Home | History | Annotate | Download | only in MC
      1 //===- MCAssembler.h - Object File Generation -------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #ifndef LLVM_MC_MCASSEMBLER_H
     11 #define LLVM_MC_MCASSEMBLER_H
     12 
     13 #include "llvm/ADT/DenseMap.h"
     14 #include "llvm/ADT/SmallPtrSet.h"
     15 #include "llvm/ADT/SmallString.h"
     16 #include "llvm/ADT/ilist.h"
     17 #include "llvm/ADT/ilist_node.h"
     18 #include "llvm/MC/MCFixup.h"
     19 #include "llvm/MC/MCInst.h"
     20 #include "llvm/Support/Casting.h"
     21 #include "llvm/Support/DataTypes.h"
     22 #include <vector> // FIXME: Shouldn't be needed.
     23 
     24 namespace mcld {
     25 class Layout;
     26 }
     27 
     28 namespace llvm {
     29 class raw_ostream;
     30 class MCAsmLayout;
     31 class MCAssembler;
     32 class MCContext;
     33 class MCCodeEmitter;
     34 class MCExpr;
     35 class MCFragment;
     36 class MCObjectWriter;
     37 class MCSection;
     38 class MCSectionData;
     39 class MCSymbol;
     40 class MCSymbolData;
     41 class MCValue;
     42 class MCAsmBackend;
     43 
     44 class MCFragment : public ilist_node<MCFragment> {
     45   friend class MCAsmLayout;
     46   friend class mcld::Layout;
     47 
     48   MCFragment(const MCFragment&) LLVM_DELETED_FUNCTION;
     49   void operator=(const MCFragment&) LLVM_DELETED_FUNCTION;
     50 
     51 public:
     52   enum FragmentType {
     53     FT_Align,
     54     FT_Data,
     55     FT_CompactEncodedInst,
     56     FT_Fill,
     57     FT_Relaxable,
     58     FT_Org,
     59     FT_Dwarf,
     60     FT_DwarfFrame,
     61     FT_LEB,
     62     FT_Region,
     63     FT_Reloc,
     64     FT_Target
     65   };
     66 
     67 private:
     68   FragmentType Kind;
     69 
     70   /// Parent - The data for the section this fragment is in.
     71   MCSectionData *Parent;
     72 
     73   /// Atom - The atom this fragment is in, as represented by it's defining
     74   /// symbol. Atom's are only used by backends which set
     75   /// \see MCAsmBackend::hasReliableSymbolDifference().
     76   MCSymbolData *Atom;
     77 
     78   /// @name Assembler Backend Data
     79   /// @{
     80   //
     81   // FIXME: This could all be kept private to the assembler implementation.
     82 
     83   /// Offset - The offset of this fragment in its section. This is ~0 until
     84   /// initialized.
     85   uint64_t Offset;
     86 
     87   /// LayoutOrder - The layout order of this fragment.
     88   unsigned LayoutOrder;
     89 
     90   /// @}
     91 
     92 protected:
     93   MCFragment(FragmentType _Kind, MCSectionData *_Parent = 0);
     94 
     95 public:
     96   // Only for sentinel.
     97   MCFragment();
     98   virtual ~MCFragment();
     99 
    100   FragmentType getKind() const { return Kind; }
    101 
    102   MCSectionData *getParent() const { return Parent; }
    103   void setParent(MCSectionData *Value) { Parent = Value; }
    104 
    105   MCSymbolData *getAtom() const { return Atom; }
    106   void setAtom(MCSymbolData *Value) { Atom = Value; }
    107 
    108   unsigned getLayoutOrder() const { return LayoutOrder; }
    109   void setLayoutOrder(unsigned Value) { LayoutOrder = Value; }
    110 
    111   /// \brief Does this fragment have instructions emitted into it? By default
    112   /// this is false, but specific fragment types may set it to true.
    113   virtual bool hasInstructions() const { return false; }
    114 
    115   /// \brief Should this fragment be placed at the end of an aligned bundle?
    116   virtual bool alignToBundleEnd() const { return false; }
    117   virtual void setAlignToBundleEnd(bool V) { }
    118 
    119   /// \brief Get the padding size that must be inserted before this fragment.
    120   /// Used for bundling. By default, no padding is inserted.
    121   /// Note that padding size is restricted to 8 bits. This is an optimization
    122   /// to reduce the amount of space used for each fragment. In practice, larger
    123   /// padding should never be required.
    124   virtual uint8_t getBundlePadding() const {
    125     return 0;
    126   }
    127 
    128   /// \brief Set the padding size for this fragment. By default it's a no-op,
    129   /// and only some fragments have a meaningful implementation.
    130   virtual void setBundlePadding(uint8_t N) {
    131   }
    132 
    133   void dump();
    134 };
    135 
    136 /// Interface implemented by fragments that contain encoded instructions and/or
    137 /// data.
    138 ///
    139 class MCEncodedFragment : public MCFragment {
    140   virtual void anchor();
    141 
    142   uint8_t BundlePadding;
    143 public:
    144   MCEncodedFragment(MCFragment::FragmentType FType, MCSectionData *SD = 0)
    145     : MCFragment(FType, SD), BundlePadding(0)
    146   {
    147   }
    148   virtual ~MCEncodedFragment();
    149 
    150   virtual SmallVectorImpl<char> &getContents() = 0;
    151   virtual const SmallVectorImpl<char> &getContents() const = 0;
    152 
    153   virtual uint8_t getBundlePadding() const {
    154     return BundlePadding;
    155   }
    156 
    157   virtual void setBundlePadding(uint8_t N) {
    158     BundlePadding = N;
    159   }
    160 
    161   static bool classof(const MCFragment *F) {
    162     MCFragment::FragmentType Kind = F->getKind();
    163     switch (Kind) {
    164       default:
    165         return false;
    166       case MCFragment::FT_Relaxable:
    167       case MCFragment::FT_CompactEncodedInst:
    168       case MCFragment::FT_Data:
    169         return true;
    170     }
    171   }
    172 };
    173 
    174 /// Interface implemented by fragments that contain encoded instructions and/or
    175 /// data and also have fixups registered.
    176 ///
    177 class MCEncodedFragmentWithFixups : public MCEncodedFragment {
    178   virtual void anchor();
    179 
    180 public:
    181   MCEncodedFragmentWithFixups(MCFragment::FragmentType FType,
    182                               MCSectionData *SD = 0)
    183     : MCEncodedFragment(FType, SD)
    184   {
    185   }
    186 
    187   virtual ~MCEncodedFragmentWithFixups();
    188 
    189   typedef SmallVectorImpl<MCFixup>::const_iterator const_fixup_iterator;
    190   typedef SmallVectorImpl<MCFixup>::iterator fixup_iterator;
    191 
    192   virtual SmallVectorImpl<MCFixup> &getFixups() = 0;
    193   virtual const SmallVectorImpl<MCFixup> &getFixups() const = 0;
    194 
    195   virtual fixup_iterator fixup_begin() = 0;
    196   virtual const_fixup_iterator fixup_begin() const  = 0;
    197   virtual fixup_iterator fixup_end() = 0;
    198   virtual const_fixup_iterator fixup_end() const = 0;
    199 
    200   static bool classof(const MCFragment *F) {
    201     MCFragment::FragmentType Kind = F->getKind();
    202     return Kind == MCFragment::FT_Relaxable || Kind == MCFragment::FT_Data;
    203   }
    204 };
    205 
    206 /// Fragment for data and encoded instructions.
    207 ///
    208 class MCDataFragment : public MCEncodedFragmentWithFixups {
    209   virtual void anchor();
    210 
    211   /// \brief Does this fragment contain encoded instructions anywhere in it?
    212   bool HasInstructions;
    213 
    214   /// \brief Should this fragment be aligned to the end of a bundle?
    215   bool AlignToBundleEnd;
    216 
    217   SmallVector<char, 32> Contents;
    218 
    219   /// Fixups - The list of fixups in this fragment.
    220   SmallVector<MCFixup, 4> Fixups;
    221 public:
    222   MCDataFragment(MCSectionData *SD = 0)
    223     : MCEncodedFragmentWithFixups(FT_Data, SD),
    224       HasInstructions(false), AlignToBundleEnd(false)
    225   {
    226   }
    227 
    228   virtual SmallVectorImpl<char> &getContents() { return Contents; }
    229   virtual const SmallVectorImpl<char> &getContents() const { return Contents; }
    230 
    231   SmallVectorImpl<MCFixup> &getFixups() {
    232     return Fixups;
    233   }
    234 
    235   const SmallVectorImpl<MCFixup> &getFixups() const {
    236     return Fixups;
    237   }
    238 
    239   virtual bool hasInstructions() const { return HasInstructions; }
    240   virtual void setHasInstructions(bool V) { HasInstructions = V; }
    241 
    242   virtual bool alignToBundleEnd() const { return AlignToBundleEnd; }
    243   virtual void setAlignToBundleEnd(bool V) { AlignToBundleEnd = V; }
    244 
    245   fixup_iterator fixup_begin() { return Fixups.begin(); }
    246   const_fixup_iterator fixup_begin() const { return Fixups.begin(); }
    247 
    248   fixup_iterator fixup_end() {return Fixups.end();}
    249   const_fixup_iterator fixup_end() const {return Fixups.end();}
    250 
    251   static bool classof(const MCFragment *F) {
    252     return F->getKind() == MCFragment::FT_Data;
    253   }
    254 };
    255 
    256 /// This is a compact (memory-size-wise) fragment for holding an encoded
    257 /// instruction (non-relaxable) that has no fixups registered. When applicable,
    258 /// it can be used instead of MCDataFragment and lead to lower memory
    259 /// consumption.
    260 ///
    261 class MCCompactEncodedInstFragment : public MCEncodedFragment {
    262   virtual void anchor();
    263 
    264   /// \brief Should this fragment be aligned to the end of a bundle?
    265   bool AlignToBundleEnd;
    266 
    267   SmallVector<char, 4> Contents;
    268 public:
    269   MCCompactEncodedInstFragment(MCSectionData *SD = 0)
    270     : MCEncodedFragment(FT_CompactEncodedInst, SD), AlignToBundleEnd(false)
    271   {
    272   }
    273 
    274   virtual bool hasInstructions() const {
    275     return true;
    276   }
    277 
    278   virtual SmallVectorImpl<char> &getContents() { return Contents; }
    279   virtual const SmallVectorImpl<char> &getContents() const { return Contents; }
    280 
    281   virtual bool alignToBundleEnd() const { return AlignToBundleEnd; }
    282   virtual void setAlignToBundleEnd(bool V) { AlignToBundleEnd = V; }
    283 
    284   static bool classof(const MCFragment *F) {
    285     return F->getKind() == MCFragment::FT_CompactEncodedInst;
    286   }
    287 };
    288 
    289 /// A relaxable fragment holds on to its MCInst, since it may need to be
    290 /// relaxed during the assembler layout and relaxation stage.
    291 ///
    292 class MCRelaxableFragment : public MCEncodedFragmentWithFixups {
    293   virtual void anchor();
    294 
    295   /// Inst - The instruction this is a fragment for.
    296   MCInst Inst;
    297 
    298   /// Contents - Binary data for the currently encoded instruction.
    299   SmallVector<char, 8> Contents;
    300 
    301   /// Fixups - The list of fixups in this fragment.
    302   SmallVector<MCFixup, 1> Fixups;
    303 
    304 public:
    305   MCRelaxableFragment(const MCInst &_Inst, MCSectionData *SD = 0)
    306     : MCEncodedFragmentWithFixups(FT_Relaxable, SD), Inst(_Inst) {
    307   }
    308 
    309   virtual SmallVectorImpl<char> &getContents() { return Contents; }
    310   virtual const SmallVectorImpl<char> &getContents() const { return Contents; }
    311 
    312   const MCInst &getInst() const { return Inst; }
    313   void setInst(const MCInst& Value) { Inst = Value; }
    314 
    315   SmallVectorImpl<MCFixup> &getFixups() {
    316     return Fixups;
    317   }
    318 
    319   const SmallVectorImpl<MCFixup> &getFixups() const {
    320     return Fixups;
    321   }
    322 
    323   virtual bool hasInstructions() const { return true; }
    324 
    325   fixup_iterator fixup_begin() { return Fixups.begin(); }
    326   const_fixup_iterator fixup_begin() const { return Fixups.begin(); }
    327 
    328   fixup_iterator fixup_end() {return Fixups.end();}
    329   const_fixup_iterator fixup_end() const {return Fixups.end();}
    330 
    331   static bool classof(const MCFragment *F) {
    332     return F->getKind() == MCFragment::FT_Relaxable;
    333   }
    334 };
    335 
    336 class MCAlignFragment : public MCFragment {
    337   virtual void anchor();
    338 
    339   /// Alignment - The alignment to ensure, in bytes.
    340   unsigned Alignment;
    341 
    342   /// Value - Value to use for filling padding bytes.
    343   int64_t Value;
    344 
    345   /// ValueSize - The size of the integer (in bytes) of \p Value.
    346   unsigned ValueSize;
    347 
    348   /// MaxBytesToEmit - The maximum number of bytes to emit; if the alignment
    349   /// cannot be satisfied in this width then this fragment is ignored.
    350   unsigned MaxBytesToEmit;
    351 
    352   /// EmitNops - Flag to indicate that (optimal) NOPs should be emitted instead
    353   /// of using the provided value. The exact interpretation of this flag is
    354   /// target dependent.
    355   bool EmitNops : 1;
    356 
    357 public:
    358   MCAlignFragment(unsigned _Alignment, int64_t _Value, unsigned _ValueSize,
    359                   unsigned _MaxBytesToEmit, MCSectionData *SD = 0)
    360     : MCFragment(FT_Align, SD), Alignment(_Alignment),
    361       Value(_Value),ValueSize(_ValueSize),
    362       MaxBytesToEmit(_MaxBytesToEmit), EmitNops(false) {}
    363 
    364   /// @name Accessors
    365   /// @{
    366 
    367   unsigned getAlignment() const { return Alignment; }
    368 
    369   int64_t getValue() const { return Value; }
    370 
    371   unsigned getValueSize() const { return ValueSize; }
    372 
    373   unsigned getMaxBytesToEmit() const { return MaxBytesToEmit; }
    374 
    375   bool hasEmitNops() const { return EmitNops; }
    376   void setEmitNops(bool Value) { EmitNops = Value; }
    377 
    378   /// @}
    379 
    380   static bool classof(const MCFragment *F) {
    381     return F->getKind() == MCFragment::FT_Align;
    382   }
    383 };
    384 
    385 class MCFillFragment : public MCFragment {
    386   virtual void anchor();
    387 
    388   /// Value - Value to use for filling bytes.
    389   int64_t Value;
    390 
    391   /// ValueSize - The size (in bytes) of \p Value to use when filling, or 0 if
    392   /// this is a virtual fill fragment.
    393   unsigned ValueSize;
    394 
    395   /// Size - The number of bytes to insert.
    396   uint64_t Size;
    397 
    398 public:
    399   MCFillFragment(int64_t _Value, unsigned _ValueSize, uint64_t _Size,
    400                  MCSectionData *SD = 0)
    401     : MCFragment(FT_Fill, SD),
    402       Value(_Value), ValueSize(_ValueSize), Size(_Size) {
    403     assert((!ValueSize || (Size % ValueSize) == 0) &&
    404            "Fill size must be a multiple of the value size!");
    405   }
    406 
    407   /// @name Accessors
    408   /// @{
    409 
    410   int64_t getValue() const { return Value; }
    411 
    412   unsigned getValueSize() const { return ValueSize; }
    413 
    414   uint64_t getSize() const { return Size; }
    415 
    416   /// @}
    417 
    418   static bool classof(const MCFragment *F) {
    419     return F->getKind() == MCFragment::FT_Fill;
    420   }
    421 };
    422 
    423 class MCOrgFragment : public MCFragment {
    424   virtual void anchor();
    425 
    426   /// Offset - The offset this fragment should start at.
    427   const MCExpr *Offset;
    428 
    429   /// Value - Value to use for filling bytes.
    430   int8_t Value;
    431 
    432 public:
    433   MCOrgFragment(const MCExpr &_Offset, int8_t _Value, MCSectionData *SD = 0)
    434     : MCFragment(FT_Org, SD),
    435       Offset(&_Offset), Value(_Value) {}
    436 
    437   /// @name Accessors
    438   /// @{
    439 
    440   const MCExpr &getOffset() const { return *Offset; }
    441 
    442   uint8_t getValue() const { return Value; }
    443 
    444   /// @}
    445 
    446   static bool classof(const MCFragment *F) {
    447     return F->getKind() == MCFragment::FT_Org;
    448   }
    449 };
    450 
    451 class MCLEBFragment : public MCFragment {
    452   virtual void anchor();
    453 
    454   /// Value - The value this fragment should contain.
    455   const MCExpr *Value;
    456 
    457   /// IsSigned - True if this is a sleb128, false if uleb128.
    458   bool IsSigned;
    459 
    460   SmallString<8> Contents;
    461 public:
    462   MCLEBFragment(const MCExpr &Value_, bool IsSigned_, MCSectionData *SD = 0)
    463     : MCFragment(FT_LEB, SD),
    464       Value(&Value_), IsSigned(IsSigned_) { Contents.push_back(0); }
    465 
    466   /// @name Accessors
    467   /// @{
    468 
    469   const MCExpr &getValue() const { return *Value; }
    470 
    471   bool isSigned() const { return IsSigned; }
    472 
    473   SmallString<8> &getContents() { return Contents; }
    474   const SmallString<8> &getContents() const { return Contents; }
    475 
    476   /// @}
    477 
    478   static bool classof(const MCFragment *F) {
    479     return F->getKind() == MCFragment::FT_LEB;
    480   }
    481 };
    482 
    483 class MCDwarfLineAddrFragment : public MCFragment {
    484   virtual void anchor();
    485 
    486   /// LineDelta - the value of the difference between the two line numbers
    487   /// between two .loc dwarf directives.
    488   int64_t LineDelta;
    489 
    490   /// AddrDelta - The expression for the difference of the two symbols that
    491   /// make up the address delta between two .loc dwarf directives.
    492   const MCExpr *AddrDelta;
    493 
    494   SmallString<8> Contents;
    495 
    496 public:
    497   MCDwarfLineAddrFragment(int64_t _LineDelta, const MCExpr &_AddrDelta,
    498                       MCSectionData *SD = 0)
    499     : MCFragment(FT_Dwarf, SD),
    500       LineDelta(_LineDelta), AddrDelta(&_AddrDelta) { Contents.push_back(0); }
    501 
    502   /// @name Accessors
    503   /// @{
    504 
    505   int64_t getLineDelta() const { return LineDelta; }
    506 
    507   const MCExpr &getAddrDelta() const { return *AddrDelta; }
    508 
    509   SmallString<8> &getContents() { return Contents; }
    510   const SmallString<8> &getContents() const { return Contents; }
    511 
    512   /// @}
    513 
    514   static bool classof(const MCFragment *F) {
    515     return F->getKind() == MCFragment::FT_Dwarf;
    516   }
    517 };
    518 
    519 class MCDwarfCallFrameFragment : public MCFragment {
    520   virtual void anchor();
    521 
    522   /// AddrDelta - The expression for the difference of the two symbols that
    523   /// make up the address delta between two .cfi_* dwarf directives.
    524   const MCExpr *AddrDelta;
    525 
    526   SmallString<8> Contents;
    527 
    528 public:
    529   MCDwarfCallFrameFragment(const MCExpr &_AddrDelta,  MCSectionData *SD = 0)
    530     : MCFragment(FT_DwarfFrame, SD),
    531       AddrDelta(&_AddrDelta) { Contents.push_back(0); }
    532 
    533   /// @name Accessors
    534   /// @{
    535 
    536   const MCExpr &getAddrDelta() const { return *AddrDelta; }
    537 
    538   SmallString<8> &getContents() { return Contents; }
    539   const SmallString<8> &getContents() const { return Contents; }
    540 
    541   /// @}
    542 
    543   static bool classof(const MCFragment *F) {
    544     return F->getKind() == MCFragment::FT_DwarfFrame;
    545   }
    546 };
    547 
    548 // FIXME: Should this be a separate class, or just merged into MCSection? Since
    549 // we anticipate the fast path being through an MCAssembler, the only reason to
    550 // keep it out is for API abstraction.
    551 class MCSectionData : public ilist_node<MCSectionData> {
    552   friend class MCAsmLayout;
    553 
    554   MCSectionData(const MCSectionData&) LLVM_DELETED_FUNCTION;
    555   void operator=(const MCSectionData&) LLVM_DELETED_FUNCTION;
    556 
    557 public:
    558   typedef iplist<MCFragment> FragmentListType;
    559 
    560   typedef FragmentListType::const_iterator const_iterator;
    561   typedef FragmentListType::iterator iterator;
    562 
    563   typedef FragmentListType::const_reverse_iterator const_reverse_iterator;
    564   typedef FragmentListType::reverse_iterator reverse_iterator;
    565 
    566   /// \brief Express the state of bundle locked groups while emitting code.
    567   enum BundleLockStateType {
    568     NotBundleLocked,
    569     BundleLocked,
    570     BundleLockedAlignToEnd
    571   };
    572 private:
    573   FragmentListType Fragments;
    574   const MCSection *Section;
    575 
    576   /// Ordinal - The section index in the assemblers section list.
    577   unsigned Ordinal;
    578 
    579   /// LayoutOrder - The index of this section in the layout order.
    580   unsigned LayoutOrder;
    581 
    582   /// Alignment - The maximum alignment seen in this section.
    583   unsigned Alignment;
    584 
    585   /// \brief Keeping track of bundle-locked state.
    586   BundleLockStateType BundleLockState;
    587 
    588   /// \brief We've seen a bundle_lock directive but not its first instruction
    589   /// yet.
    590   bool BundleGroupBeforeFirstInst;
    591 
    592   /// @name Assembler Backend Data
    593   /// @{
    594   //
    595   // FIXME: This could all be kept private to the assembler implementation.
    596 
    597   /// HasInstructions - Whether this section has had instructions emitted into
    598   /// it.
    599   unsigned HasInstructions : 1;
    600 
    601   /// Mapping from subsection number to insertion point for subsection numbers
    602   /// below that number.
    603   SmallVector<std::pair<unsigned, MCFragment *>, 1> SubsectionFragmentMap;
    604 
    605   /// @}
    606 
    607 public:
    608   // Only for use as sentinel.
    609   MCSectionData();
    610   MCSectionData(const MCSection &Section, MCAssembler *A = 0);
    611 
    612   const MCSection &getSection() const { return *Section; }
    613 
    614   unsigned getAlignment() const { return Alignment; }
    615   void setAlignment(unsigned Value) { Alignment = Value; }
    616 
    617   bool hasInstructions() const { return HasInstructions; }
    618   void setHasInstructions(bool Value) { HasInstructions = Value; }
    619 
    620   unsigned getOrdinal() const { return Ordinal; }
    621   void setOrdinal(unsigned Value) { Ordinal = Value; }
    622 
    623   unsigned getLayoutOrder() const { return LayoutOrder; }
    624   void setLayoutOrder(unsigned Value) { LayoutOrder = Value; }
    625 
    626   /// @name Fragment Access
    627   /// @{
    628 
    629   const FragmentListType &getFragmentList() const { return Fragments; }
    630   FragmentListType &getFragmentList() { return Fragments; }
    631 
    632   iterator begin() { return Fragments.begin(); }
    633   const_iterator begin() const { return Fragments.begin(); }
    634 
    635   iterator end() { return Fragments.end(); }
    636   const_iterator end() const { return Fragments.end(); }
    637 
    638   reverse_iterator rbegin() { return Fragments.rbegin(); }
    639   const_reverse_iterator rbegin() const { return Fragments.rbegin(); }
    640 
    641   reverse_iterator rend() { return Fragments.rend(); }
    642   const_reverse_iterator rend() const { return Fragments.rend(); }
    643 
    644   size_t size() const { return Fragments.size(); }
    645 
    646   bool empty() const { return Fragments.empty(); }
    647 
    648   iterator getSubsectionInsertionPoint(unsigned Subsection);
    649 
    650   bool isBundleLocked() const {
    651     return BundleLockState != NotBundleLocked;
    652   }
    653 
    654   BundleLockStateType getBundleLockState() const {
    655     return BundleLockState;
    656   }
    657 
    658   void setBundleLockState(BundleLockStateType NewState) {
    659     BundleLockState = NewState;
    660   }
    661 
    662   bool isBundleGroupBeforeFirstInst() const {
    663     return BundleGroupBeforeFirstInst;
    664   }
    665 
    666   void setBundleGroupBeforeFirstInst(bool IsFirst) {
    667     BundleGroupBeforeFirstInst = IsFirst;
    668   }
    669 
    670   void dump();
    671 
    672   /// @}
    673 };
    674 
    675 // FIXME: Same concerns as with SectionData.
    676 class MCSymbolData : public ilist_node<MCSymbolData> {
    677 public:
    678   const MCSymbol *Symbol;
    679 
    680   /// Fragment - The fragment this symbol's value is relative to, if any.
    681   MCFragment *Fragment;
    682 
    683   /// Offset - The offset to apply to the fragment address to form this symbol's
    684   /// value.
    685   uint64_t Offset;
    686 
    687   /// IsExternal - True if this symbol is visible outside this translation
    688   /// unit.
    689   unsigned IsExternal : 1;
    690 
    691   /// IsPrivateExtern - True if this symbol is private extern.
    692   unsigned IsPrivateExtern : 1;
    693 
    694   /// CommonSize - The size of the symbol, if it is 'common', or 0.
    695   //
    696   // FIXME: Pack this in with other fields? We could put it in offset, since a
    697   // common symbol can never get a definition.
    698   uint64_t CommonSize;
    699 
    700   /// SymbolSize - An expression describing how to calculate the size of
    701   /// a symbol. If a symbol has no size this field will be NULL.
    702   const MCExpr *SymbolSize;
    703 
    704   /// CommonAlign - The alignment of the symbol, if it is 'common'.
    705   //
    706   // FIXME: Pack this in with other fields?
    707   unsigned CommonAlign;
    708 
    709   /// Flags - The Flags field is used by object file implementations to store
    710   /// additional per symbol information which is not easily classified.
    711   uint32_t Flags;
    712 
    713   /// Index - Index field, for use by the object file implementation.
    714   uint64_t Index;
    715 
    716 public:
    717   // Only for use as sentinel.
    718   MCSymbolData();
    719   MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment, uint64_t _Offset,
    720                MCAssembler *A = 0);
    721 
    722   /// @name Accessors
    723   /// @{
    724 
    725   const MCSymbol &getSymbol() const { return *Symbol; }
    726 
    727   MCFragment *getFragment() const { return Fragment; }
    728   void setFragment(MCFragment *Value) { Fragment = Value; }
    729 
    730   uint64_t getOffset() const { return Offset; }
    731   void setOffset(uint64_t Value) { Offset = Value; }
    732 
    733   /// @}
    734   /// @name Symbol Attributes
    735   /// @{
    736 
    737   bool isExternal() const { return IsExternal; }
    738   void setExternal(bool Value) { IsExternal = Value; }
    739 
    740   bool isPrivateExtern() const { return IsPrivateExtern; }
    741   void setPrivateExtern(bool Value) { IsPrivateExtern = Value; }
    742 
    743   /// isCommon - Is this a 'common' symbol.
    744   bool isCommon() const { return CommonSize != 0; }
    745 
    746   /// setCommon - Mark this symbol as being 'common'.
    747   ///
    748   /// \param Size - The size of the symbol.
    749   /// \param Align - The alignment of the symbol.
    750   void setCommon(uint64_t Size, unsigned Align) {
    751     CommonSize = Size;
    752     CommonAlign = Align;
    753   }
    754 
    755   /// getCommonSize - Return the size of a 'common' symbol.
    756   uint64_t getCommonSize() const {
    757     assert(isCommon() && "Not a 'common' symbol!");
    758     return CommonSize;
    759   }
    760 
    761   void setSize(const MCExpr *SS) {
    762     SymbolSize = SS;
    763   }
    764 
    765   const MCExpr *getSize() const {
    766     return SymbolSize;
    767   }
    768 
    769 
    770   /// getCommonAlignment - Return the alignment of a 'common' symbol.
    771   unsigned getCommonAlignment() const {
    772     assert(isCommon() && "Not a 'common' symbol!");
    773     return CommonAlign;
    774   }
    775 
    776   /// getFlags - Get the (implementation defined) symbol flags.
    777   uint32_t getFlags() const { return Flags; }
    778 
    779   /// setFlags - Set the (implementation defined) symbol flags.
    780   void setFlags(uint32_t Value) { Flags = Value; }
    781 
    782   /// modifyFlags - Modify the flags via a mask
    783   void modifyFlags(uint32_t Value, uint32_t Mask) {
    784     Flags = (Flags & ~Mask) | Value;
    785   }
    786 
    787   /// getIndex - Get the (implementation defined) index.
    788   uint64_t getIndex() const { return Index; }
    789 
    790   /// setIndex - Set the (implementation defined) index.
    791   void setIndex(uint64_t Value) { Index = Value; }
    792 
    793   /// @}
    794 
    795   void dump();
    796 };
    797 
    798 // FIXME: This really doesn't belong here. See comments below.
    799 struct IndirectSymbolData {
    800   MCSymbol *Symbol;
    801   MCSectionData *SectionData;
    802 };
    803 
    804 // FIXME: Ditto this. Purely so the Streamer and the ObjectWriter can talk
    805 // to one another.
    806 struct DataRegionData {
    807   // This enum should be kept in sync w/ the mach-o definition in
    808   // llvm/Object/MachOFormat.h.
    809   enum KindTy { Data = 1, JumpTable8, JumpTable16, JumpTable32 } Kind;
    810   MCSymbol *Start;
    811   MCSymbol *End;
    812 };
    813 
    814 class MCAssembler {
    815   friend class MCAsmLayout;
    816 
    817 public:
    818   typedef iplist<MCSectionData> SectionDataListType;
    819   typedef iplist<MCSymbolData> SymbolDataListType;
    820 
    821   typedef SectionDataListType::const_iterator const_iterator;
    822   typedef SectionDataListType::iterator iterator;
    823 
    824   typedef SymbolDataListType::const_iterator const_symbol_iterator;
    825   typedef SymbolDataListType::iterator symbol_iterator;
    826 
    827   typedef std::vector<IndirectSymbolData>::const_iterator
    828     const_indirect_symbol_iterator;
    829   typedef std::vector<IndirectSymbolData>::iterator indirect_symbol_iterator;
    830 
    831   typedef std::vector<DataRegionData>::const_iterator
    832     const_data_region_iterator;
    833   typedef std::vector<DataRegionData>::iterator data_region_iterator;
    834 
    835 private:
    836   MCAssembler(const MCAssembler&) LLVM_DELETED_FUNCTION;
    837   void operator=(const MCAssembler&) LLVM_DELETED_FUNCTION;
    838 
    839   MCContext &Context;
    840 
    841   MCAsmBackend &Backend;
    842 
    843   MCCodeEmitter &Emitter;
    844 
    845   MCObjectWriter *Writer;
    846 
    847   raw_ostream &OS;
    848 
    849   iplist<MCSectionData> Sections;
    850 
    851   iplist<MCSymbolData> Symbols;
    852 
    853   /// The map of sections to their associated assembler backend data.
    854   //
    855   // FIXME: Avoid this indirection?
    856   DenseMap<const MCSection*, MCSectionData*> SectionMap;
    857 
    858   /// The map of symbols to their associated assembler backend data.
    859   //
    860   // FIXME: Avoid this indirection?
    861   DenseMap<const MCSymbol*, MCSymbolData*> SymbolMap;
    862 
    863   std::vector<IndirectSymbolData> IndirectSymbols;
    864 
    865   std::vector<DataRegionData> DataRegions;
    866 
    867   /// The list of linker options to propagate into the object file.
    868   std::vector<std::vector<std::string> > LinkerOptions;
    869 
    870   /// The set of function symbols for which a .thumb_func directive has
    871   /// been seen.
    872   //
    873   // FIXME: We really would like this in target specific code rather than
    874   // here. Maybe when the relocation stuff moves to target specific,
    875   // this can go with it? The streamer would need some target specific
    876   // refactoring too.
    877   SmallPtrSet<const MCSymbol*, 64> ThumbFuncs;
    878 
    879   /// \brief The bundle alignment size currently set in the assembler.
    880   ///
    881   /// By default it's 0, which means bundling is disabled.
    882   unsigned BundleAlignSize;
    883 
    884   unsigned RelaxAll : 1;
    885   unsigned NoExecStack : 1;
    886   unsigned SubsectionsViaSymbols : 1;
    887 
    888   /// ELF specific e_header flags
    889   // It would be good if there were an MCELFAssembler class to hold this.
    890   // ELF header flags are used both by the integrated and standalone assemblers.
    891   // Access to the flags is necessary in cases where assembler directives affect
    892   // which flags to be set.
    893   unsigned ELFHeaderEFlags;
    894 private:
    895   /// Evaluate a fixup to a relocatable expression and the value which should be
    896   /// placed into the fixup.
    897   ///
    898   /// \param Layout The layout to use for evaluation.
    899   /// \param Fixup The fixup to evaluate.
    900   /// \param DF The fragment the fixup is inside.
    901   /// \param Target [out] On return, the relocatable expression the fixup
    902   /// evaluates to.
    903   /// \param Value [out] On return, the value of the fixup as currently laid
    904   /// out.
    905   /// \return Whether the fixup value was fully resolved. This is true if the
    906   /// \p Value result is fixed, otherwise the value may change due to
    907   /// relocation.
    908   bool evaluateFixup(const MCAsmLayout &Layout,
    909                      const MCFixup &Fixup, const MCFragment *DF,
    910                      MCValue &Target, uint64_t &Value) const;
    911 
    912   /// Check whether a fixup can be satisfied, or whether it needs to be relaxed
    913   /// (increased in size, in order to hold its value correctly).
    914   bool fixupNeedsRelaxation(const MCFixup &Fixup, const MCRelaxableFragment *DF,
    915                             const MCAsmLayout &Layout) const;
    916 
    917   /// Check whether the given fragment needs relaxation.
    918   bool fragmentNeedsRelaxation(const MCRelaxableFragment *IF,
    919                                const MCAsmLayout &Layout) const;
    920 
    921   /// \brief Perform one layout iteration and return true if any offsets
    922   /// were adjusted.
    923   bool layoutOnce(MCAsmLayout &Layout);
    924 
    925   /// \brief Perform one layout iteration of the given section and return true
    926   /// if any offsets were adjusted.
    927   bool layoutSectionOnce(MCAsmLayout &Layout, MCSectionData &SD);
    928 
    929   bool relaxInstruction(MCAsmLayout &Layout, MCRelaxableFragment &IF);
    930 
    931   bool relaxLEB(MCAsmLayout &Layout, MCLEBFragment &IF);
    932 
    933   bool relaxDwarfLineAddr(MCAsmLayout &Layout, MCDwarfLineAddrFragment &DF);
    934   bool relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
    935                                    MCDwarfCallFrameFragment &DF);
    936 
    937   /// finishLayout - Finalize a layout, including fragment lowering.
    938   void finishLayout(MCAsmLayout &Layout);
    939 
    940   uint64_t handleFixup(const MCAsmLayout &Layout,
    941                        MCFragment &F, const MCFixup &Fixup);
    942 
    943 public:
    944   /// Compute the effective fragment size assuming it is laid out at the given
    945   /// \p SectionAddress and \p FragmentOffset.
    946   uint64_t computeFragmentSize(const MCAsmLayout &Layout,
    947                                const MCFragment &F) const;
    948 
    949   /// Find the symbol which defines the atom containing the given symbol, or
    950   /// null if there is no such symbol.
    951   const MCSymbolData *getAtom(const MCSymbolData *Symbol) const;
    952 
    953   /// Check whether a particular symbol is visible to the linker and is required
    954   /// in the symbol table, or whether it can be discarded by the assembler. This
    955   /// also effects whether the assembler treats the label as potentially
    956   /// defining a separate atom.
    957   bool isSymbolLinkerVisible(const MCSymbol &SD) const;
    958 
    959   /// Emit the section contents using the given object writer.
    960   void writeSectionData(const MCSectionData *Section,
    961                         const MCAsmLayout &Layout) const;
    962 
    963   /// Check whether a given symbol has been flagged with .thumb_func.
    964   bool isThumbFunc(const MCSymbol *Func) const {
    965     return ThumbFuncs.count(Func);
    966   }
    967 
    968   /// Flag a function symbol as the target of a .thumb_func directive.
    969   void setIsThumbFunc(const MCSymbol *Func) { ThumbFuncs.insert(Func); }
    970 
    971   /// ELF e_header flags
    972   unsigned getELFHeaderEFlags() const {return ELFHeaderEFlags;}
    973   void setELFHeaderEFlags(unsigned Flags) { ELFHeaderEFlags = Flags;}
    974 
    975 public:
    976   /// Construct a new assembler instance.
    977   ///
    978   /// \param OS The stream to output to.
    979   //
    980   // FIXME: How are we going to parameterize this? Two obvious options are stay
    981   // concrete and require clients to pass in a target like object. The other
    982   // option is to make this abstract, and have targets provide concrete
    983   // implementations as we do with AsmParser.
    984   MCAssembler(MCContext &Context_, MCAsmBackend &Backend_,
    985               MCCodeEmitter &Emitter_, MCObjectWriter &Writer_,
    986               raw_ostream &OS);
    987   ~MCAssembler();
    988 
    989   /// Reuse an assembler instance
    990   ///
    991   void reset();
    992 
    993   MCContext &getContext() const { return Context; }
    994 
    995   MCAsmBackend &getBackend() const { return Backend; }
    996 
    997   MCCodeEmitter &getEmitter() const { return Emitter; }
    998 
    999   MCObjectWriter &getWriter() const { return *Writer; }
   1000 
   1001   void setWriter(MCObjectWriter &ObjectWriter);
   1002 
   1003   /// Finish - Do final processing and write the object to the output stream.
   1004   /// \p Writer is used for custom object writer (as the MCJIT does),
   1005   /// if not specified it is automatically created from backend.
   1006   void Finish();
   1007 
   1008   // FIXME: This does not belong here.
   1009   bool getSubsectionsViaSymbols() const {
   1010     return SubsectionsViaSymbols;
   1011   }
   1012   void setSubsectionsViaSymbols(bool Value) {
   1013     SubsectionsViaSymbols = Value;
   1014   }
   1015 
   1016   bool getRelaxAll() const { return RelaxAll; }
   1017   void setRelaxAll(bool Value) { RelaxAll = Value; }
   1018 
   1019   bool getNoExecStack() const { return NoExecStack; }
   1020   void setNoExecStack(bool Value) { NoExecStack = Value; }
   1021 
   1022   bool isBundlingEnabled() const {
   1023     return BundleAlignSize != 0;
   1024   }
   1025 
   1026   unsigned getBundleAlignSize() const {
   1027     return BundleAlignSize;
   1028   }
   1029 
   1030   void setBundleAlignSize(unsigned Size) {
   1031     assert((Size == 0 || !(Size & (Size - 1))) &&
   1032            "Expect a power-of-two bundle align size");
   1033     BundleAlignSize = Size;
   1034   }
   1035 
   1036   /// @name Section List Access
   1037   /// @{
   1038 
   1039   const SectionDataListType &getSectionList() const { return Sections; }
   1040   SectionDataListType &getSectionList() { return Sections; }
   1041 
   1042   iterator begin() { return Sections.begin(); }
   1043   const_iterator begin() const { return Sections.begin(); }
   1044 
   1045   iterator end() { return Sections.end(); }
   1046   const_iterator end() const { return Sections.end(); }
   1047 
   1048   size_t size() const { return Sections.size(); }
   1049 
   1050   /// @}
   1051   /// @name Symbol List Access
   1052   /// @{
   1053 
   1054   const SymbolDataListType &getSymbolList() const { return Symbols; }
   1055   SymbolDataListType &getSymbolList() { return Symbols; }
   1056 
   1057   symbol_iterator symbol_begin() { return Symbols.begin(); }
   1058   const_symbol_iterator symbol_begin() const { return Symbols.begin(); }
   1059 
   1060   symbol_iterator symbol_end() { return Symbols.end(); }
   1061   const_symbol_iterator symbol_end() const { return Symbols.end(); }
   1062 
   1063   size_t symbol_size() const { return Symbols.size(); }
   1064 
   1065   /// @}
   1066   /// @name Indirect Symbol List Access
   1067   /// @{
   1068 
   1069   // FIXME: This is a total hack, this should not be here. Once things are
   1070   // factored so that the streamer has direct access to the .o writer, it can
   1071   // disappear.
   1072   std::vector<IndirectSymbolData> &getIndirectSymbols() {
   1073     return IndirectSymbols;
   1074   }
   1075 
   1076   indirect_symbol_iterator indirect_symbol_begin() {
   1077     return IndirectSymbols.begin();
   1078   }
   1079   const_indirect_symbol_iterator indirect_symbol_begin() const {
   1080     return IndirectSymbols.begin();
   1081   }
   1082 
   1083   indirect_symbol_iterator indirect_symbol_end() {
   1084     return IndirectSymbols.end();
   1085   }
   1086   const_indirect_symbol_iterator indirect_symbol_end() const {
   1087     return IndirectSymbols.end();
   1088   }
   1089 
   1090   size_t indirect_symbol_size() const { return IndirectSymbols.size(); }
   1091 
   1092   /// @}
   1093   /// @name Linker Option List Access
   1094   /// @{
   1095 
   1096   std::vector<std::vector<std::string> > &getLinkerOptions() {
   1097     return LinkerOptions;
   1098   }
   1099 
   1100   /// @}
   1101   /// @name Data Region List Access
   1102   /// @{
   1103 
   1104   // FIXME: This is a total hack, this should not be here. Once things are
   1105   // factored so that the streamer has direct access to the .o writer, it can
   1106   // disappear.
   1107   std::vector<DataRegionData> &getDataRegions() {
   1108     return DataRegions;
   1109   }
   1110 
   1111   data_region_iterator data_region_begin() {
   1112     return DataRegions.begin();
   1113   }
   1114   const_data_region_iterator data_region_begin() const {
   1115     return DataRegions.begin();
   1116   }
   1117 
   1118   data_region_iterator data_region_end() {
   1119     return DataRegions.end();
   1120   }
   1121   const_data_region_iterator data_region_end() const {
   1122     return DataRegions.end();
   1123   }
   1124 
   1125   size_t data_region_size() const { return DataRegions.size(); }
   1126 
   1127   /// @}
   1128   /// @name Backend Data Access
   1129   /// @{
   1130 
   1131   MCSectionData &getSectionData(const MCSection &Section) const {
   1132     MCSectionData *Entry = SectionMap.lookup(&Section);
   1133     assert(Entry && "Missing section data!");
   1134     return *Entry;
   1135   }
   1136 
   1137   MCSectionData &getOrCreateSectionData(const MCSection &Section,
   1138                                         bool *Created = 0) {
   1139     MCSectionData *&Entry = SectionMap[&Section];
   1140 
   1141     if (Created) *Created = !Entry;
   1142     if (!Entry)
   1143       Entry = new MCSectionData(Section, this);
   1144 
   1145     return *Entry;
   1146   }
   1147 
   1148   MCSymbolData &getSymbolData(const MCSymbol &Symbol) const {
   1149     MCSymbolData *Entry = SymbolMap.lookup(&Symbol);
   1150     assert(Entry && "Missing symbol data!");
   1151     return *Entry;
   1152   }
   1153 
   1154   MCSymbolData &getOrCreateSymbolData(const MCSymbol &Symbol,
   1155                                       bool *Created = 0) {
   1156     MCSymbolData *&Entry = SymbolMap[&Symbol];
   1157 
   1158     if (Created) *Created = !Entry;
   1159     if (!Entry)
   1160       Entry = new MCSymbolData(Symbol, 0, 0, this);
   1161 
   1162     return *Entry;
   1163   }
   1164 
   1165   /// @}
   1166 
   1167   void dump();
   1168 };
   1169 
   1170 } // end namespace llvm
   1171 
   1172 #endif
   1173