1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2011 Gael Guennebaud <gael.guennebaud (at) inria.fr> 5 // Copyright (C) 2012 Kolja Brix <brix (at) igpm.rwth-aaachen.de> 6 // 7 // This Source Code Form is subject to the terms of the Mozilla 8 // Public License v. 2.0. If a copy of the MPL was not distributed 9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 10 11 #ifndef EIGEN_GMRES_H 12 #define EIGEN_GMRES_H 13 14 namespace Eigen { 15 16 namespace internal { 17 18 /** 19 * Generalized Minimal Residual Algorithm based on the 20 * Arnoldi algorithm implemented with Householder reflections. 21 * 22 * Parameters: 23 * \param mat matrix of linear system of equations 24 * \param Rhs right hand side vector of linear system of equations 25 * \param x on input: initial guess, on output: solution 26 * \param precond preconditioner used 27 * \param iters on input: maximum number of iterations to perform 28 * on output: number of iterations performed 29 * \param restart number of iterations for a restart 30 * \param tol_error on input: residual tolerance 31 * on output: residuum achieved 32 * 33 * \sa IterativeMethods::bicgstab() 34 * 35 * 36 * For references, please see: 37 * 38 * Saad, Y. and Schultz, M. H. 39 * GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems. 40 * SIAM J.Sci.Stat.Comp. 7, 1986, pp. 856 - 869. 41 * 42 * Saad, Y. 43 * Iterative Methods for Sparse Linear Systems. 44 * Society for Industrial and Applied Mathematics, Philadelphia, 2003. 45 * 46 * Walker, H. F. 47 * Implementations of the GMRES method. 48 * Comput.Phys.Comm. 53, 1989, pp. 311 - 320. 49 * 50 * Walker, H. F. 51 * Implementation of the GMRES Method using Householder Transformations. 52 * SIAM J.Sci.Stat.Comp. 9, 1988, pp. 152 - 163. 53 * 54 */ 55 template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner> 56 bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Preconditioner & precond, 57 int &iters, const int &restart, typename Dest::RealScalar & tol_error) { 58 59 using std::sqrt; 60 using std::abs; 61 62 typedef typename Dest::RealScalar RealScalar; 63 typedef typename Dest::Scalar Scalar; 64 typedef Matrix < RealScalar, Dynamic, 1 > RealVectorType; 65 typedef Matrix < Scalar, Dynamic, 1 > VectorType; 66 typedef Matrix < Scalar, Dynamic, Dynamic > FMatrixType; 67 68 RealScalar tol = tol_error; 69 const int maxIters = iters; 70 iters = 0; 71 72 const int m = mat.rows(); 73 74 VectorType p0 = rhs - mat*x; 75 VectorType r0 = precond.solve(p0); 76 // RealScalar r0_sqnorm = r0.squaredNorm(); 77 78 VectorType w = VectorType::Zero(restart + 1); 79 80 FMatrixType H = FMatrixType::Zero(m, restart + 1); 81 VectorType tau = VectorType::Zero(restart + 1); 82 std::vector < JacobiRotation < Scalar > > G(restart); 83 84 // generate first Householder vector 85 VectorType e; 86 RealScalar beta; 87 r0.makeHouseholder(e, tau.coeffRef(0), beta); 88 w(0)=(Scalar) beta; 89 H.bottomLeftCorner(m - 1, 1) = e; 90 91 for (int k = 1; k <= restart; ++k) { 92 93 ++iters; 94 95 VectorType v = VectorType::Unit(m, k - 1), workspace(m); 96 97 // apply Householder reflections H_{1} ... H_{k-1} to v 98 for (int i = k - 1; i >= 0; --i) { 99 v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data()); 100 } 101 102 // apply matrix M to v: v = mat * v; 103 VectorType t=mat*v; 104 v=precond.solve(t); 105 106 // apply Householder reflections H_{k-1} ... H_{1} to v 107 for (int i = 0; i < k; ++i) { 108 v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data()); 109 } 110 111 if (v.tail(m - k).norm() != 0.0) { 112 113 if (k <= restart) { 114 115 // generate new Householder vector 116 VectorType e(m - k - 1); 117 RealScalar beta; 118 v.tail(m - k).makeHouseholder(e, tau.coeffRef(k), beta); 119 H.col(k).tail(m - k - 1) = e; 120 121 // apply Householder reflection H_{k} to v 122 v.tail(m - k).applyHouseholderOnTheLeft(H.col(k).tail(m - k - 1), tau.coeffRef(k), workspace.data()); 123 124 } 125 } 126 127 if (k > 1) { 128 for (int i = 0; i < k - 1; ++i) { 129 // apply old Givens rotations to v 130 v.applyOnTheLeft(i, i + 1, G[i].adjoint()); 131 } 132 } 133 134 if (k<m && v(k) != (Scalar) 0) { 135 // determine next Givens rotation 136 G[k - 1].makeGivens(v(k - 1), v(k)); 137 138 // apply Givens rotation to v and w 139 v.applyOnTheLeft(k - 1, k, G[k - 1].adjoint()); 140 w.applyOnTheLeft(k - 1, k, G[k - 1].adjoint()); 141 142 } 143 144 // insert coefficients into upper matrix triangle 145 H.col(k - 1).head(k) = v.head(k); 146 147 bool stop=(k==m || abs(w(k)) < tol || iters == maxIters); 148 149 if (stop || k == restart) { 150 151 // solve upper triangular system 152 VectorType y = w.head(k); 153 H.topLeftCorner(k, k).template triangularView < Eigen::Upper > ().solveInPlace(y); 154 155 // use Horner-like scheme to calculate solution vector 156 VectorType x_new = y(k - 1) * VectorType::Unit(m, k - 1); 157 158 // apply Householder reflection H_{k} to x_new 159 x_new.tail(m - k + 1).applyHouseholderOnTheLeft(H.col(k - 1).tail(m - k), tau.coeffRef(k - 1), workspace.data()); 160 161 for (int i = k - 2; i >= 0; --i) { 162 x_new += y(i) * VectorType::Unit(m, i); 163 // apply Householder reflection H_{i} to x_new 164 x_new.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data()); 165 } 166 167 x += x_new; 168 169 if (stop) { 170 return true; 171 } else { 172 k=0; 173 174 // reset data for a restart r0 = rhs - mat * x; 175 VectorType p0=mat*x; 176 VectorType p1=precond.solve(p0); 177 r0 = rhs - p1; 178 // r0_sqnorm = r0.squaredNorm(); 179 w = VectorType::Zero(restart + 1); 180 H = FMatrixType::Zero(m, restart + 1); 181 tau = VectorType::Zero(restart + 1); 182 183 // generate first Householder vector 184 RealScalar beta; 185 r0.makeHouseholder(e, tau.coeffRef(0), beta); 186 w(0)=(Scalar) beta; 187 H.bottomLeftCorner(m - 1, 1) = e; 188 189 } 190 191 } 192 193 194 195 } 196 197 return false; 198 199 } 200 201 } 202 203 template< typename _MatrixType, 204 typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> > 205 class GMRES; 206 207 namespace internal { 208 209 template< typename _MatrixType, typename _Preconditioner> 210 struct traits<GMRES<_MatrixType,_Preconditioner> > 211 { 212 typedef _MatrixType MatrixType; 213 typedef _Preconditioner Preconditioner; 214 }; 215 216 } 217 218 /** \ingroup IterativeLinearSolvers_Module 219 * \brief A GMRES solver for sparse square problems 220 * 221 * This class allows to solve for A.x = b sparse linear problems using a generalized minimal 222 * residual method. The vectors x and b can be either dense or sparse. 223 * 224 * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix. 225 * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner 226 * 227 * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() 228 * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations 229 * and NumTraits<Scalar>::epsilon() for the tolerance. 230 * 231 * This class can be used as the direct solver classes. Here is a typical usage example: 232 * \code 233 * int n = 10000; 234 * VectorXd x(n), b(n); 235 * SparseMatrix<double> A(n,n); 236 * // fill A and b 237 * GMRES<SparseMatrix<double> > solver(A); 238 * x = solver.solve(b); 239 * std::cout << "#iterations: " << solver.iterations() << std::endl; 240 * std::cout << "estimated error: " << solver.error() << std::endl; 241 * // update b, and solve again 242 * x = solver.solve(b); 243 * \endcode 244 * 245 * By default the iterations start with x=0 as an initial guess of the solution. 246 * One can control the start using the solveWithGuess() method. Here is a step by 247 * step execution example starting with a random guess and printing the evolution 248 * of the estimated error: 249 * * \code 250 * x = VectorXd::Random(n); 251 * solver.setMaxIterations(1); 252 * int i = 0; 253 * do { 254 * x = solver.solveWithGuess(b,x); 255 * std::cout << i << " : " << solver.error() << std::endl; 256 * ++i; 257 * } while (solver.info()!=Success && i<100); 258 * \endcode 259 * Note that such a step by step excution is slightly slower. 260 * 261 * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner 262 */ 263 template< typename _MatrixType, typename _Preconditioner> 264 class GMRES : public IterativeSolverBase<GMRES<_MatrixType,_Preconditioner> > 265 { 266 typedef IterativeSolverBase<GMRES> Base; 267 using Base::mp_matrix; 268 using Base::m_error; 269 using Base::m_iterations; 270 using Base::m_info; 271 using Base::m_isInitialized; 272 273 private: 274 int m_restart; 275 276 public: 277 typedef _MatrixType MatrixType; 278 typedef typename MatrixType::Scalar Scalar; 279 typedef typename MatrixType::Index Index; 280 typedef typename MatrixType::RealScalar RealScalar; 281 typedef _Preconditioner Preconditioner; 282 283 public: 284 285 /** Default constructor. */ 286 GMRES() : Base(), m_restart(30) {} 287 288 /** Initialize the solver with matrix \a A for further \c Ax=b solving. 289 * 290 * This constructor is a shortcut for the default constructor followed 291 * by a call to compute(). 292 * 293 * \warning this class stores a reference to the matrix A as well as some 294 * precomputed values that depend on it. Therefore, if \a A is changed 295 * this class becomes invalid. Call compute() to update it with the new 296 * matrix A, or modify a copy of A. 297 */ 298 GMRES(const MatrixType& A) : Base(A), m_restart(30) {} 299 300 ~GMRES() {} 301 302 /** Get the number of iterations after that a restart is performed. 303 */ 304 int get_restart() { return m_restart; } 305 306 /** Set the number of iterations after that a restart is performed. 307 * \param restart number of iterations for a restarti, default is 30. 308 */ 309 void set_restart(const int restart) { m_restart=restart; } 310 311 /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A 312 * \a x0 as an initial solution. 313 * 314 * \sa compute() 315 */ 316 template<typename Rhs,typename Guess> 317 inline const internal::solve_retval_with_guess<GMRES, Rhs, Guess> 318 solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const 319 { 320 eigen_assert(m_isInitialized && "GMRES is not initialized."); 321 eigen_assert(Base::rows()==b.rows() 322 && "GMRES::solve(): invalid number of rows of the right hand side matrix b"); 323 return internal::solve_retval_with_guess 324 <GMRES, Rhs, Guess>(*this, b.derived(), x0); 325 } 326 327 /** \internal */ 328 template<typename Rhs,typename Dest> 329 void _solveWithGuess(const Rhs& b, Dest& x) const 330 { 331 bool failed = false; 332 for(int j=0; j<b.cols(); ++j) 333 { 334 m_iterations = Base::maxIterations(); 335 m_error = Base::m_tolerance; 336 337 typename Dest::ColXpr xj(x,j); 338 if(!internal::gmres(*mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_restart, m_error)) 339 failed = true; 340 } 341 m_info = failed ? NumericalIssue 342 : m_error <= Base::m_tolerance ? Success 343 : NoConvergence; 344 m_isInitialized = true; 345 } 346 347 /** \internal */ 348 template<typename Rhs,typename Dest> 349 void _solve(const Rhs& b, Dest& x) const 350 { 351 x.setZero(); 352 _solveWithGuess(b,x); 353 } 354 355 protected: 356 357 }; 358 359 360 namespace internal { 361 362 template<typename _MatrixType, typename _Preconditioner, typename Rhs> 363 struct solve_retval<GMRES<_MatrixType, _Preconditioner>, Rhs> 364 : solve_retval_base<GMRES<_MatrixType, _Preconditioner>, Rhs> 365 { 366 typedef GMRES<_MatrixType, _Preconditioner> Dec; 367 EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs) 368 369 template<typename Dest> void evalTo(Dest& dst) const 370 { 371 dec()._solve(rhs(),dst); 372 } 373 }; 374 375 } // end namespace internal 376 377 } // end namespace Eigen 378 379 #endif // EIGEN_GMRES_H 380