    710     FoldingSetBucketIteratorImpl(Bucket) {}
    711 
    712   FoldingSetBucketIterator(void **Bucket, bool) :
    713     FoldingSetBucketIteratorImpl(Bucket, true) {}
    714 
    715   T &operator*() const { return *static_cast<T*>(Ptr); }
    716   T *operator->() const { return static_cast<T*>(Ptr); }
    717 
    718   inline FoldingSetBucketIterator &operator++() { // Preincrement
    719     advance();
    720     return *this;
    721   }
    722   FoldingSetBucketIterator operator++(int) {      // Postincrement
    723     FoldingSetBucketIterator tmp = *this; ++*this; return tmp;
    724   }
    725 };
    726 
    727 //===----------------------------------------------------------------------===//
    728 /// FoldingSetNodeWrapper - This template class is used to "wrap" arbitrary
    729 /// types in an enclosing object so that they can be inserted into FoldingSets.
    730 template <typename T>
    731 class FoldingSetNodeWrapper : public FoldingSetNode {
    732   T data;
    733 public:
    734   explicit FoldingSetNodeWrapper(const T &x) : data(x) {}
    735   virtual ~FoldingSetNodeWrapper() {}
    736 
    737   template<typename A1>
    738   explicit FoldingSetNodeWrapper(const A1 &a1)
    739     : data(a1) {}
    740 
    741   template <typename A1, typename A2>
    742   explicit FoldingSetNodeWrapper(const A1 &a1, const A2 &a2)
    743     : data(a1,a2) {}
    744 
    745   template <typename A1, typename A2, typename A3>
    746   explicit FoldingSetNodeWrapper(const A1 &a1, const A2 &a2, const A3 &a3)
    747     : data(a1,a2,a3) {}
    748 
    749   template <typename A1, typename A2, typename A3, typename A4>
    750   explicit FoldingSetNodeWrapper(const A1 &a1, const A2 &a2, const A3 &a3,
    751                                  const A4 &a4)
    752     : data(a1,a2,a3,a4) {}
    753 
    754   template <typename A1, typename A2, typename A3, typename A4, typename A5>
    755   explicit FoldingSetNodeWrapper(const A1 &a1, const A2 &a2, const A3 &a3,
    756                                  const A4 &a4, const A5 &a5)
    757   : data(a1,a2,a3,a4,a5) {}
    758 
    759 
    760   void Profile(FoldingSetNodeID &ID) { FoldingSetTrait<T>::Profile(data, ID); }
    761 
    762   T &getValue() { return data; }
    763   const T &getValue() const { return data; }
    764 
    765   operator T&() { return data; }
    766   operator const T&() const { return data; }
    767 };
    768 
    769 //===----------------------------------------------------------------------===//
    770 /// FastFoldingSetNode - This is a subclass of FoldingSetNode which stores
    771 /// a FoldingSetNodeID value rather than requiring the node to recompute it
    772 /// each time it is needed. This trades space for speed (which can be
    773 /// significant if the ID is long), and it also permits nodes to drop
    774 /// information that would otherwise only be required for recomputing an ID.
    775 class FastFoldingSetNode : public FoldingSetNode {
    776   FoldingSetNodeID FastID;
    777 protected:
    778   explicit FastFoldingSetNode(const FoldingSetNodeID &ID) : FastID(ID) {}
    779 public:
    780   void Profile(FoldingSetNodeID &ID) const {
    781     ID.AddNodeID(FastID);
    782   }
    783 };
    784 
    785 //===----------------------------------------------------------------------===//
    786 // Partial specializations of FoldingSetTrait.
    787 
    788 template<typename T> struct FoldingSetTrait<T*> {
    789   static inline void Profile(T *X, FoldingSetNodeID &ID) {
    790     ID.AddPointer(X);
    791   }
    792 };
    793 } // End of namespace llvm.
    794 
    795 #endif
    796