Home | History | Annotate | Download | only in IterativeSolvers
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2011 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 // Copyright (C) 2012 Kolja Brix <brix (at) igpm.rwth-aaachen.de>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 #ifndef EIGEN_GMRES_H
     12 #define EIGEN_GMRES_H
     13 
     14 namespace Eigen {
     15 
     16 namespace internal {
     17 
     18 /**
     19  * Generalized Minimal Residual Algorithm based on the
     20  * Arnoldi algorithm implemented with Householder reflections.
     21  *
     22  * Parameters:
     23  *  \param mat       matrix of linear system of equations
     24  *  \param Rhs       right hand side vector of linear system of equations
     25  *  \param x         on input: initial guess, on output: solution
     26  *  \param precond   preconditioner used
     27  *  \param iters     on input: maximum number of iterations to perform
     28  *                   on output: number of iterations performed
     29  *  \param restart   number of iterations for a restart
     30  *  \param tol_error on input: residual tolerance
     31  *                   on output: residuum achieved
     32  *
     33  * \sa IterativeMethods::bicgstab()
     34  *
     35  *
     36  * For references, please see:
     37  *
     38  * Saad, Y. and Schultz, M. H.
     39  * GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems.
     40  * SIAM J.Sci.Stat.Comp. 7, 1986, pp. 856 - 869.
     41  *
     42  * Saad, Y.
     43  * Iterative Methods for Sparse Linear Systems.
     44  * Society for Industrial and Applied Mathematics, Philadelphia, 2003.
     45  *
     46  * Walker, H. F.
     47  * Implementations of the GMRES method.
     48  * Comput.Phys.Comm. 53, 1989, pp. 311 - 320.
     49  *
     50  * Walker, H. F.
     51  * Implementation of the GMRES Method using Householder Transformations.
     52  * SIAM J.Sci.Stat.Comp. 9, 1988, pp. 152 - 163.
     53  *
     54  */
     55 template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
     56 bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Preconditioner & precond,
     57 		int &iters, const int &restart, typename Dest::RealScalar & tol_error) {
     58 
     59 	using std::sqrt;
     60 	using std::abs;
     61 
     62 	typedef typename Dest::RealScalar RealScalar;
     63 	typedef typename Dest::Scalar Scalar;
     64 	typedef Matrix < RealScalar, Dynamic, 1 > RealVectorType;
     65 	typedef Matrix < Scalar, Dynamic, 1 > VectorType;
     66 	typedef Matrix < Scalar, Dynamic, Dynamic > FMatrixType;
     67 
     68 	RealScalar tol = tol_error;
     69 	const int maxIters = iters;
     70 	iters = 0;
     71 
     72 	const int m = mat.rows();
     73 
     74 	VectorType p0 = rhs - mat*x;
     75 	VectorType r0 = precond.solve(p0);
     76 // 	RealScalar r0_sqnorm = r0.squaredNorm();
     77 
     78 	VectorType w = VectorType::Zero(restart + 1);
     79 
     80 	FMatrixType H = FMatrixType::Zero(m, restart + 1);
     81 	VectorType tau = VectorType::Zero(restart + 1);
     82 	std::vector < JacobiRotation < Scalar > > G(restart);
     83 
     84 	// generate first Householder vector
     85 	VectorType e;
     86 	RealScalar beta;
     87 	r0.makeHouseholder(e, tau.coeffRef(0), beta);
     88 	w(0)=(Scalar) beta;
     89 	H.bottomLeftCorner(m - 1, 1) = e;
     90 
     91 	for (int k = 1; k <= restart; ++k) {
     92 
     93 		++iters;
     94 
     95 		VectorType v = VectorType::Unit(m, k - 1), workspace(m);
     96 
     97 		// apply Householder reflections H_{1} ... H_{k-1} to v
     98 		for (int i = k - 1; i >= 0; --i) {
     99 			v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
    100 		}
    101 
    102 		// apply matrix M to v:  v = mat * v;
    103 		VectorType t=mat*v;
    104 		v=precond.solve(t);
    105 
    106 		// apply Householder reflections H_{k-1} ... H_{1} to v
    107 		for (int i = 0; i < k; ++i) {
    108 			v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
    109 		}
    110 
    111 		if (v.tail(m - k).norm() != 0.0) {
    112 
    113 			if (k <= restart) {
    114 
    115 				// generate new Householder vector
    116                                   VectorType e(m - k - 1);
    117 				RealScalar beta;
    118 				v.tail(m - k).makeHouseholder(e, tau.coeffRef(k), beta);
    119 				H.col(k).tail(m - k - 1) = e;
    120 
    121 				// apply Householder reflection H_{k} to v
    122 				v.tail(m - k).applyHouseholderOnTheLeft(H.col(k).tail(m - k - 1), tau.coeffRef(k), workspace.data());
    123 
    124 			}
    125                 }
    126 
    127                 if (k > 1) {
    128                         for (int i = 0; i < k - 1; ++i) {
    129                                 // apply old Givens rotations to v
    130                                 v.applyOnTheLeft(i, i + 1, G[i].adjoint());
    131                         }
    132                 }
    133 
    134                 if (k<m && v(k) != (Scalar) 0) {
    135                         // determine next Givens rotation
    136                         G[k - 1].makeGivens(v(k - 1), v(k));
    137 
    138                         // apply Givens rotation to v and w
    139                         v.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
    140                         w.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
    141 
    142                 }
    143 
    144                 // insert coefficients into upper matrix triangle
    145                 H.col(k - 1).head(k) = v.head(k);
    146 
    147                 bool stop=(k==m || abs(w(k)) < tol || iters == maxIters);
    148 
    149                 if (stop || k == restart) {
    150 
    151                         // solve upper triangular system
    152                         VectorType y = w.head(k);
    153                         H.topLeftCorner(k, k).template triangularView < Eigen::Upper > ().solveInPlace(y);
    154 
    155                         // use Horner-like scheme to calculate solution vector
    156                         VectorType x_new = y(k - 1) * VectorType::Unit(m, k - 1);
    157 
    158                         // apply Householder reflection H_{k} to x_new
    159                         x_new.tail(m - k + 1).applyHouseholderOnTheLeft(H.col(k - 1).tail(m - k), tau.coeffRef(k - 1), workspace.data());
    160 
    161                         for (int i = k - 2; i >= 0; --i) {
    162                                 x_new += y(i) * VectorType::Unit(m, i);
    163                                 // apply Householder reflection H_{i} to x_new
    164                                 x_new.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
    165                         }
    166 
    167                         x += x_new;
    168 
    169                         if (stop) {
    170                                 return true;
    171                         } else {
    172                                 k=0;
    173 
    174                                 // reset data for a restart  r0 = rhs - mat * x;
    175                                 VectorType p0=mat*x;
    176                                 VectorType p1=precond.solve(p0);
    177                                 r0 = rhs - p1;
    178 //                                 r0_sqnorm = r0.squaredNorm();
    179                                 w = VectorType::Zero(restart + 1);
    180                                 H = FMatrixType::Zero(m, restart + 1);
    181                                 tau = VectorType::Zero(restart + 1);
    182 
    183                                 // generate first Householder vector
    184                                 RealScalar beta;
    185                                 r0.makeHouseholder(e, tau.coeffRef(0), beta);
    186                                 w(0)=(Scalar) beta;
    187                                 H.bottomLeftCorner(m - 1, 1) = e;
    188 
    189                         }
    190 
    191                 }
    192 
    193 
    194 
    195 	}
    196 
    197 	return false;
    198 
    199 }
    200 
    201 }
    202 
    203 template< typename _MatrixType,
    204           typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
    205 class GMRES;
    206 
    207 namespace internal {
    208 
    209 template< typename _MatrixType, typename _Preconditioner>
    210 struct traits<GMRES<_MatrixType,_Preconditioner> >
    211 {
    212   typedef _MatrixType MatrixType;
    213   typedef _Preconditioner Preconditioner;
    214 };
    215 
    216 }
    217 
    218 /** \ingroup IterativeLinearSolvers_Module
    219   * \brief A GMRES solver for sparse square problems
    220   *
    221   * This class allows to solve for A.x = b sparse linear problems using a generalized minimal
    222   * residual method. The vectors x and b can be either dense or sparse.
    223   *
    224   * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
    225   * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
    226   *
    227   * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
    228   * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
    229   * and NumTraits<Scalar>::epsilon() for the tolerance.
    230   *
    231   * This class can be used as the direct solver classes. Here is a typical usage example:
    232   * \code
    233   * int n = 10000;
    234   * VectorXd x(n), b(n);
    235   * SparseMatrix<double> A(n,n);
    236   * // fill A and b
    237   * GMRES<SparseMatrix<double> > solver(A);
    238   * x = solver.solve(b);
    239   * std::cout << "#iterations:     " << solver.iterations() << std::endl;
    240   * std::cout << "estimated error: " << solver.error()      << std::endl;
    241   * // update b, and solve again
    242   * x = solver.solve(b);
    243   * \endcode
    244   *
    245   * By default the iterations start with x=0 as an initial guess of the solution.
    246   * One can control the start using the solveWithGuess() method. Here is a step by
    247   * step execution example starting with a random guess and printing the evolution
    248   * of the estimated error:
    249   * * \code
    250   * x = VectorXd::Random(n);
    251   * solver.setMaxIterations(1);
    252   * int i = 0;
    253   * do {
    254   *   x = solver.solveWithGuess(b,x);
    255   *   std::cout << i << " : " << solver.error() << std::endl;
    256   *   ++i;
    257   * } while (solver.info()!=Success && i<100);
    258   * \endcode
    259   * Note that such a step by step excution is slightly slower.
    260   *
    261   * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
    262   */
    263 template< typename _MatrixType, typename _Preconditioner>
    264 class GMRES : public IterativeSolverBase<GMRES<_MatrixType,_Preconditioner> >
    265 {
    266   typedef IterativeSolverBase<GMRES> Base;
    267   using Base::mp_matrix;
    268   using Base::m_error;
    269   using Base::m_iterations;
    270   using Base::m_info;
    271   using Base::m_isInitialized;
    272 
    273 private:
    274   int m_restart;
    275 
    276 public:
    277   typedef _MatrixType MatrixType;
    278   typedef typename MatrixType::Scalar Scalar;
    279   typedef typename MatrixType::Index Index;
    280   typedef typename MatrixType::RealScalar RealScalar;
    281   typedef _Preconditioner Preconditioner;
    282 
    283 public:
    284 
    285   /** Default constructor. */
    286   GMRES() : Base(), m_restart(30) {}
    287 
    288   /** Initialize the solver with matrix \a A for further \c Ax=b solving.
    289     *
    290     * This constructor is a shortcut for the default constructor followed
    291     * by a call to compute().
    292     *
    293     * \warning this class stores a reference to the matrix A as well as some
    294     * precomputed values that depend on it. Therefore, if \a A is changed
    295     * this class becomes invalid. Call compute() to update it with the new
    296     * matrix A, or modify a copy of A.
    297     */
    298   GMRES(const MatrixType& A) : Base(A), m_restart(30) {}
    299 
    300   ~GMRES() {}
    301 
    302   /** Get the number of iterations after that a restart is performed.
    303     */
    304   int get_restart() { return m_restart; }
    305 
    306   /** Set the number of iterations after that a restart is performed.
    307     *  \param restart   number of iterations for a restarti, default is 30.
    308     */
    309   void set_restart(const int restart) { m_restart=restart; }
    310 
    311   /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
    312     * \a x0 as an initial solution.
    313     *
    314     * \sa compute()
    315     */
    316   template<typename Rhs,typename Guess>
    317   inline const internal::solve_retval_with_guess<GMRES, Rhs, Guess>
    318   solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
    319   {
    320     eigen_assert(m_isInitialized && "GMRES is not initialized.");
    321     eigen_assert(Base::rows()==b.rows()
    322               && "GMRES::solve(): invalid number of rows of the right hand side matrix b");
    323     return internal::solve_retval_with_guess
    324             <GMRES, Rhs, Guess>(*this, b.derived(), x0);
    325   }
    326 
    327   /** \internal */
    328   template<typename Rhs,typename Dest>
    329   void _solveWithGuess(const Rhs& b, Dest& x) const
    330   {
    331     bool failed = false;
    332     for(int j=0; j<b.cols(); ++j)
    333     {
    334       m_iterations = Base::maxIterations();
    335       m_error = Base::m_tolerance;
    336 
    337       typename Dest::ColXpr xj(x,j);
    338       if(!internal::gmres(*mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_restart, m_error))
    339         failed = true;
    340     }
    341     m_info = failed ? NumericalIssue
    342            : m_error <= Base::m_tolerance ? Success
    343            : NoConvergence;
    344     m_isInitialized = true;
    345   }
    346 
    347   /** \internal */
    348   template<typename Rhs,typename Dest>
    349   void _solve(const Rhs& b, Dest& x) const
    350   {
    351     x.setZero();
    352     _solveWithGuess(b,x);
    353   }
    354 
    355 protected:
    356 
    357 };
    358 
    359 
    360 namespace internal {
    361 
    362   template<typename _MatrixType, typename _Preconditioner, typename Rhs>
    363 struct solve_retval<GMRES<_MatrixType, _Preconditioner>, Rhs>
    364   : solve_retval_base<GMRES<_MatrixType, _Preconditioner>, Rhs>
    365 {
    366   typedef GMRES<_MatrixType, _Preconditioner> Dec;
    367   EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
    368 
    369   template<typename Dest> void evalTo(Dest& dst) const
    370   {
    371     dec()._solve(rhs(),dst);
    372   }
    373 };
    374 
    375 } // end namespace internal
    376 
    377 } // end namespace Eigen
    378 
    379 #endif // EIGEN_GMRES_H
    380