1 //===-- llvm/ADT/FoldingSet.h - Uniquing Hash Set ---------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines a hash set that can be used to remove duplication of nodes 11 // in a graph. This code was originally created by Chris Lattner for use with 12 // SelectionDAGCSEMap, but was isolated to provide use across the llvm code set. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #ifndef LLVM_ADT_FOLDINGSET_H 17 #define LLVM_ADT_FOLDINGSET_H 18 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/Support/DataTypes.h" 22 23 namespace llvm { 24 class APFloat; 25 class APInt; 26 class BumpPtrAllocator; 27 28 /// This folding set used for two purposes: 29 /// 1. Given information about a node we want to create, look up the unique 30 /// instance of the node in the set. If the node already exists, return 31 /// it, otherwise return the bucket it should be inserted into. 32 /// 2. Given a node that has already been created, remove it from the set. 33 /// 34 /// This class is implemented as a single-link chained hash table, where the 35 /// "buckets" are actually the nodes themselves (the next pointer is in the 36 /// node). The last node points back to the bucket to simplify node removal. 37 /// 38 /// Any node that is to be included in the folding set must be a subclass of 39 /// FoldingSetNode. The node class must also define a Profile method used to 40 /// establish the unique bits of data for the node. The Profile method is 41 /// passed a FoldingSetNodeID object which is used to gather the bits. Just 42 /// call one of the Add* functions defined in the FoldingSetImpl::NodeID class. 43 /// NOTE: That the folding set does not own the nodes and it is the 44 /// responsibility of the user to dispose of the nodes. 45 /// 46 /// Eg. 47 /// class MyNode : public FoldingSetNode { 48 /// private: 49 /// std::string Name; 50 /// unsigned Value; 51 /// public: 52 /// MyNode(const char *N, unsigned V) : Name(N), Value(V) {} 53 /// ... 54 /// void Profile(FoldingSetNodeID &ID) const { 55 /// ID.AddString(Name); 56 /// ID.AddInteger(Value); 57 /// } 58 /// ... 59 /// }; 60 /// 61 /// To define the folding set itself use the FoldingSet template; 62 /// 63 /// Eg. 64 /// FoldingSet<MyNode> MyFoldingSet; 65 /// 66 /// Four public methods are available to manipulate the folding set; 67 /// 68 /// 1) If you have an existing node that you want add to the set but unsure 69 /// that the node might already exist then call; 70 /// 71 /// MyNode *M = MyFoldingSet.GetOrInsertNode(N); 72 /// 73 /// If The result is equal to the input then the node has been inserted. 74 /// Otherwise, the result is the node existing in the folding set, and the 75 /// input can be discarded (use the result instead.) 76 /// 77 /// 2) If you are ready to construct a node but want to check if it already 78 /// exists, then call FindNodeOrInsertPos with a FoldingSetNodeID of the bits to 79 /// check; 80 /// 81 /// FoldingSetNodeID ID; 82 /// ID.AddString(Name); 83 /// ID.AddInteger(Value); 84 /// void *InsertPoint; 85 /// 86 /// MyNode *M = MyFoldingSet.FindNodeOrInsertPos(ID, InsertPoint); 87 /// 88 /// If found then M with be non-NULL, else InsertPoint will point to where it 89 /// should be inserted using InsertNode. 90 /// 91 /// 3) If you get a NULL result from FindNodeOrInsertPos then you can as a new 92 /// node with FindNodeOrInsertPos; 93 /// 94 /// InsertNode(N, InsertPoint); 95 /// 96 /// 4) Finally, if you want to remove a node from the folding set call; 97 /// 98 /// bool WasRemoved = RemoveNode(N); 99 /// 100 /// The result indicates whether the node existed in the folding set. 101 102 class FoldingSetNodeID; 103 104 //===----------------------------------------------------------------------===// 105 /// FoldingSetImpl - Implements the folding set functionality. The main 106 /// structure is an array of buckets. Each bucket is indexed by the hash of 107 /// the nodes it contains. The bucket itself points to the nodes contained 108 /// in the bucket via a singly linked list. The last node in the list points 109 /// back to the bucket to facilitate node removal. 110 /// 111 class FoldingSetImpl { 112 protected: 113 /// Buckets - Array of bucket chains. 114 /// 115 void **Buckets; 116 117 /// NumBuckets - Length of the Buckets array. Always a power of 2. 118 /// 119 unsigned NumBuckets; 120 121 /// NumNodes - Number of nodes in the folding set. Growth occurs when NumNodes 122 /// is greater than twice the number of buckets. 123 unsigned NumNodes; 124 125 public: 126 explicit FoldingSetImpl(unsigned Log2InitSize = 6); 127 virtual ~FoldingSetImpl(); 128 129 //===--------------------------------------------------------------------===// 130 /// Node - This class is used to maintain the singly linked bucket list in 131 /// a folding set. 132 /// 133 class Node { 134 private: 135 // NextInFoldingSetBucket - next link in the bucket list. 136 void *NextInFoldingSetBucket; 137 138 public: 139 140 Node() : NextInFoldingSetBucket(0) {} 141 142 // Accessors 143 void *getNextInBucket() const { return NextInFoldingSetBucket; } 144 void SetNextInBucket(void *N) { NextInFoldingSetBucket = N; } 145 }; 146 147 /// clear - Remove all nodes from the folding set. 148 void clear(); 149 150 /// RemoveNode - Remove a node from the folding set, returning true if one 151 /// was removed or false if the node was not in the folding set. 152 bool RemoveNode(Node *N); 153 154 /// GetOrInsertNode - If there is an existing simple Node exactly 155 /// equal to the specified node, return it. Otherwise, insert 'N' and return 156 /// it instead. 157 Node *GetOrInsertNode(Node *N); 158 159 /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists, 160 /// return it. If not, return the insertion token that will make insertion 161 /// faster. 162 Node *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos); 163 164 /// InsertNode - Insert the specified node into the folding set, knowing that 165 /// it is not already in the folding set. InsertPos must be obtained from 166 /// FindNodeOrInsertPos. 167 void InsertNode(Node *N, void *InsertPos); 168 169 /// InsertNode - Insert the specified node into the folding set, knowing that 170 /// it is not already in the folding set. 171 void InsertNode(Node *N) { 172 Node *Inserted = GetOrInsertNode(N); 173 (void)Inserted; 174 assert(Inserted == N && "Node already inserted!"); 175 } 176 177 /// size - Returns the number of nodes in the folding set. 178 unsigned size() const { return NumNodes; } 179 180 /// empty - Returns true if there are no nodes in the folding set. 181 bool empty() const { return NumNodes == 0; } 182 183 private: 184 185 /// GrowHashTable - Double the size of the hash table and rehash everything. 186 /// 187 void GrowHashTable(); 188 189 protected: 190 191 /// GetNodeProfile - Instantiations of the FoldingSet template implement 192 /// this function to gather data bits for the given node. 193 virtual void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const = 0; 194 /// NodeEquals - Instantiations of the FoldingSet template implement 195 /// this function to compare the given node with the given ID. 196 virtual bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash, 197 FoldingSetNodeID &TempID) const=0; 198 /// ComputeNodeHash - Instantiations of the FoldingSet template implement 199 /// this function to compute a hash value for the given node. 200 virtual unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const = 0; 201 }; 202 203 //===----------------------------------------------------------------------===// 204 205 template<typename T> struct FoldingSetTrait; 206 207 /// DefaultFoldingSetTrait - This class provides default implementations 208 /// for FoldingSetTrait implementations. 209 /// 210 template<typename T> struct DefaultFoldingSetTrait { 211 static void Profile(const T &X, FoldingSetNodeID &ID) { 212 X.Profile(ID); 213 } 214 static void Profile(T &X, FoldingSetNodeID &ID) { 215 X.Profile(ID); 216 } 217 218 // Equals - Test if the profile for X would match ID, using TempID 219 // to compute a temporary ID if necessary. The default implementation 220 // just calls Profile and does a regular comparison. Implementations 221 // can override this to provide more efficient implementations. 222 static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash, 223 FoldingSetNodeID &TempID); 224 225 // ComputeHash - Compute a hash value for X, using TempID to 226 // compute a temporary ID if necessary. The default implementation 227 // just calls Profile and does a regular hash computation. 228 // Implementations can override this to provide more efficient 229 // implementations. 230 static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID); 231 }; 232 233 /// FoldingSetTrait - This trait class is used to define behavior of how 234 /// to "profile" (in the FoldingSet parlance) an object of a given type. 235 /// The default behavior is to invoke a 'Profile' method on an object, but 236 /// through template specialization the behavior can be tailored for specific 237 /// types. Combined with the FoldingSetNodeWrapper class, one can add objects 238 /// to FoldingSets that were not originally designed to have that behavior. 239 template<typename T> struct FoldingSetTrait 240 : public DefaultFoldingSetTrait<T> {}; 241 242 template<typename T, typename Ctx> struct ContextualFoldingSetTrait; 243 244 /// DefaultContextualFoldingSetTrait - Like DefaultFoldingSetTrait, but 245 /// for ContextualFoldingSets. 246 template<typename T, typename Ctx> 247 struct DefaultContextualFoldingSetTrait { 248 static void Profile(T &X, FoldingSetNodeID &ID, Ctx Context) { 249 X.Profile(ID, Context); 250 } 251 static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash, 252 FoldingSetNodeID &TempID, Ctx Context); 253 static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID, 254 Ctx Context); 255 }; 256 257 /// ContextualFoldingSetTrait - Like FoldingSetTrait, but for 258 /// ContextualFoldingSets. 259 template<typename T, typename Ctx> struct ContextualFoldingSetTrait 260 : public DefaultContextualFoldingSetTrait<T, Ctx> {}; 261 262 //===--------------------------------------------------------------------===// 263 /// FoldingSetNodeIDRef - This class describes a reference to an interned 264 /// FoldingSetNodeID, which can be a useful to store node id data rather 265 /// than using plain FoldingSetNodeIDs, since the 32-element SmallVector 266 /// is often much larger than necessary, and the possibility of heap 267 /// allocation means it requires a non-trivial destructor call. 268 class FoldingSetNodeIDRef { 269 const unsigned *Data; 270 size_t Size; 271 public: 272 FoldingSetNodeIDRef() : Data(0), Size(0) {} 273 FoldingSetNodeIDRef(const unsigned *D, size_t S) : Data(D), Size(S) {} 274 275 /// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef, 276 /// used to lookup the node in the FoldingSetImpl. 277 unsigned ComputeHash() const; 278 279 bool operator==(FoldingSetNodeIDRef) const; 280 281 /// Used to compare the "ordering" of two nodes as defined by the 282 /// profiled bits and their ordering defined by memcmp(). 283 bool operator<(FoldingSetNodeIDRef) const; 284 285 const unsigned *getData() const { return Data; } 286 size_t getSize() const { return Size; } 287 }; 288 289 //===--------------------------------------------------------------------===// 290 /// FoldingSetNodeID - This class is used to gather all the unique data bits of 291 /// a node. When all the bits are gathered this class is used to produce a 292 /// hash value for the node. 293 /// 294 class FoldingSetNodeID { 295 /// Bits - Vector of all the data bits that make the node unique. 296 /// Use a SmallVector to avoid a heap allocation in the common case. 297 SmallVector<unsigned, 32> Bits; 298 299 public: 300 FoldingSetNodeID() {} 301 302 FoldingSetNodeID(FoldingSetNodeIDRef Ref) 303 : Bits(Ref.getData(), Ref.getData() + Ref.getSize()) {} 304 305 /// Add* - Add various data types to Bit data. 306 /// 307 void AddPointer(const void *Ptr); 308 void AddInteger(signed I); 309 void AddInteger(unsigned I); 310 void AddInteger(long I); 311 void AddInteger(unsigned long I); 312 void AddInteger(long long I); 313 void AddInteger(unsigned long long I); 314 void AddBoolean(bool B) { AddInteger(B ? 1U : 0U); } 315 void AddString(StringRef String); 316 void AddNodeID(const FoldingSetNodeID &ID); 317 318 template <typename T> 319 inline void Add(const T &x) { FoldingSetTrait<T>::Profile(x, *this); } 320 321 /// clear - Clear the accumulated profile, allowing this FoldingSetNodeID 322 /// object to be used to compute a new profile. 323 inline void clear() { Bits.clear(); } 324 325 /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used 326 /// to lookup the node in the FoldingSetImpl. 327 unsigned ComputeHash() const; 328 329 /// operator== - Used to compare two nodes to each other. 330 /// 331 bool operator==(const FoldingSetNodeID &RHS) const; 332 bool operator==(const FoldingSetNodeIDRef RHS) const; 333 334 /// Used to compare the "ordering" of two nodes as defined by the 335 /// profiled bits and their ordering defined by memcmp(). 336 bool operator<(const FoldingSetNodeID &RHS) const; 337 bool operator<(const FoldingSetNodeIDRef RHS) const; 338 339 /// Intern - Copy this node's data to a memory region allocated from the 340 /// given allocator and return a FoldingSetNodeIDRef describing the 341 /// interned data. 342 FoldingSetNodeIDRef Intern(BumpPtrAllocator &Allocator) const; 343 }; 344 345 // Convenience type to hide the implementation of the folding set. 346 typedef FoldingSetImpl::Node FoldingSetNode; 347 template<class T> class FoldingSetIterator; 348 template<class T> class FoldingSetBucketIterator; 349 350 // Definitions of FoldingSetTrait and ContextualFoldingSetTrait functions, which 351 // require the definition of FoldingSetNodeID. 352 template<typename T> 353 inline bool 354 DefaultFoldingSetTrait<T>::Equals(T &X, const FoldingSetNodeID &ID, 355 unsigned /*IDHash*/, 356 FoldingSetNodeID &TempID) { 357 FoldingSetTrait<T>::Profile(X, TempID); 358 return TempID == ID; 359 } 360 template<typename T> 361 inline unsigned 362 DefaultFoldingSetTrait<T>::ComputeHash(T &X, FoldingSetNodeID &TempID) { 363 FoldingSetTrait<T>::Profile(X, TempID); 364 return TempID.ComputeHash(); 365 } 366 template<typename T, typename Ctx> 367 inline bool 368 DefaultContextualFoldingSetTrait<T, Ctx>::Equals(T &X, 369 const FoldingSetNodeID &ID, 370 unsigned /*IDHash*/, 371 FoldingSetNodeID &TempID, 372 Ctx Context) { 373 ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context); 374 return TempID == ID; 375 } 376 template<typename T, typename Ctx> 377 inline unsigned 378 DefaultContextualFoldingSetTrait<T, Ctx>::ComputeHash(T &X, 379 FoldingSetNodeID &TempID, 380 Ctx Context) { 381 ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context); 382 return TempID.ComputeHash(); 383 } 384 385 //===----------------------------------------------------------------------===// 386 /// FoldingSet - This template class is used to instantiate a specialized 387 /// implementation of the folding set to the node class T. T must be a 388 /// subclass of FoldingSetNode and implement a Profile function. 389 /// 390 template<class T> class FoldingSet : public FoldingSetImpl { 391 private: 392 /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a 393 /// way to convert nodes into a unique specifier. 394 virtual void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const { 395 T *TN = static_cast<T *>(N); 396 FoldingSetTrait<T>::Profile(*TN, ID); 397 } 398 /// NodeEquals - Instantiations may optionally provide a way to compare a 399 /// node with a specified ID. 400 virtual bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash, 401 FoldingSetNodeID &TempID) const { 402 T *TN = static_cast<T *>(N); 403 return FoldingSetTrait<T>::Equals(*TN, ID, IDHash, TempID); 404 } 405 /// ComputeNodeHash - Instantiations may optionally provide a way to compute a 406 /// hash value directly from a node. 407 virtual unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const { 408 T *TN = static_cast<T *>(N); 409 return FoldingSetTrait<T>::ComputeHash(*TN, TempID); 410 } 411 412 public: 413 explicit FoldingSet(unsigned Log2InitSize = 6) 414 : FoldingSetImpl(Log2InitSize) 415 {} 416 417 typedef FoldingSetIterator<T> iterator; 418 iterator begin() { return iterator(Buckets); } 419 iterator end() { return iterator(Buckets+NumBuckets); } 420 421 typedef FoldingSetIterator<const T> const_iterator; 422 const_iterator begin() const { return const_iterator(Buckets); } 423 const_iterator end() const { return const_iterator(Buckets+NumBuckets); } 424 425 typedef FoldingSetBucketIterator<T> bucket_iterator; 426 427 bucket_iterator bucket_begin(unsigned hash) { 428 return bucket_iterator(Buckets + (hash & (NumBuckets-1))); 429 } 430 431 bucket_iterator bucket_end(unsigned hash) { 432 return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true); 433 } 434 435 /// GetOrInsertNode - If there is an existing simple Node exactly 436 /// equal to the specified node, return it. Otherwise, insert 'N' and 437 /// return it instead. 438 T *GetOrInsertNode(Node *N) { 439 return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N)); 440 } 441 442 /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists, 443 /// return it. If not, return the insertion token that will make insertion 444 /// faster. 445 T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) { 446 return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos)); 447 } 448 }; 449 450 //===----------------------------------------------------------------------===// 451 /// ContextualFoldingSet - This template class is a further refinement 452 /// of FoldingSet which provides a context argument when calling 453 /// Profile on its nodes. Currently, that argument is fixed at 454 /// initialization time. 455 /// 456 /// T must be a subclass of FoldingSetNode and implement a Profile 457 /// function with signature 458 /// void Profile(llvm::FoldingSetNodeID &, Ctx); 459 template <class T, class Ctx> 460 class ContextualFoldingSet : public FoldingSetImpl { 461 // Unfortunately, this can't derive from FoldingSet<T> because the 462 // construction vtable for FoldingSet<T> requires 463 // FoldingSet<T>::GetNodeProfile to be instantiated, which in turn 464 // requires a single-argument T::Profile(). 465 466 private: 467 Ctx Context; 468 469 /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a 470 /// way to convert nodes into a unique specifier. 471 virtual void GetNodeProfile(FoldingSetImpl::Node *N, 472 FoldingSetNodeID &ID) const { 473 T *TN = static_cast<T *>(N); 474 ContextualFoldingSetTrait<T, Ctx>::Profile(*TN, ID, Context); 475 } 476 virtual bool NodeEquals(FoldingSetImpl::Node *N, 477 const FoldingSetNodeID &ID, unsigned IDHash, 478 FoldingSetNodeID &TempID) const { 479 T *TN = static_cast<T *>(N); 480 return ContextualFoldingSetTrait<T, Ctx>::Equals(*TN, ID, IDHash, TempID, 481 Context); 482 } 483 virtual unsigned ComputeNodeHash(FoldingSetImpl::Node *N, 484 FoldingSetNodeID &TempID) const { 485 T *TN = static_cast<T *>(N); 486 return ContextualFoldingSetTrait<T, Ctx>::ComputeHash(*TN, TempID, Context); 487 } 488 489 public: 490 explicit ContextualFoldingSet(Ctx Context, unsigned Log2InitSize = 6) 491 : FoldingSetImpl(Log2InitSize), Context(Context) 492 {} 493 494 Ctx getContext() const { return Context; } 495 496 497 typedef FoldingSetIterator<T> iterator; 498 iterator begin() { return iterator(Buckets); } 499 iterator end() { return iterator(Buckets+NumBuckets); } 500 501 typedef FoldingSetIterator<const T> const_iterator; 502 const_iterator begin() const { return const_iterator(Buckets); } 503 const_iterator end() const { return const_iterator(Buckets+NumBuckets); } 504 505 typedef FoldingSetBucketIterator<T> bucket_iterator; 506 507 bucket_iterator bucket_begin(unsigned hash) { 508 return bucket_iterator(Buckets + (hash & (NumBuckets-1))); 509 } 510 511 bucket_iterator bucket_end(unsigned hash) { 512 return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true); 513 } 514 515 /// GetOrInsertNode - If there is an existing simple Node exactly 516 /// equal to the specified node, return it. Otherwise, insert 'N' 517 /// and return it instead. 518 T *GetOrInsertNode(Node *N) { 519 return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N)); 520 } 521 522 /// FindNodeOrInsertPos - Look up the node specified by ID. If it 523 /// exists, return it. If not, return the insertion token that will 524 /// make insertion faster. 525 T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) { 526 return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos)); 527 } 528 }; 529 530 //===----------------------------------------------------------------------===// 531 /// FoldingSetVectorIterator - This implements an iterator for 532 /// FoldingSetVector. It is only necessary because FoldingSetIterator provides 533 /// a value_type of T, while the vector in FoldingSetVector exposes 534 /// a value_type of T*. Fortunately, FoldingSetIterator doesn't expose very 535 /// much besides operator* and operator->, so we just wrap the inner vector 536 /// iterator and perform the extra dereference. 537 template <class T, class VectorIteratorT> 538 class FoldingSetVectorIterator { 539 // Provide a typedef to workaround the lack of correct injected class name 540 // support in older GCCs. 541 typedef FoldingSetVectorIterator<T, VectorIteratorT> SelfT; 542 543 VectorIteratorT Iterator; 544 545 public: 546 FoldingSetVectorIterator(VectorIteratorT I) : Iterator(I) {} 547 548 bool operator==(const SelfT &RHS) const { 549 return Iterator == RHS.Iterator; 550 } 551 bool operator!=(const SelfT &RHS) const { 552 return Iterator != RHS.Iterator; 553 } 554 555 T &operator*() const { return **Iterator; } 556 557 T *operator->() const { return *Iterator; } 558 559 inline SelfT &operator++() { 560 ++Iterator; 561 return *this; 562 } 563 SelfT operator++(int) { 564 SelfT tmp = *this; 565 ++*this; 566 return tmp; 567 } 568 }; 569 570 //===----------------------------------------------------------------------===// 571 /// FoldingSetVector - This template class combines a FoldingSet and a vector 572 /// to provide the interface of FoldingSet but with deterministic iteration 573 /// order based on the insertion order. T must be a subclass of FoldingSetNode 574 /// and implement a Profile function. 575 template <class T, class VectorT = SmallVector<T*, 8> > 576 class FoldingSetVector { 577 FoldingSet<T> Set; 578 VectorT Vector; 579 580 public: 581 explicit FoldingSetVector(unsigned Log2InitSize = 6) 582 : Set(Log2InitSize) { 583 } 584 585 typedef FoldingSetVectorIterator<T, typename VectorT::iterator> iterator; 586 iterator begin() { return Vector.begin(); } 587 iterator end() { return Vector.end(); } 588 589 typedef FoldingSetVectorIterator<const T, typename VectorT::const_iterator> 590 const_iterator; 591 const_iterator begin() const { return Vector.begin(); } 592 const_iterator end() const { return Vector.end(); } 593 594 /// clear - Remove all nodes from the folding set. 595 void clear() { Set.clear(); Vector.clear(); } 596 597 /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists, 598 /// return it. If not, return the insertion token that will make insertion 599 /// faster. 600 T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) { 601 return Set.FindNodeOrInsertPos(ID, InsertPos); 602 } 603 604 /// GetOrInsertNode - If there is an existing simple Node exactly 605 /// equal to the specified node, return it. Otherwise, insert 'N' and 606 /// return it instead. 607 T *GetOrInsertNode(T *N) { 608 T *Result = Set.GetOrInsertNode(N); 609 if (Result == N) Vector.push_back(N); 610 return Result; 611 } 612 613 /// InsertNode - Insert the specified node into the folding set, knowing that 614 /// it is not already in the folding set. InsertPos must be obtained from 615 /// FindNodeOrInsertPos. 616 void InsertNode(T *N, void *InsertPos) { 617 Set.InsertNode(N, InsertPos); 618 Vector.push_back(N); 619 } 620 621 /// InsertNode - Insert the specified node into the folding set, knowing that 622 /// it is not already in the folding set. 623 void InsertNode(T *N) { 624 Set.InsertNode(N); 625 Vector.push_back(N); 626 } 627 628 /// size - Returns the number of nodes in the folding set. 629 unsigned size() const { return Set.size(); } 630 631 /// empty - Returns true if there are no nodes in the folding set. 632 bool empty() const { return Set.empty(); } 633 }; 634 635 //===----------------------------------------------------------------------===// 636 /// FoldingSetIteratorImpl - This is the common iterator support shared by all 637 /// folding sets, which knows how to walk the folding set hash table. 638 class FoldingSetIteratorImpl { 639 protected: 640 FoldingSetNode *NodePtr; 641 FoldingSetIteratorImpl(void **Bucket); 642 void advance(); 643 644 public: 645 bool operator==(const FoldingSetIteratorImpl &RHS) const { 646 return NodePtr == RHS.NodePtr; 647 } 648 bool operator!=(const FoldingSetIteratorImpl &RHS) const { 649 return NodePtr != RHS.NodePtr; 650 } 651 }; 652 653 654 template<class T> 655 class FoldingSetIterator : public FoldingSetIteratorImpl { 656 public: 657 explicit FoldingSetIterator(void **Bucket) : FoldingSetIteratorImpl(Bucket) {} 658 659 T &operator*() const { 660 return *static_cast<T*>(NodePtr); 661 } 662 663 T *operator->() const { 664 return static_cast<T*>(NodePtr); 665 } 666 667 inline FoldingSetIterator &operator++() { // Preincrement 668 advance(); 669 return *this; 670 } 671 FoldingSetIterator operator++(int) { // Postincrement 672 FoldingSetIterator tmp = *this; ++*this; return tmp; 673 } 674 }; 675 676 //===----------------------------------------------------------------------===// 677 /// FoldingSetBucketIteratorImpl - This is the common bucket iterator support 678 /// shared by all folding sets, which knows how to walk a particular bucket 679 /// of a folding set hash table. 680 681 class FoldingSetBucketIteratorImpl { 682 protected: 683 void *Ptr; 684 685 explicit FoldingSetBucketIteratorImpl(void **Bucket); 686 687 FoldingSetBucketIteratorImpl(void **Bucket, bool) 688 : Ptr(Bucket) {} 689 690 void advance() { 691 void *Probe = static_cast<FoldingSetNode*>(Ptr)->getNextInBucket(); 692 uintptr_t x = reinterpret_cast<uintptr_t>(Probe) & ~0x1; 693 Ptr = reinterpret_cast<void*>(x); 694 } 695 696 public: 697 bool operator==(const FoldingSetBucketIteratorImpl &RHS) const { 698 return Ptr == RHS.Ptr; 699 } 700 bool operator!=(const FoldingSetBucketIteratorImpl &RHS) const { 701 return Ptr != RHS.Ptr; 702 } 703 }; 704 705 706 template<class T> 707 class FoldingSetBucketIterator : public FoldingSetBucketIteratorImpl { 708 public: 709 explicit FoldingSetBucketIterator(void **Bucket) : 710 FoldingSetBucketIteratorImpl(Bucket) {} 711 712 FoldingSetBucketIterator(void **Bucket, bool) : 713 FoldingSetBucketIteratorImpl(Bucket, true) {} 714 715 T &operator*() const { return *static_cast<T*>(Ptr); } 716 T *operator->() const { return static_cast<T*>(Ptr); } 717 718 inline FoldingSetBucketIterator &operator++() { // Preincrement 719 advance(); 720 return *this; 721 } 722 FoldingSetBucketIterator operator++(int) { // Postincrement 723 FoldingSetBucketIterator tmp = *this; ++*this; return tmp; 724 } 725 }; 726 727 //===----------------------------------------------------------------------===// 728 /// FoldingSetNodeWrapper - This template class is used to "wrap" arbitrary 729 /// types in an enclosing object so that they can be inserted into FoldingSets. 730 template <typename T> 731 class FoldingSetNodeWrapper : public FoldingSetNode { 732 T data; 733 public: 734 explicit FoldingSetNodeWrapper(const T &x) : data(x) {} 735 virtual ~FoldingSetNodeWrapper() {} 736 737 template<typename A1> 738 explicit FoldingSetNodeWrapper(const A1 &a1) 739 : data(a1) {} 740 741 template <typename A1, typename A2> 742 explicit FoldingSetNodeWrapper(const A1 &a1, const A2 &a2) 743 : data(a1,a2) {} 744 745 template <typename A1, typename A2, typename A3> 746 explicit FoldingSetNodeWrapper(const A1 &a1, const A2 &a2, const A3 &a3) 747 : data(a1,a2,a3) {} 748 749 template <typename A1, typename A2, typename A3, typename A4> 750 explicit FoldingSetNodeWrapper(const A1 &a1, const A2 &a2, const A3 &a3, 751 const A4 &a4) 752 : data(a1,a2,a3,a4) {} 753 754 template <typename A1, typename A2, typename A3, typename A4, typename A5> 755 explicit FoldingSetNodeWrapper(const A1 &a1, const A2 &a2, const A3 &a3, 756 const A4 &a4, const A5 &a5) 757 : data(a1,a2,a3,a4,a5) {} 758 759 760 void Profile(FoldingSetNodeID &ID) { FoldingSetTrait<T>::Profile(data, ID); } 761 762 T &getValue() { return data; } 763 const T &getValue() const { return data; } 764 765 operator T&() { return data; } 766 operator const T&() const { return data; } 767 }; 768 769 //===----------------------------------------------------------------------===// 770 /// FastFoldingSetNode - This is a subclass of FoldingSetNode which stores 771 /// a FoldingSetNodeID value rather than requiring the node to recompute it 772 /// each time it is needed. This trades space for speed (which can be 773 /// significant if the ID is long), and it also permits nodes to drop 774 /// information that would otherwise only be required for recomputing an ID. 775 class FastFoldingSetNode : public FoldingSetNode { 776 FoldingSetNodeID FastID; 777 protected: 778 explicit FastFoldingSetNode(const FoldingSetNodeID &ID) : FastID(ID) {} 779 public: 780 void Profile(FoldingSetNodeID &ID) const { 781 ID.AddNodeID(FastID); 782 } 783 }; 784 785 //===----------------------------------------------------------------------===// 786 // Partial specializations of FoldingSetTrait. 787 788 template<typename T> struct FoldingSetTrait<T*> { 789 static inline void Profile(T *X, FoldingSetNodeID &ID) { 790 ID.AddPointer(X); 791 } 792 }; 793 } // End of namespace llvm. 794 795 #endif 796