1 //===- BitstreamReader.h - Low-level bitstream reader interface -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This header defines the BitstreamReader class. This class can be used to 11 // read an arbitrary bitstream, regardless of its contents. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_BITCODE_BITSTREAMREADER_H 16 #define LLVM_BITCODE_BITSTREAMREADER_H 17 18 #include "llvm/ADT/OwningPtr.h" 19 #include "llvm/Bitcode/BitCodes.h" 20 #include "llvm/Support/Endian.h" 21 #include "llvm/Support/StreamableMemoryObject.h" 22 #include <climits> 23 #include <string> 24 #include <vector> 25 26 namespace llvm { 27 28 class Deserializer; 29 30 /// BitstreamReader - This class is used to read from an LLVM bitcode stream, 31 /// maintaining information that is global to decoding the entire file. While 32 /// a file is being read, multiple cursors can be independently advanced or 33 /// skipped around within the file. These are represented by the 34 /// BitstreamCursor class. 35 class BitstreamReader { 36 public: 37 /// BlockInfo - This contains information emitted to BLOCKINFO_BLOCK blocks. 38 /// These describe abbreviations that all blocks of the specified ID inherit. 39 struct BlockInfo { 40 unsigned BlockID; 41 std::vector<BitCodeAbbrev*> Abbrevs; 42 std::string Name; 43 44 std::vector<std::pair<unsigned, std::string> > RecordNames; 45 }; 46 private: 47 OwningPtr<StreamableMemoryObject> BitcodeBytes; 48 49 std::vector<BlockInfo> BlockInfoRecords; 50 51 /// IgnoreBlockInfoNames - This is set to true if we don't care about the 52 /// block/record name information in the BlockInfo block. Only llvm-bcanalyzer 53 /// uses this. 54 bool IgnoreBlockInfoNames; 55 56 BitstreamReader(const BitstreamReader&) LLVM_DELETED_FUNCTION; 57 void operator=(const BitstreamReader&) LLVM_DELETED_FUNCTION; 58 public: 59 BitstreamReader() : IgnoreBlockInfoNames(true) { 60 } 61 62 BitstreamReader(const unsigned char *Start, const unsigned char *End) { 63 IgnoreBlockInfoNames = true; 64 init(Start, End); 65 } 66 67 BitstreamReader(StreamableMemoryObject *bytes) { 68 BitcodeBytes.reset(bytes); 69 } 70 71 void init(const unsigned char *Start, const unsigned char *End) { 72 assert(((End-Start) & 3) == 0 &&"Bitcode stream not a multiple of 4 bytes"); 73 BitcodeBytes.reset(getNonStreamedMemoryObject(Start, End)); 74 } 75 76 StreamableMemoryObject &getBitcodeBytes() { return *BitcodeBytes; } 77 78 ~BitstreamReader() { 79 // Free the BlockInfoRecords. 80 while (!BlockInfoRecords.empty()) { 81 BlockInfo &Info = BlockInfoRecords.back(); 82 // Free blockinfo abbrev info. 83 for (unsigned i = 0, e = static_cast<unsigned>(Info.Abbrevs.size()); 84 i != e; ++i) 85 Info.Abbrevs[i]->dropRef(); 86 BlockInfoRecords.pop_back(); 87 } 88 } 89 90 /// CollectBlockInfoNames - This is called by clients that want block/record 91 /// name information. 92 void CollectBlockInfoNames() { IgnoreBlockInfoNames = false; } 93 bool isIgnoringBlockInfoNames() { return IgnoreBlockInfoNames; } 94 95 //===--------------------------------------------------------------------===// 96 // Block Manipulation 97 //===--------------------------------------------------------------------===// 98 99 /// hasBlockInfoRecords - Return true if we've already read and processed the 100 /// block info block for this Bitstream. We only process it for the first 101 /// cursor that walks over it. 102 bool hasBlockInfoRecords() const { return !BlockInfoRecords.empty(); } 103 104 /// getBlockInfo - If there is block info for the specified ID, return it, 105 /// otherwise return null. 106 const BlockInfo *getBlockInfo(unsigned BlockID) const { 107 // Common case, the most recent entry matches BlockID. 108 if (!BlockInfoRecords.empty() && BlockInfoRecords.back().BlockID == BlockID) 109 return &BlockInfoRecords.back(); 110 111 for (unsigned i = 0, e = static_cast<unsigned>(BlockInfoRecords.size()); 112 i != e; ++i) 113 if (BlockInfoRecords[i].BlockID == BlockID) 114 return &BlockInfoRecords[i]; 115 return 0; 116 } 117 118 BlockInfo &getOrCreateBlockInfo(unsigned BlockID) { 119 if (const BlockInfo *BI = getBlockInfo(BlockID)) 120 return *const_cast<BlockInfo*>(BI); 121 122 // Otherwise, add a new record. 123 BlockInfoRecords.push_back(BlockInfo()); 124 BlockInfoRecords.back().BlockID = BlockID; 125 return BlockInfoRecords.back(); 126 } 127 }; 128 129 130 /// BitstreamEntry - When advancing through a bitstream cursor, each advance can 131 /// discover a few different kinds of entries: 132 /// Error - Malformed bitcode was found. 133 /// EndBlock - We've reached the end of the current block, (or the end of the 134 /// file, which is treated like a series of EndBlock records. 135 /// SubBlock - This is the start of a new subblock of a specific ID. 136 /// Record - This is a record with a specific AbbrevID. 137 /// 138 struct BitstreamEntry { 139 enum { 140 Error, 141 EndBlock, 142 SubBlock, 143 Record 144 } Kind; 145 146 unsigned ID; 147 148 static BitstreamEntry getError() { 149 BitstreamEntry E; E.Kind = Error; return E; 150 } 151 static BitstreamEntry getEndBlock() { 152 BitstreamEntry E; E.Kind = EndBlock; return E; 153 } 154 static BitstreamEntry getSubBlock(unsigned ID) { 155 BitstreamEntry E; E.Kind = SubBlock; E.ID = ID; return E; 156 } 157 static BitstreamEntry getRecord(unsigned AbbrevID) { 158 BitstreamEntry E; E.Kind = Record; E.ID = AbbrevID; return E; 159 } 160 }; 161 162 /// BitstreamCursor - This represents a position within a bitcode file. There 163 /// may be multiple independent cursors reading within one bitstream, each 164 /// maintaining their own local state. 165 /// 166 /// Unlike iterators, BitstreamCursors are heavy-weight objects that should not 167 /// be passed by value. 168 class BitstreamCursor { 169 friend class Deserializer; 170 BitstreamReader *BitStream; 171 size_t NextChar; 172 173 174 /// CurWord/word_t - This is the current data we have pulled from the stream 175 /// but have not returned to the client. This is specifically and 176 /// intentionally defined to follow the word size of the host machine for 177 /// efficiency. We use word_t in places that are aware of this to make it 178 /// perfectly explicit what is going on. 179 typedef uint32_t word_t; 180 word_t CurWord; 181 182 /// BitsInCurWord - This is the number of bits in CurWord that are valid. This 183 /// is always from [0...31/63] inclusive (depending on word size). 184 unsigned BitsInCurWord; 185 186 // CurCodeSize - This is the declared size of code values used for the current 187 // block, in bits. 188 unsigned CurCodeSize; 189 190 /// CurAbbrevs - Abbrevs installed at in this block. 191 std::vector<BitCodeAbbrev*> CurAbbrevs; 192 193 struct Block { 194 unsigned PrevCodeSize; 195 std::vector<BitCodeAbbrev*> PrevAbbrevs; 196 explicit Block(unsigned PCS) : PrevCodeSize(PCS) {} 197 }; 198 199 /// BlockScope - This tracks the codesize of parent blocks. 200 SmallVector<Block, 8> BlockScope; 201 202 203 public: 204 BitstreamCursor() : BitStream(0), NextChar(0) { 205 } 206 BitstreamCursor(const BitstreamCursor &RHS) : BitStream(0), NextChar(0) { 207 operator=(RHS); 208 } 209 210 explicit BitstreamCursor(BitstreamReader &R) : BitStream(&R) { 211 NextChar = 0; 212 CurWord = 0; 213 BitsInCurWord = 0; 214 CurCodeSize = 2; 215 } 216 217 void init(BitstreamReader &R) { 218 freeState(); 219 220 BitStream = &R; 221 NextChar = 0; 222 CurWord = 0; 223 BitsInCurWord = 0; 224 CurCodeSize = 2; 225 } 226 227 ~BitstreamCursor() { 228 freeState(); 229 } 230 231 void operator=(const BitstreamCursor &RHS); 232 233 void freeState(); 234 235 bool isEndPos(size_t pos) { 236 return BitStream->getBitcodeBytes().isObjectEnd(static_cast<uint64_t>(pos)); 237 } 238 239 bool canSkipToPos(size_t pos) const { 240 // pos can be skipped to if it is a valid address or one byte past the end. 241 return pos == 0 || BitStream->getBitcodeBytes().isValidAddress( 242 static_cast<uint64_t>(pos - 1)); 243 } 244 245 uint32_t getWord(size_t pos) { 246 uint8_t buf[4] = { 0xFF, 0xFF, 0xFF, 0xFF }; 247 BitStream->getBitcodeBytes().readBytes(pos, sizeof(buf), buf); 248 return *reinterpret_cast<support::ulittle32_t *>(buf); 249 } 250 251 bool AtEndOfStream() { 252 return BitsInCurWord == 0 && isEndPos(NextChar); 253 } 254 255 /// getAbbrevIDWidth - Return the number of bits used to encode an abbrev #. 256 unsigned getAbbrevIDWidth() const { return CurCodeSize; } 257 258 /// GetCurrentBitNo - Return the bit # of the bit we are reading. 259 uint64_t GetCurrentBitNo() const { 260 return NextChar*CHAR_BIT - BitsInCurWord; 261 } 262 263 BitstreamReader *getBitStreamReader() { 264 return BitStream; 265 } 266 const BitstreamReader *getBitStreamReader() const { 267 return BitStream; 268 } 269 270 /// Flags that modify the behavior of advance(). 271 enum { 272 /// AF_DontPopBlockAtEnd - If this flag is used, the advance() method does 273 /// not automatically pop the block scope when the end of a block is 274 /// reached. 275 AF_DontPopBlockAtEnd = 1, 276 277 /// AF_DontAutoprocessAbbrevs - If this flag is used, abbrev entries are 278 /// returned just like normal records. 279 AF_DontAutoprocessAbbrevs = 2 280 }; 281 282 /// advance - Advance the current bitstream, returning the next entry in the 283 /// stream. 284 BitstreamEntry advance(unsigned Flags = 0) { 285 while (1) { 286 unsigned Code = ReadCode(); 287 if (Code == bitc::END_BLOCK) { 288 // Pop the end of the block unless Flags tells us not to. 289 if (!(Flags & AF_DontPopBlockAtEnd) && ReadBlockEnd()) 290 return BitstreamEntry::getError(); 291 return BitstreamEntry::getEndBlock(); 292 } 293 294 if (Code == bitc::ENTER_SUBBLOCK) 295 return BitstreamEntry::getSubBlock(ReadSubBlockID()); 296 297 if (Code == bitc::DEFINE_ABBREV && 298 !(Flags & AF_DontAutoprocessAbbrevs)) { 299 // We read and accumulate abbrev's, the client can't do anything with 300 // them anyway. 301 ReadAbbrevRecord(); 302 continue; 303 } 304 305 return BitstreamEntry::getRecord(Code); 306 } 307 } 308 309 /// advanceSkippingSubblocks - This is a convenience function for clients that 310 /// don't expect any subblocks. This just skips over them automatically. 311 BitstreamEntry advanceSkippingSubblocks(unsigned Flags = 0) { 312 while (1) { 313 // If we found a normal entry, return it. 314 BitstreamEntry Entry = advance(Flags); 315 if (Entry.Kind != BitstreamEntry::SubBlock) 316 return Entry; 317 318 // If we found a sub-block, just skip over it and check the next entry. 319 if (SkipBlock()) 320 return BitstreamEntry::getError(); 321 } 322 } 323 324 /// JumpToBit - Reset the stream to the specified bit number. 325 void JumpToBit(uint64_t BitNo) { 326 uintptr_t ByteNo = uintptr_t(BitNo/8) & ~(sizeof(word_t)-1); 327 unsigned WordBitNo = unsigned(BitNo & (sizeof(word_t)*8-1)); 328 assert(canSkipToPos(ByteNo) && "Invalid location"); 329 330 // Move the cursor to the right word. 331 NextChar = ByteNo; 332 BitsInCurWord = 0; 333 CurWord = 0; 334 335 // Skip over any bits that are already consumed. 336 if (WordBitNo) { 337 if (sizeof(word_t) > 4) 338 Read64(WordBitNo); 339 else 340 Read(WordBitNo); 341 } 342 } 343 344 345 uint32_t Read(unsigned NumBits) { 346 assert(NumBits && NumBits <= 32 && 347 "Cannot return zero or more than 32 bits!"); 348 349 // If the field is fully contained by CurWord, return it quickly. 350 if (BitsInCurWord >= NumBits) { 351 uint32_t R = uint32_t(CurWord) & (~0U >> (32-NumBits)); 352 CurWord >>= NumBits; 353 BitsInCurWord -= NumBits; 354 return R; 355 } 356 357 // If we run out of data, stop at the end of the stream. 358 if (isEndPos(NextChar)) { 359 CurWord = 0; 360 BitsInCurWord = 0; 361 return 0; 362 } 363 364 uint32_t R = uint32_t(CurWord); 365 366 // Read the next word from the stream. 367 uint8_t Array[sizeof(word_t)] = {0}; 368 369 BitStream->getBitcodeBytes().readBytes(NextChar, sizeof(Array), Array); 370 371 // Handle big-endian byte-swapping if necessary. 372 support::detail::packed_endian_specific_integral 373 <word_t, support::little, support::unaligned> EndianValue; 374 memcpy(&EndianValue, Array, sizeof(Array)); 375 376 CurWord = EndianValue; 377 378 NextChar += sizeof(word_t); 379 380 // Extract NumBits-BitsInCurWord from what we just read. 381 unsigned BitsLeft = NumBits-BitsInCurWord; 382 383 // Be careful here, BitsLeft is in the range [1..32]/[1..64] inclusive. 384 R |= uint32_t((CurWord & (word_t(~0ULL) >> (sizeof(word_t)*8-BitsLeft))) 385 << BitsInCurWord); 386 387 // BitsLeft bits have just been used up from CurWord. BitsLeft is in the 388 // range [1..32]/[1..64] so be careful how we shift. 389 if (BitsLeft != sizeof(word_t)*8) 390 CurWord >>= BitsLeft; 391 else 392 CurWord = 0; 393 BitsInCurWord = sizeof(word_t)*8-BitsLeft; 394 return R; 395 } 396 397 uint64_t Read64(unsigned NumBits) { 398 if (NumBits <= 32) return Read(NumBits); 399 400 uint64_t V = Read(32); 401 return V | (uint64_t)Read(NumBits-32) << 32; 402 } 403 404 uint32_t ReadVBR(unsigned NumBits) { 405 uint32_t Piece = Read(NumBits); 406 if ((Piece & (1U << (NumBits-1))) == 0) 407 return Piece; 408 409 uint32_t Result = 0; 410 unsigned NextBit = 0; 411 while (1) { 412 Result |= (Piece & ((1U << (NumBits-1))-1)) << NextBit; 413 414 if ((Piece & (1U << (NumBits-1))) == 0) 415 return Result; 416 417 NextBit += NumBits-1; 418 Piece = Read(NumBits); 419 } 420 } 421 422 // ReadVBR64 - Read a VBR that may have a value up to 64-bits in size. The 423 // chunk size of the VBR must still be <= 32 bits though. 424 uint64_t ReadVBR64(unsigned NumBits) { 425 uint32_t Piece = Read(NumBits); 426 if ((Piece & (1U << (NumBits-1))) == 0) 427 return uint64_t(Piece); 428 429 uint64_t Result = 0; 430 unsigned NextBit = 0; 431 while (1) { 432 Result |= uint64_t(Piece & ((1U << (NumBits-1))-1)) << NextBit; 433 434 if ((Piece & (1U << (NumBits-1))) == 0) 435 return Result; 436 437 NextBit += NumBits-1; 438 Piece = Read(NumBits); 439 } 440 } 441 442 private: 443 void SkipToFourByteBoundary() { 444 // If word_t is 64-bits and if we've read less than 32 bits, just dump 445 // the bits we have up to the next 32-bit boundary. 446 if (sizeof(word_t) > 4 && 447 BitsInCurWord >= 32) { 448 CurWord >>= BitsInCurWord-32; 449 BitsInCurWord = 32; 450 return; 451 } 452 453 BitsInCurWord = 0; 454 CurWord = 0; 455 } 456 public: 457 458 unsigned ReadCode() { 459 return Read(CurCodeSize); 460 } 461 462 463 // Block header: 464 // [ENTER_SUBBLOCK, blockid, newcodelen, <align4bytes>, blocklen] 465 466 /// ReadSubBlockID - Having read the ENTER_SUBBLOCK code, read the BlockID for 467 /// the block. 468 unsigned ReadSubBlockID() { 469 return ReadVBR(bitc::BlockIDWidth); 470 } 471 472 /// SkipBlock - Having read the ENTER_SUBBLOCK abbrevid and a BlockID, skip 473 /// over the body of this block. If the block record is malformed, return 474 /// true. 475 bool SkipBlock() { 476 // Read and ignore the codelen value. Since we are skipping this block, we 477 // don't care what code widths are used inside of it. 478 ReadVBR(bitc::CodeLenWidth); 479 SkipToFourByteBoundary(); 480 unsigned NumFourBytes = Read(bitc::BlockSizeWidth); 481 482 // Check that the block wasn't partially defined, and that the offset isn't 483 // bogus. 484 size_t SkipTo = GetCurrentBitNo() + NumFourBytes*4*8; 485 if (AtEndOfStream() || !canSkipToPos(SkipTo/8)) 486 return true; 487 488 JumpToBit(SkipTo); 489 return false; 490 } 491 492 /// EnterSubBlock - Having read the ENTER_SUBBLOCK abbrevid, enter 493 /// the block, and return true if the block has an error. 494 bool EnterSubBlock(unsigned BlockID, unsigned *NumWordsP = 0); 495 496 bool ReadBlockEnd() { 497 if (BlockScope.empty()) return true; 498 499 // Block tail: 500 // [END_BLOCK, <align4bytes>] 501 SkipToFourByteBoundary(); 502 503 popBlockScope(); 504 return false; 505 } 506 507 private: 508 509 void popBlockScope() { 510 CurCodeSize = BlockScope.back().PrevCodeSize; 511 512 // Delete abbrevs from popped scope. 513 for (unsigned i = 0, e = static_cast<unsigned>(CurAbbrevs.size()); 514 i != e; ++i) 515 CurAbbrevs[i]->dropRef(); 516 517 BlockScope.back().PrevAbbrevs.swap(CurAbbrevs); 518 BlockScope.pop_back(); 519 } 520 521 //===--------------------------------------------------------------------===// 522 // Record Processing 523 //===--------------------------------------------------------------------===// 524 525 private: 526 void readAbbreviatedLiteral(const BitCodeAbbrevOp &Op, 527 SmallVectorImpl<uint64_t> &Vals); 528 void readAbbreviatedField(const BitCodeAbbrevOp &Op, 529 SmallVectorImpl<uint64_t> &Vals); 530 void skipAbbreviatedField(const BitCodeAbbrevOp &Op); 531 532 public: 533 534 /// getAbbrev - Return the abbreviation for the specified AbbrevId. 535 const BitCodeAbbrev *getAbbrev(unsigned AbbrevID) { 536 unsigned AbbrevNo = AbbrevID-bitc::FIRST_APPLICATION_ABBREV; 537 assert(AbbrevNo < CurAbbrevs.size() && "Invalid abbrev #!"); 538 return CurAbbrevs[AbbrevNo]; 539 } 540 541 /// skipRecord - Read the current record and discard it. 542 void skipRecord(unsigned AbbrevID); 543 544 unsigned readRecord(unsigned AbbrevID, SmallVectorImpl<uint64_t> &Vals, 545 StringRef *Blob = 0); 546 547 //===--------------------------------------------------------------------===// 548 // Abbrev Processing 549 //===--------------------------------------------------------------------===// 550 void ReadAbbrevRecord(); 551 552 bool ReadBlockInfoBlock(); 553 }; 554 555 } // End llvm namespace 556 557 #endif 558