Home | History | Annotate | Download | only in base
      1 // Copyright 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "cc/base/math_util.h"
      6 
      7 #include <algorithm>
      8 #include <cmath>
      9 #include <limits>
     10 
     11 #include "base/values.h"
     12 #include "ui/gfx/quad_f.h"
     13 #include "ui/gfx/rect.h"
     14 #include "ui/gfx/rect_conversions.h"
     15 #include "ui/gfx/rect_f.h"
     16 #include "ui/gfx/transform.h"
     17 #include "ui/gfx/vector2d_f.h"
     18 
     19 namespace cc {
     20 
     21 const double MathUtil::kPiDouble = 3.14159265358979323846;
     22 const float MathUtil::kPiFloat = 3.14159265358979323846f;
     23 
     24 static HomogeneousCoordinate ProjectHomogeneousPoint(
     25     const gfx::Transform& transform,
     26     gfx::PointF p) {
     27   // In this case, the layer we are trying to project onto is perpendicular to
     28   // ray (point p and z-axis direction) that we are trying to project. This
     29   // happens when the layer is rotated so that it is infinitesimally thin, or
     30   // when it is co-planar with the camera origin -- i.e. when the layer is
     31   // invisible anyway.
     32   if (!transform.matrix().get(2, 2))
     33     return HomogeneousCoordinate(0.0, 0.0, 0.0, 1.0);
     34 
     35   SkMScalar z = -(transform.matrix().get(2, 0) * p.x() +
     36              transform.matrix().get(2, 1) * p.y() +
     37              transform.matrix().get(2, 3)) /
     38              transform.matrix().get(2, 2);
     39   HomogeneousCoordinate result(p.x(), p.y(), z, 1.0);
     40   transform.matrix().mapMScalars(result.vec, result.vec);
     41   return result;
     42 }
     43 
     44 static HomogeneousCoordinate MapHomogeneousPoint(
     45     const gfx::Transform& transform,
     46     const gfx::Point3F& p) {
     47   HomogeneousCoordinate result(p.x(), p.y(), p.z(), 1.0);
     48   transform.matrix().mapMScalars(result.vec, result.vec);
     49   return result;
     50 }
     51 
     52 static HomogeneousCoordinate ComputeClippedPointForEdge(
     53     const HomogeneousCoordinate& h1,
     54     const HomogeneousCoordinate& h2) {
     55   // Points h1 and h2 form a line in 4d, and any point on that line can be
     56   // represented as an interpolation between h1 and h2:
     57   //    p = (1-t) h1 + (t) h2
     58   //
     59   // We want to compute point p such that p.w == epsilon, where epsilon is a
     60   // small non-zero number. (but the smaller the number is, the higher the risk
     61   // of overflow)
     62   // To do this, we solve for t in the following equation:
     63   //    p.w = epsilon = (1-t) * h1.w + (t) * h2.w
     64   //
     65   // Once paramter t is known, the rest of p can be computed via
     66   //    p = (1-t) h1 + (t) h2.
     67 
     68   // Technically this is a special case of the following assertion, but its a
     69   // good idea to keep it an explicit sanity check here.
     70   DCHECK_NE(h2.w(), h1.w());
     71   // Exactly one of h1 or h2 (but not both) must be on the negative side of the
     72   // w plane when this is called.
     73   DCHECK(h1.ShouldBeClipped() ^ h2.ShouldBeClipped());
     74 
     75   // ...or any positive non-zero small epsilon
     76   SkMScalar w = 0.00001f;
     77   SkMScalar t = (w - h1.w()) / (h2.w() - h1.w());
     78 
     79   SkMScalar x = (SK_MScalar1 - t) * h1.x() + t * h2.x();
     80   SkMScalar y = (SK_MScalar1 - t) * h1.y() + t * h2.y();
     81   SkMScalar z = (SK_MScalar1 - t) * h1.z() + t * h2.z();
     82 
     83   return HomogeneousCoordinate(x, y, z, w);
     84 }
     85 
     86 static inline void ExpandBoundsToIncludePoint(float* xmin,
     87                                               float* xmax,
     88                                               float* ymin,
     89                                               float* ymax,
     90                                               gfx::PointF p) {
     91   *xmin = std::min(p.x(), *xmin);
     92   *xmax = std::max(p.x(), *xmax);
     93   *ymin = std::min(p.y(), *ymin);
     94   *ymax = std::max(p.y(), *ymax);
     95 }
     96 
     97 static inline void AddVertexToClippedQuad(gfx::PointF new_vertex,
     98                                           gfx::PointF clipped_quad[8],
     99                                           int* num_vertices_in_clipped_quad) {
    100   clipped_quad[*num_vertices_in_clipped_quad] = new_vertex;
    101   (*num_vertices_in_clipped_quad)++;
    102 }
    103 
    104 gfx::Rect MathUtil::MapClippedRect(const gfx::Transform& transform,
    105                                    gfx::Rect src_rect) {
    106   return gfx::ToEnclosingRect(MapClippedRect(transform, gfx::RectF(src_rect)));
    107 }
    108 
    109 gfx::RectF MathUtil::MapClippedRect(const gfx::Transform& transform,
    110                                     const gfx::RectF& src_rect) {
    111   if (transform.IsIdentityOrTranslation()) {
    112     return src_rect +
    113            gfx::Vector2dF(SkMScalarToFloat(transform.matrix().get(0, 3)),
    114                           SkMScalarToFloat(transform.matrix().get(1, 3)));
    115   }
    116 
    117   // Apply the transform, but retain the result in homogeneous coordinates.
    118 
    119   SkMScalar quad[4 * 2];  // input: 4 x 2D points
    120   quad[0] = src_rect.x();
    121   quad[1] = src_rect.y();
    122   quad[2] = src_rect.right();
    123   quad[3] = src_rect.y();
    124   quad[4] = src_rect.right();
    125   quad[5] = src_rect.bottom();
    126   quad[6] = src_rect.x();
    127   quad[7] = src_rect.bottom();
    128 
    129   SkMScalar result[4 * 4];  // output: 4 x 4D homogeneous points
    130   transform.matrix().map2(quad, 4, result);
    131 
    132   HomogeneousCoordinate hc0(result[0], result[1], result[2], result[3]);
    133   HomogeneousCoordinate hc1(result[4], result[5], result[6], result[7]);
    134   HomogeneousCoordinate hc2(result[8], result[9], result[10], result[11]);
    135   HomogeneousCoordinate hc3(result[12], result[13], result[14], result[15]);
    136   return ComputeEnclosingClippedRect(hc0, hc1, hc2, hc3);
    137 }
    138 
    139 gfx::RectF MathUtil::ProjectClippedRect(const gfx::Transform& transform,
    140                                         const gfx::RectF& src_rect) {
    141   if (transform.IsIdentityOrTranslation()) {
    142     return src_rect +
    143            gfx::Vector2dF(SkMScalarToFloat(transform.matrix().get(0, 3)),
    144                           SkMScalarToFloat(transform.matrix().get(1, 3)));
    145   }
    146 
    147   // Perform the projection, but retain the result in homogeneous coordinates.
    148   gfx::QuadF q = gfx::QuadF(src_rect);
    149   HomogeneousCoordinate h1 = ProjectHomogeneousPoint(transform, q.p1());
    150   HomogeneousCoordinate h2 = ProjectHomogeneousPoint(transform, q.p2());
    151   HomogeneousCoordinate h3 = ProjectHomogeneousPoint(transform, q.p3());
    152   HomogeneousCoordinate h4 = ProjectHomogeneousPoint(transform, q.p4());
    153 
    154   return ComputeEnclosingClippedRect(h1, h2, h3, h4);
    155 }
    156 
    157 void MathUtil::MapClippedQuad(const gfx::Transform& transform,
    158                               const gfx::QuadF& src_quad,
    159                               gfx::PointF clipped_quad[8],
    160                               int* num_vertices_in_clipped_quad) {
    161   HomogeneousCoordinate h1 =
    162       MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p1()));
    163   HomogeneousCoordinate h2 =
    164       MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p2()));
    165   HomogeneousCoordinate h3 =
    166       MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p3()));
    167   HomogeneousCoordinate h4 =
    168       MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p4()));
    169 
    170   // The order of adding the vertices to the array is chosen so that
    171   // clockwise / counter-clockwise orientation is retained.
    172 
    173   *num_vertices_in_clipped_quad = 0;
    174 
    175   if (!h1.ShouldBeClipped()) {
    176     AddVertexToClippedQuad(
    177         h1.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
    178   }
    179 
    180   if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped()) {
    181     AddVertexToClippedQuad(
    182         ComputeClippedPointForEdge(h1, h2).CartesianPoint2d(),
    183         clipped_quad,
    184         num_vertices_in_clipped_quad);
    185   }
    186 
    187   if (!h2.ShouldBeClipped()) {
    188     AddVertexToClippedQuad(
    189         h2.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
    190   }
    191 
    192   if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped()) {
    193     AddVertexToClippedQuad(
    194         ComputeClippedPointForEdge(h2, h3).CartesianPoint2d(),
    195         clipped_quad,
    196         num_vertices_in_clipped_quad);
    197   }
    198 
    199   if (!h3.ShouldBeClipped()) {
    200     AddVertexToClippedQuad(
    201         h3.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
    202   }
    203 
    204   if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped()) {
    205     AddVertexToClippedQuad(
    206         ComputeClippedPointForEdge(h3, h4).CartesianPoint2d(),
    207         clipped_quad,
    208         num_vertices_in_clipped_quad);
    209   }
    210 
    211   if (!h4.ShouldBeClipped()) {
    212     AddVertexToClippedQuad(
    213         h4.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
    214   }
    215 
    216   if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped()) {
    217     AddVertexToClippedQuad(
    218         ComputeClippedPointForEdge(h4, h1).CartesianPoint2d(),
    219         clipped_quad,
    220         num_vertices_in_clipped_quad);
    221   }
    222 
    223   DCHECK_LE(*num_vertices_in_clipped_quad, 8);
    224 }
    225 
    226 gfx::RectF MathUtil::ComputeEnclosingRectOfVertices(gfx::PointF vertices[],
    227                                                     int num_vertices) {
    228   if (num_vertices < 2)
    229     return gfx::RectF();
    230 
    231   float xmin = std::numeric_limits<float>::max();
    232   float xmax = -std::numeric_limits<float>::max();
    233   float ymin = std::numeric_limits<float>::max();
    234   float ymax = -std::numeric_limits<float>::max();
    235 
    236   for (int i = 0; i < num_vertices; ++i)
    237     ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, vertices[i]);
    238 
    239   return gfx::RectF(gfx::PointF(xmin, ymin),
    240                     gfx::SizeF(xmax - xmin, ymax - ymin));
    241 }
    242 
    243 gfx::RectF MathUtil::ComputeEnclosingClippedRect(
    244     const HomogeneousCoordinate& h1,
    245     const HomogeneousCoordinate& h2,
    246     const HomogeneousCoordinate& h3,
    247     const HomogeneousCoordinate& h4) {
    248   // This function performs clipping as necessary and computes the enclosing 2d
    249   // gfx::RectF of the vertices. Doing these two steps simultaneously allows us
    250   // to avoid the overhead of storing an unknown number of clipped vertices.
    251 
    252   // If no vertices on the quad are clipped, then we can simply return the
    253   // enclosing rect directly.
    254   bool something_clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() ||
    255                            h3.ShouldBeClipped() || h4.ShouldBeClipped();
    256   if (!something_clipped) {
    257     gfx::QuadF mapped_quad = gfx::QuadF(h1.CartesianPoint2d(),
    258                                         h2.CartesianPoint2d(),
    259                                         h3.CartesianPoint2d(),
    260                                         h4.CartesianPoint2d());
    261     return mapped_quad.BoundingBox();
    262   }
    263 
    264   bool everything_clipped = h1.ShouldBeClipped() && h2.ShouldBeClipped() &&
    265                             h3.ShouldBeClipped() && h4.ShouldBeClipped();
    266   if (everything_clipped)
    267     return gfx::RectF();
    268 
    269   float xmin = std::numeric_limits<float>::max();
    270   float xmax = -std::numeric_limits<float>::max();
    271   float ymin = std::numeric_limits<float>::max();
    272   float ymax = -std::numeric_limits<float>::max();
    273 
    274   if (!h1.ShouldBeClipped())
    275     ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
    276                                h1.CartesianPoint2d());
    277 
    278   if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped())
    279     ExpandBoundsToIncludePoint(&xmin,
    280                                &xmax,
    281                                &ymin,
    282                                &ymax,
    283                                ComputeClippedPointForEdge(h1, h2)
    284                                    .CartesianPoint2d());
    285 
    286   if (!h2.ShouldBeClipped())
    287     ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
    288                                h2.CartesianPoint2d());
    289 
    290   if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped())
    291     ExpandBoundsToIncludePoint(&xmin,
    292                                &xmax,
    293                                &ymin,
    294                                &ymax,
    295                                ComputeClippedPointForEdge(h2, h3)
    296                                    .CartesianPoint2d());
    297 
    298   if (!h3.ShouldBeClipped())
    299     ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
    300                                h3.CartesianPoint2d());
    301 
    302   if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped())
    303     ExpandBoundsToIncludePoint(&xmin,
    304                                &xmax,
    305                                &ymin,
    306                                &ymax,
    307                                ComputeClippedPointForEdge(h3, h4)
    308                                    .CartesianPoint2d());
    309 
    310   if (!h4.ShouldBeClipped())
    311     ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
    312                                h4.CartesianPoint2d());
    313 
    314   if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped())
    315     ExpandBoundsToIncludePoint(&xmin,
    316                                &xmax,
    317                                &ymin,
    318                                &ymax,
    319                                ComputeClippedPointForEdge(h4, h1)
    320                                    .CartesianPoint2d());
    321 
    322   return gfx::RectF(gfx::PointF(xmin, ymin),
    323                     gfx::SizeF(xmax - xmin, ymax - ymin));
    324 }
    325 
    326 gfx::QuadF MathUtil::MapQuad(const gfx::Transform& transform,
    327                              const gfx::QuadF& q,
    328                              bool* clipped) {
    329   if (transform.IsIdentityOrTranslation()) {
    330     gfx::QuadF mapped_quad(q);
    331     mapped_quad +=
    332         gfx::Vector2dF(SkMScalarToFloat(transform.matrix().get(0, 3)),
    333                        SkMScalarToFloat(transform.matrix().get(1, 3)));
    334     *clipped = false;
    335     return mapped_quad;
    336   }
    337 
    338   HomogeneousCoordinate h1 =
    339       MapHomogeneousPoint(transform, gfx::Point3F(q.p1()));
    340   HomogeneousCoordinate h2 =
    341       MapHomogeneousPoint(transform, gfx::Point3F(q.p2()));
    342   HomogeneousCoordinate h3 =
    343       MapHomogeneousPoint(transform, gfx::Point3F(q.p3()));
    344   HomogeneousCoordinate h4 =
    345       MapHomogeneousPoint(transform, gfx::Point3F(q.p4()));
    346 
    347   *clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() ||
    348             h3.ShouldBeClipped() || h4.ShouldBeClipped();
    349 
    350   // Result will be invalid if clipped == true. But, compute it anyway just in
    351   // case, to emulate existing behavior.
    352   return gfx::QuadF(h1.CartesianPoint2d(),
    353                     h2.CartesianPoint2d(),
    354                     h3.CartesianPoint2d(),
    355                     h4.CartesianPoint2d());
    356 }
    357 
    358 gfx::PointF MathUtil::MapPoint(const gfx::Transform& transform,
    359                                gfx::PointF p,
    360                                bool* clipped) {
    361   HomogeneousCoordinate h = MapHomogeneousPoint(transform, gfx::Point3F(p));
    362 
    363   if (h.w() > 0) {
    364     *clipped = false;
    365     return h.CartesianPoint2d();
    366   }
    367 
    368   // The cartesian coordinates will be invalid after dividing by w.
    369   *clipped = true;
    370 
    371   // Avoid dividing by w if w == 0.
    372   if (!h.w())
    373     return gfx::PointF();
    374 
    375   // This return value will be invalid because clipped == true, but (1) users of
    376   // this code should be ignoring the return value when clipped == true anyway,
    377   // and (2) this behavior is more consistent with existing behavior of WebKit
    378   // transforms if the user really does not ignore the return value.
    379   return h.CartesianPoint2d();
    380 }
    381 
    382 gfx::Point3F MathUtil::MapPoint(const gfx::Transform& transform,
    383                                 const gfx::Point3F& p,
    384                                 bool* clipped) {
    385   HomogeneousCoordinate h = MapHomogeneousPoint(transform, p);
    386 
    387   if (h.w() > 0) {
    388     *clipped = false;
    389     return h.CartesianPoint3d();
    390   }
    391 
    392   // The cartesian coordinates will be invalid after dividing by w.
    393   *clipped = true;
    394 
    395   // Avoid dividing by w if w == 0.
    396   if (!h.w())
    397     return gfx::Point3F();
    398 
    399   // This return value will be invalid because clipped == true, but (1) users of
    400   // this code should be ignoring the return value when clipped == true anyway,
    401   // and (2) this behavior is more consistent with existing behavior of WebKit
    402   // transforms if the user really does not ignore the return value.
    403   return h.CartesianPoint3d();
    404 }
    405 
    406 gfx::QuadF MathUtil::ProjectQuad(const gfx::Transform& transform,
    407                                  const gfx::QuadF& q,
    408                                  bool* clipped) {
    409   gfx::QuadF projected_quad;
    410   bool clipped_point;
    411   projected_quad.set_p1(ProjectPoint(transform, q.p1(), &clipped_point));
    412   *clipped = clipped_point;
    413   projected_quad.set_p2(ProjectPoint(transform, q.p2(), &clipped_point));
    414   *clipped |= clipped_point;
    415   projected_quad.set_p3(ProjectPoint(transform, q.p3(), &clipped_point));
    416   *clipped |= clipped_point;
    417   projected_quad.set_p4(ProjectPoint(transform, q.p4(), &clipped_point));
    418   *clipped |= clipped_point;
    419 
    420   return projected_quad;
    421 }
    422 
    423 gfx::PointF MathUtil::ProjectPoint(const gfx::Transform& transform,
    424                                    gfx::PointF p,
    425                                    bool* clipped) {
    426   HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p);
    427 
    428   if (h.w() > 0) {
    429     // The cartesian coordinates will be valid in this case.
    430     *clipped = false;
    431     return h.CartesianPoint2d();
    432   }
    433 
    434   // The cartesian coordinates will be invalid after dividing by w.
    435   *clipped = true;
    436 
    437   // Avoid dividing by w if w == 0.
    438   if (!h.w())
    439     return gfx::PointF();
    440 
    441   // This return value will be invalid because clipped == true, but (1) users of
    442   // this code should be ignoring the return value when clipped == true anyway,
    443   // and (2) this behavior is more consistent with existing behavior of WebKit
    444   // transforms if the user really does not ignore the return value.
    445   return h.CartesianPoint2d();
    446 }
    447 
    448 gfx::RectF MathUtil::ScaleRectProportional(const gfx::RectF& input_outer_rect,
    449                                            const gfx::RectF& scale_outer_rect,
    450                                            const gfx::RectF& scale_inner_rect) {
    451   gfx::RectF output_inner_rect = input_outer_rect;
    452   float scale_rect_to_input_scale_x =
    453       scale_outer_rect.width() / input_outer_rect.width();
    454   float scale_rect_to_input_scale_y =
    455       scale_outer_rect.height() / input_outer_rect.height();
    456 
    457   gfx::Vector2dF top_left_diff =
    458       scale_inner_rect.origin() - scale_outer_rect.origin();
    459   gfx::Vector2dF bottom_right_diff =
    460       scale_inner_rect.bottom_right() - scale_outer_rect.bottom_right();
    461   output_inner_rect.Inset(top_left_diff.x() / scale_rect_to_input_scale_x,
    462                           top_left_diff.y() / scale_rect_to_input_scale_y,
    463                           -bottom_right_diff.x() / scale_rect_to_input_scale_x,
    464                           -bottom_right_diff.y() / scale_rect_to_input_scale_y);
    465   return output_inner_rect;
    466 }
    467 
    468 static inline float ScaleOnAxis(double a, double b, double c) {
    469   if (!b && !c)
    470     return a;
    471   if (!a && !c)
    472     return b;
    473   if (!a && !b)
    474     return c;
    475 
    476   // Do the sqrt as a double to not lose precision.
    477   return static_cast<float>(std::sqrt(a * a + b * b + c * c));
    478 }
    479 
    480 gfx::Vector2dF MathUtil::ComputeTransform2dScaleComponents(
    481     const gfx::Transform& transform,
    482     float fallback_value) {
    483   if (transform.HasPerspective())
    484     return gfx::Vector2dF(fallback_value, fallback_value);
    485   float x_scale = ScaleOnAxis(transform.matrix().getDouble(0, 0),
    486                               transform.matrix().getDouble(1, 0),
    487                               transform.matrix().getDouble(2, 0));
    488   float y_scale = ScaleOnAxis(transform.matrix().getDouble(0, 1),
    489                               transform.matrix().getDouble(1, 1),
    490                               transform.matrix().getDouble(2, 1));
    491   return gfx::Vector2dF(x_scale, y_scale);
    492 }
    493 
    494 float MathUtil::SmallestAngleBetweenVectors(gfx::Vector2dF v1,
    495                                             gfx::Vector2dF v2) {
    496   double dot_product = gfx::DotProduct(v1, v2) / v1.Length() / v2.Length();
    497   // Clamp to compensate for rounding errors.
    498   dot_product = std::max(-1.0, std::min(1.0, dot_product));
    499   return static_cast<float>(Rad2Deg(std::acos(dot_product)));
    500 }
    501 
    502 gfx::Vector2dF MathUtil::ProjectVector(gfx::Vector2dF source,
    503                                        gfx::Vector2dF destination) {
    504   float projected_length =
    505       gfx::DotProduct(source, destination) / destination.LengthSquared();
    506   return gfx::Vector2dF(projected_length * destination.x(),
    507                         projected_length * destination.y());
    508 }
    509 
    510 scoped_ptr<base::Value> MathUtil::AsValue(gfx::Size s) {
    511   scoped_ptr<base::DictionaryValue> res(new base::DictionaryValue());
    512   res->SetDouble("width", s.width());
    513   res->SetDouble("height", s.height());
    514   return res.PassAs<base::Value>();
    515 }
    516 
    517 scoped_ptr<base::Value> MathUtil::AsValue(gfx::SizeF s) {
    518   scoped_ptr<base::DictionaryValue> res(new base::DictionaryValue());
    519   res->SetDouble("width", s.width());
    520   res->SetDouble("height", s.height());
    521   return res.PassAs<base::Value>();
    522 }
    523 
    524 scoped_ptr<base::Value> MathUtil::AsValue(gfx::Rect r) {
    525   scoped_ptr<base::ListValue> res(new base::ListValue());
    526   res->AppendInteger(r.x());
    527   res->AppendInteger(r.y());
    528   res->AppendInteger(r.width());
    529   res->AppendInteger(r.height());
    530   return res.PassAs<base::Value>();
    531 }
    532 
    533 bool MathUtil::FromValue(const base::Value* raw_value, gfx::Rect* out_rect) {
    534   const base::ListValue* value = NULL;
    535   if (!raw_value->GetAsList(&value))
    536     return false;
    537 
    538   if (value->GetSize() != 4)
    539     return false;
    540 
    541   int x, y, w, h;
    542   bool ok = true;
    543   ok &= value->GetInteger(0, &x);
    544   ok &= value->GetInteger(1, &y);
    545   ok &= value->GetInteger(2, &w);
    546   ok &= value->GetInteger(3, &h);
    547   if (!ok)
    548     return false;
    549 
    550   *out_rect = gfx::Rect(x, y, w, h);
    551   return true;
    552 }
    553 
    554 scoped_ptr<base::Value> MathUtil::AsValue(gfx::PointF pt) {
    555   scoped_ptr<base::ListValue> res(new base::ListValue());
    556   res->AppendDouble(pt.x());
    557   res->AppendDouble(pt.y());
    558   return res.PassAs<base::Value>();
    559 }
    560 
    561 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::QuadF& q) {
    562   scoped_ptr<base::ListValue> res(new base::ListValue());
    563   res->AppendDouble(q.p1().x());
    564   res->AppendDouble(q.p1().y());
    565   res->AppendDouble(q.p2().x());
    566   res->AppendDouble(q.p2().y());
    567   res->AppendDouble(q.p3().x());
    568   res->AppendDouble(q.p3().y());
    569   res->AppendDouble(q.p4().x());
    570   res->AppendDouble(q.p4().y());
    571   return res.PassAs<base::Value>();
    572 }
    573 
    574 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::RectF& rect) {
    575   scoped_ptr<base::ListValue> res(new base::ListValue());
    576   res->AppendDouble(rect.x());
    577   res->AppendDouble(rect.y());
    578   res->AppendDouble(rect.width());
    579   res->AppendDouble(rect.height());
    580   return res.PassAs<base::Value>();
    581 }
    582 
    583 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::Transform& transform) {
    584   scoped_ptr<base::ListValue> res(new base::ListValue());
    585   const SkMatrix44& m = transform.matrix();
    586   for (int row = 0; row < 4; ++row) {
    587     for (int col = 0; col < 4; ++col)
    588       res->AppendDouble(m.getDouble(row, col));
    589   }
    590   return res.PassAs<base::Value>();
    591 }
    592 
    593 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::BoxF& box) {
    594   scoped_ptr<base::ListValue> res(new base::ListValue());
    595   res->AppendInteger(box.x());
    596   res->AppendInteger(box.y());
    597   res->AppendInteger(box.z());
    598   res->AppendInteger(box.width());
    599   res->AppendInteger(box.height());
    600   res->AppendInteger(box.depth());
    601   return res.PassAs<base::Value>();
    602 }
    603 
    604 scoped_ptr<base::Value> MathUtil::AsValueSafely(double value) {
    605   return scoped_ptr<base::Value>(base::Value::CreateDoubleValue(
    606       std::min(value, std::numeric_limits<double>::max())));
    607 }
    608 
    609 scoped_ptr<base::Value> MathUtil::AsValueSafely(float value) {
    610   return scoped_ptr<base::Value>(base::Value::CreateDoubleValue(
    611       std::min(value, std::numeric_limits<float>::max())));
    612 }
    613 
    614 }  // namespace cc
    615