Home | History | Annotate | Download | only in src
      1 /*
      2  * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
      3  * Universitaet Berlin.  See the accompanying file "COPYRIGHT" for
      4  * details.  THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
      5  */
      6 
      7 /* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/preprocess.c,v 1.2 1994/05/10 20:18:45 jutta Exp $ */
      8 
      9 #include	<stdio.h>
     10 #include	<assert.h>
     11 
     12 #include "private.h"
     13 
     14 #include	"gsm.h"
     15 #include 	"proto.h"
     16 
     17 /*	4.2.0 .. 4.2.3	PREPROCESSING SECTION
     18  *
     19  *  	After A-law to linear conversion (or directly from the
     20  *   	Ato D converter) the following scaling is assumed for
     21  * 	input to the RPE-LTP algorithm:
     22  *
     23  *      in:  0.1.....................12
     24  *	     S.v.v.v.v.v.v.v.v.v.v.v.v.*.*.*
     25  *
     26  *	Where S is the sign bit, v a valid bit, and * a "don't care" bit.
     27  * 	The original signal is called sop[..]
     28  *
     29  *      out:   0.1................... 12
     30  *	     S.S.v.v.v.v.v.v.v.v.v.v.v.v.0.0
     31  */
     32 
     33 
     34 void Gsm_Preprocess P3((S, s, so),
     35 	struct gsm_state * S,
     36 	word		 * s,
     37 	word 		 * so )		/* [0..159] 	IN/OUT	*/
     38 {
     39 
     40 	word       z1 = S->z1;
     41 	longword L_z2 = S->L_z2;
     42 	word 	   mp = S->mp;
     43 
     44 	word 	   	s1;
     45 	longword      L_s2;
     46 
     47 	longword      L_temp;
     48 
     49 	word		msp, lsp;
     50 	word		SO;
     51 
     52 	longword	ltmp;		/* for   ADD */
     53 	ulongword	utmp;		/* for L_ADD */
     54 
     55 	register int		k = 160;
     56 
     57 	while (k--) {
     58 
     59 	/*  4.2.1   Downscaling of the input signal
     60 	 */
     61 		SO = SASR( *s, 3 ) << 2;
     62 		s++;
     63 
     64 		assert (SO >= -0x4000);	/* downscaled by     */
     65 		assert (SO <=  0x3FFC);	/* previous routine. */
     66 
     67 
     68 	/*  4.2.2   Offset compensation
     69 	 *
     70 	 *  This part implements a high-pass filter and requires extended
     71 	 *  arithmetic precision for the recursive part of this filter.
     72 	 *  The input of this procedure is the array so[0...159] and the
     73 	 *  output the array sof[ 0...159 ].
     74 	 */
     75 		/*   Compute the non-recursive part
     76 		 */
     77 
     78 		s1 = SO - z1;			/* s1 = gsm_sub( *so, z1 ); */
     79 		z1 = SO;
     80 
     81 		assert(s1 != MIN_WORD);
     82 
     83 		/*   Compute the recursive part
     84 		 */
     85 		L_s2 = s1;
     86 		L_s2 <<= 15;
     87 
     88 		/*   Execution of a 31 bv 16 bits multiplication
     89 		 */
     90 
     91 		msp = SASR( L_z2, 15 );
     92 		lsp = L_z2-((longword)msp<<15); /* gsm_L_sub(L_z2,(msp<<15)); */
     93 
     94 		L_s2  += GSM_MULT_R( lsp, 32735 );
     95 		L_temp = (longword)msp * 32735; /* GSM_L_MULT(msp,32735) >> 1;*/
     96 		L_z2   = GSM_L_ADD( L_temp, L_s2 );
     97 
     98 		/*    Compute sof[k] with rounding
     99 		 */
    100 		L_temp = GSM_L_ADD( L_z2, 16384 );
    101 
    102 	/*   4.2.3  Preemphasis
    103 	 */
    104 
    105 		msp   = GSM_MULT_R( mp, -28180 );
    106 		mp    = SASR( L_temp, 15 );
    107 		*so++ = GSM_ADD( mp, msp );
    108 	}
    109 
    110 	S->z1   = z1;
    111 	S->L_z2 = L_z2;
    112 	S->mp   = mp;
    113 }
    114