Home | History | Annotate | Download | only in src
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include "v8.h"
     29 
     30 #include "codegen.h"
     31 #include "compiler.h"
     32 #include "debug.h"
     33 #include "full-codegen.h"
     34 #include "liveedit.h"
     35 #include "macro-assembler.h"
     36 #include "prettyprinter.h"
     37 #include "scopes.h"
     38 #include "scopeinfo.h"
     39 #include "snapshot.h"
     40 #include "stub-cache.h"
     41 
     42 namespace v8 {
     43 namespace internal {
     44 
     45 void BreakableStatementChecker::Check(Statement* stmt) {
     46   Visit(stmt);
     47 }
     48 
     49 
     50 void BreakableStatementChecker::Check(Expression* expr) {
     51   Visit(expr);
     52 }
     53 
     54 
     55 void BreakableStatementChecker::VisitVariableDeclaration(
     56     VariableDeclaration* decl) {
     57 }
     58 
     59 void BreakableStatementChecker::VisitFunctionDeclaration(
     60     FunctionDeclaration* decl) {
     61 }
     62 
     63 void BreakableStatementChecker::VisitModuleDeclaration(
     64     ModuleDeclaration* decl) {
     65 }
     66 
     67 void BreakableStatementChecker::VisitImportDeclaration(
     68     ImportDeclaration* decl) {
     69 }
     70 
     71 void BreakableStatementChecker::VisitExportDeclaration(
     72     ExportDeclaration* decl) {
     73 }
     74 
     75 
     76 void BreakableStatementChecker::VisitModuleLiteral(ModuleLiteral* module) {
     77 }
     78 
     79 
     80 void BreakableStatementChecker::VisitModuleVariable(ModuleVariable* module) {
     81 }
     82 
     83 
     84 void BreakableStatementChecker::VisitModulePath(ModulePath* module) {
     85 }
     86 
     87 
     88 void BreakableStatementChecker::VisitModuleUrl(ModuleUrl* module) {
     89 }
     90 
     91 
     92 void BreakableStatementChecker::VisitModuleStatement(ModuleStatement* stmt) {
     93 }
     94 
     95 
     96 void BreakableStatementChecker::VisitBlock(Block* stmt) {
     97 }
     98 
     99 
    100 void BreakableStatementChecker::VisitExpressionStatement(
    101     ExpressionStatement* stmt) {
    102   // Check if expression is breakable.
    103   Visit(stmt->expression());
    104 }
    105 
    106 
    107 void BreakableStatementChecker::VisitEmptyStatement(EmptyStatement* stmt) {
    108 }
    109 
    110 
    111 void BreakableStatementChecker::VisitIfStatement(IfStatement* stmt) {
    112   // If the condition is breakable the if statement is breakable.
    113   Visit(stmt->condition());
    114 }
    115 
    116 
    117 void BreakableStatementChecker::VisitContinueStatement(
    118     ContinueStatement* stmt) {
    119 }
    120 
    121 
    122 void BreakableStatementChecker::VisitBreakStatement(BreakStatement* stmt) {
    123 }
    124 
    125 
    126 void BreakableStatementChecker::VisitReturnStatement(ReturnStatement* stmt) {
    127   // Return is breakable if the expression is.
    128   Visit(stmt->expression());
    129 }
    130 
    131 
    132 void BreakableStatementChecker::VisitWithStatement(WithStatement* stmt) {
    133   Visit(stmt->expression());
    134 }
    135 
    136 
    137 void BreakableStatementChecker::VisitSwitchStatement(SwitchStatement* stmt) {
    138   // Switch statements breakable if the tag expression is.
    139   Visit(stmt->tag());
    140 }
    141 
    142 
    143 void BreakableStatementChecker::VisitDoWhileStatement(DoWhileStatement* stmt) {
    144   // Mark do while as breakable to avoid adding a break slot in front of it.
    145   is_breakable_ = true;
    146 }
    147 
    148 
    149 void BreakableStatementChecker::VisitWhileStatement(WhileStatement* stmt) {
    150   // Mark while statements breakable if the condition expression is.
    151   Visit(stmt->cond());
    152 }
    153 
    154 
    155 void BreakableStatementChecker::VisitForStatement(ForStatement* stmt) {
    156   // Mark for statements breakable if the condition expression is.
    157   if (stmt->cond() != NULL) {
    158     Visit(stmt->cond());
    159   }
    160 }
    161 
    162 
    163 void BreakableStatementChecker::VisitForInStatement(ForInStatement* stmt) {
    164   // Mark for in statements breakable if the enumerable expression is.
    165   Visit(stmt->enumerable());
    166 }
    167 
    168 
    169 void BreakableStatementChecker::VisitForOfStatement(ForOfStatement* stmt) {
    170   // For-of is breakable because of the next() call.
    171   is_breakable_ = true;
    172 }
    173 
    174 
    175 void BreakableStatementChecker::VisitTryCatchStatement(
    176     TryCatchStatement* stmt) {
    177   // Mark try catch as breakable to avoid adding a break slot in front of it.
    178   is_breakable_ = true;
    179 }
    180 
    181 
    182 void BreakableStatementChecker::VisitTryFinallyStatement(
    183     TryFinallyStatement* stmt) {
    184   // Mark try finally as breakable to avoid adding a break slot in front of it.
    185   is_breakable_ = true;
    186 }
    187 
    188 
    189 void BreakableStatementChecker::VisitDebuggerStatement(
    190     DebuggerStatement* stmt) {
    191   // The debugger statement is breakable.
    192   is_breakable_ = true;
    193 }
    194 
    195 
    196 void BreakableStatementChecker::VisitCaseClause(CaseClause* clause) {
    197 }
    198 
    199 
    200 void BreakableStatementChecker::VisitFunctionLiteral(FunctionLiteral* expr) {
    201 }
    202 
    203 
    204 void BreakableStatementChecker::VisitNativeFunctionLiteral(
    205     NativeFunctionLiteral* expr) {
    206 }
    207 
    208 
    209 void BreakableStatementChecker::VisitConditional(Conditional* expr) {
    210 }
    211 
    212 
    213 void BreakableStatementChecker::VisitVariableProxy(VariableProxy* expr) {
    214 }
    215 
    216 
    217 void BreakableStatementChecker::VisitLiteral(Literal* expr) {
    218 }
    219 
    220 
    221 void BreakableStatementChecker::VisitRegExpLiteral(RegExpLiteral* expr) {
    222 }
    223 
    224 
    225 void BreakableStatementChecker::VisitObjectLiteral(ObjectLiteral* expr) {
    226 }
    227 
    228 
    229 void BreakableStatementChecker::VisitArrayLiteral(ArrayLiteral* expr) {
    230 }
    231 
    232 
    233 void BreakableStatementChecker::VisitAssignment(Assignment* expr) {
    234   // If assigning to a property (including a global property) the assignment is
    235   // breakable.
    236   VariableProxy* proxy = expr->target()->AsVariableProxy();
    237   Property* prop = expr->target()->AsProperty();
    238   if (prop != NULL || (proxy != NULL && proxy->var()->IsUnallocated())) {
    239     is_breakable_ = true;
    240     return;
    241   }
    242 
    243   // Otherwise the assignment is breakable if the assigned value is.
    244   Visit(expr->value());
    245 }
    246 
    247 
    248 void BreakableStatementChecker::VisitYield(Yield* expr) {
    249   // Yield is breakable if the expression is.
    250   Visit(expr->expression());
    251 }
    252 
    253 
    254 void BreakableStatementChecker::VisitThrow(Throw* expr) {
    255   // Throw is breakable if the expression is.
    256   Visit(expr->exception());
    257 }
    258 
    259 
    260 void BreakableStatementChecker::VisitProperty(Property* expr) {
    261   // Property load is breakable.
    262   is_breakable_ = true;
    263 }
    264 
    265 
    266 void BreakableStatementChecker::VisitCall(Call* expr) {
    267   // Function calls both through IC and call stub are breakable.
    268   is_breakable_ = true;
    269 }
    270 
    271 
    272 void BreakableStatementChecker::VisitCallNew(CallNew* expr) {
    273   // Function calls through new are breakable.
    274   is_breakable_ = true;
    275 }
    276 
    277 
    278 void BreakableStatementChecker::VisitCallRuntime(CallRuntime* expr) {
    279 }
    280 
    281 
    282 void BreakableStatementChecker::VisitUnaryOperation(UnaryOperation* expr) {
    283   Visit(expr->expression());
    284 }
    285 
    286 
    287 void BreakableStatementChecker::VisitCountOperation(CountOperation* expr) {
    288   Visit(expr->expression());
    289 }
    290 
    291 
    292 void BreakableStatementChecker::VisitBinaryOperation(BinaryOperation* expr) {
    293   Visit(expr->left());
    294   if (expr->op() != Token::AND &&
    295       expr->op() != Token::OR) {
    296     Visit(expr->right());
    297   }
    298 }
    299 
    300 
    301 void BreakableStatementChecker::VisitCompareOperation(CompareOperation* expr) {
    302   Visit(expr->left());
    303   Visit(expr->right());
    304 }
    305 
    306 
    307 void BreakableStatementChecker::VisitThisFunction(ThisFunction* expr) {
    308 }
    309 
    310 
    311 #define __ ACCESS_MASM(masm())
    312 
    313 bool FullCodeGenerator::MakeCode(CompilationInfo* info) {
    314   Isolate* isolate = info->isolate();
    315   Handle<Script> script = info->script();
    316   if (!script->IsUndefined() && !script->source()->IsUndefined()) {
    317     int len = String::cast(script->source())->length();
    318     isolate->counters()->total_full_codegen_source_size()->Increment(len);
    319   }
    320   CodeGenerator::MakeCodePrologue(info, "full");
    321   const int kInitialBufferSize = 4 * KB;
    322   MacroAssembler masm(info->isolate(), NULL, kInitialBufferSize);
    323 #ifdef ENABLE_GDB_JIT_INTERFACE
    324   masm.positions_recorder()->StartGDBJITLineInfoRecording();
    325 #endif
    326   LOG_CODE_EVENT(isolate,
    327                  CodeStartLinePosInfoRecordEvent(masm.positions_recorder()));
    328 
    329   FullCodeGenerator cgen(&masm, info);
    330   cgen.Generate();
    331   if (cgen.HasStackOverflow()) {
    332     ASSERT(!isolate->has_pending_exception());
    333     return false;
    334   }
    335   unsigned table_offset = cgen.EmitBackEdgeTable();
    336 
    337   Code::Flags flags = Code::ComputeFlags(Code::FUNCTION);
    338   Handle<Code> code = CodeGenerator::MakeCodeEpilogue(&masm, flags, info);
    339   code->set_optimizable(info->IsOptimizable() &&
    340                         !info->function()->dont_optimize() &&
    341                         info->function()->scope()->AllowsLazyCompilation());
    342   cgen.PopulateDeoptimizationData(code);
    343   cgen.PopulateTypeFeedbackInfo(code);
    344   cgen.PopulateTypeFeedbackCells(code);
    345   code->set_has_deoptimization_support(info->HasDeoptimizationSupport());
    346   code->set_handler_table(*cgen.handler_table());
    347 #ifdef ENABLE_DEBUGGER_SUPPORT
    348   code->set_compiled_optimizable(info->IsOptimizable());
    349 #endif  // ENABLE_DEBUGGER_SUPPORT
    350   code->set_allow_osr_at_loop_nesting_level(0);
    351   code->set_profiler_ticks(0);
    352   code->set_back_edge_table_offset(table_offset);
    353   code->set_back_edges_patched_for_osr(false);
    354   CodeGenerator::PrintCode(code, info);
    355   info->SetCode(code);
    356 #ifdef ENABLE_GDB_JIT_INTERFACE
    357   if (FLAG_gdbjit) {
    358     GDBJITLineInfo* lineinfo =
    359         masm.positions_recorder()->DetachGDBJITLineInfo();
    360     GDBJIT(RegisterDetailedLineInfo(*code, lineinfo));
    361   }
    362 #endif
    363   void* line_info = masm.positions_recorder()->DetachJITHandlerData();
    364   LOG_CODE_EVENT(isolate, CodeEndLinePosInfoRecordEvent(*code, line_info));
    365   return true;
    366 }
    367 
    368 
    369 unsigned FullCodeGenerator::EmitBackEdgeTable() {
    370   // The back edge table consists of a length (in number of entries)
    371   // field, and then a sequence of entries.  Each entry is a pair of AST id
    372   // and code-relative pc offset.
    373   masm()->Align(kIntSize);
    374   unsigned offset = masm()->pc_offset();
    375   unsigned length = back_edges_.length();
    376   __ dd(length);
    377   for (unsigned i = 0; i < length; ++i) {
    378     __ dd(back_edges_[i].id.ToInt());
    379     __ dd(back_edges_[i].pc);
    380     __ dd(back_edges_[i].loop_depth);
    381   }
    382   return offset;
    383 }
    384 
    385 
    386 void FullCodeGenerator::PopulateDeoptimizationData(Handle<Code> code) {
    387   // Fill in the deoptimization information.
    388   ASSERT(info_->HasDeoptimizationSupport() || bailout_entries_.is_empty());
    389   if (!info_->HasDeoptimizationSupport()) return;
    390   int length = bailout_entries_.length();
    391   Handle<DeoptimizationOutputData> data = isolate()->factory()->
    392       NewDeoptimizationOutputData(length, TENURED);
    393   for (int i = 0; i < length; i++) {
    394     data->SetAstId(i, bailout_entries_[i].id);
    395     data->SetPcAndState(i, Smi::FromInt(bailout_entries_[i].pc_and_state));
    396   }
    397   code->set_deoptimization_data(*data);
    398 }
    399 
    400 
    401 void FullCodeGenerator::PopulateTypeFeedbackInfo(Handle<Code> code) {
    402   Handle<TypeFeedbackInfo> info = isolate()->factory()->NewTypeFeedbackInfo();
    403   info->set_ic_total_count(ic_total_count_);
    404   ASSERT(!isolate()->heap()->InNewSpace(*info));
    405   code->set_type_feedback_info(*info);
    406 }
    407 
    408 
    409 void FullCodeGenerator::Initialize() {
    410   // The generation of debug code must match between the snapshot code and the
    411   // code that is generated later.  This is assumed by the debugger when it is
    412   // calculating PC offsets after generating a debug version of code.  Therefore
    413   // we disable the production of debug code in the full compiler if we are
    414   // either generating a snapshot or we booted from a snapshot.
    415   generate_debug_code_ = FLAG_debug_code &&
    416                          !Serializer::enabled() &&
    417                          !Snapshot::HaveASnapshotToStartFrom();
    418   masm_->set_emit_debug_code(generate_debug_code_);
    419   masm_->set_predictable_code_size(true);
    420   InitializeAstVisitor(info_->isolate());
    421 }
    422 
    423 
    424 void FullCodeGenerator::PopulateTypeFeedbackCells(Handle<Code> code) {
    425   if (type_feedback_cells_.is_empty()) return;
    426   int length = type_feedback_cells_.length();
    427   int array_size = TypeFeedbackCells::LengthOfFixedArray(length);
    428   Handle<TypeFeedbackCells> cache = Handle<TypeFeedbackCells>::cast(
    429       isolate()->factory()->NewFixedArray(array_size, TENURED));
    430   for (int i = 0; i < length; i++) {
    431     cache->SetAstId(i, type_feedback_cells_[i].ast_id);
    432     cache->SetCell(i, *type_feedback_cells_[i].cell);
    433   }
    434   TypeFeedbackInfo::cast(code->type_feedback_info())->set_type_feedback_cells(
    435       *cache);
    436 }
    437 
    438 
    439 
    440 void FullCodeGenerator::PrepareForBailout(Expression* node, State state) {
    441   PrepareForBailoutForId(node->id(), state);
    442 }
    443 
    444 
    445 void FullCodeGenerator::RecordJSReturnSite(Call* call) {
    446   // We record the offset of the function return so we can rebuild the frame
    447   // if the function was inlined, i.e., this is the return address in the
    448   // inlined function's frame.
    449   //
    450   // The state is ignored.  We defensively set it to TOS_REG, which is the
    451   // real state of the unoptimized code at the return site.
    452   PrepareForBailoutForId(call->ReturnId(), TOS_REG);
    453 #ifdef DEBUG
    454   // In debug builds, mark the return so we can verify that this function
    455   // was called.
    456   ASSERT(!call->return_is_recorded_);
    457   call->return_is_recorded_ = true;
    458 #endif
    459 }
    460 
    461 
    462 void FullCodeGenerator::PrepareForBailoutForId(BailoutId id, State state) {
    463   // There's no need to prepare this code for bailouts from already optimized
    464   // code or code that can't be optimized.
    465   if (!info_->HasDeoptimizationSupport()) return;
    466   unsigned pc_and_state =
    467       StateField::encode(state) | PcField::encode(masm_->pc_offset());
    468   ASSERT(Smi::IsValid(pc_and_state));
    469   BailoutEntry entry = { id, pc_and_state };
    470   ASSERT(!prepared_bailout_ids_.Contains(id.ToInt()));
    471   prepared_bailout_ids_.Add(id.ToInt(), zone());
    472   bailout_entries_.Add(entry, zone());
    473 }
    474 
    475 
    476 void FullCodeGenerator::RecordTypeFeedbackCell(
    477     TypeFeedbackId id, Handle<Cell> cell) {
    478   TypeFeedbackCellEntry entry = { id, cell };
    479   type_feedback_cells_.Add(entry, zone());
    480 }
    481 
    482 
    483 void FullCodeGenerator::RecordBackEdge(BailoutId ast_id) {
    484   // The pc offset does not need to be encoded and packed together with a state.
    485   ASSERT(masm_->pc_offset() > 0);
    486   ASSERT(loop_depth() > 0);
    487   uint8_t depth = Min(loop_depth(), Code::kMaxLoopNestingMarker);
    488   BackEdgeEntry entry =
    489       { ast_id, static_cast<unsigned>(masm_->pc_offset()), depth };
    490   back_edges_.Add(entry, zone());
    491 }
    492 
    493 
    494 bool FullCodeGenerator::ShouldInlineSmiCase(Token::Value op) {
    495   // Inline smi case inside loops, but not division and modulo which
    496   // are too complicated and take up too much space.
    497   if (op == Token::DIV ||op == Token::MOD) return false;
    498   if (FLAG_always_inline_smi_code) return true;
    499   return loop_depth_ > 0;
    500 }
    501 
    502 
    503 void FullCodeGenerator::EffectContext::Plug(Register reg) const {
    504 }
    505 
    506 
    507 void FullCodeGenerator::AccumulatorValueContext::Plug(Register reg) const {
    508   __ Move(result_register(), reg);
    509 }
    510 
    511 
    512 void FullCodeGenerator::StackValueContext::Plug(Register reg) const {
    513   __ Push(reg);
    514 }
    515 
    516 
    517 void FullCodeGenerator::TestContext::Plug(Register reg) const {
    518   // For simplicity we always test the accumulator register.
    519   __ Move(result_register(), reg);
    520   codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
    521   codegen()->DoTest(this);
    522 }
    523 
    524 
    525 void FullCodeGenerator::EffectContext::PlugTOS() const {
    526   __ Drop(1);
    527 }
    528 
    529 
    530 void FullCodeGenerator::AccumulatorValueContext::PlugTOS() const {
    531   __ Pop(result_register());
    532 }
    533 
    534 
    535 void FullCodeGenerator::StackValueContext::PlugTOS() const {
    536 }
    537 
    538 
    539 void FullCodeGenerator::TestContext::PlugTOS() const {
    540   // For simplicity we always test the accumulator register.
    541   __ Pop(result_register());
    542   codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
    543   codegen()->DoTest(this);
    544 }
    545 
    546 
    547 void FullCodeGenerator::EffectContext::PrepareTest(
    548     Label* materialize_true,
    549     Label* materialize_false,
    550     Label** if_true,
    551     Label** if_false,
    552     Label** fall_through) const {
    553   // In an effect context, the true and the false case branch to the
    554   // same label.
    555   *if_true = *if_false = *fall_through = materialize_true;
    556 }
    557 
    558 
    559 void FullCodeGenerator::AccumulatorValueContext::PrepareTest(
    560     Label* materialize_true,
    561     Label* materialize_false,
    562     Label** if_true,
    563     Label** if_false,
    564     Label** fall_through) const {
    565   *if_true = *fall_through = materialize_true;
    566   *if_false = materialize_false;
    567 }
    568 
    569 
    570 void FullCodeGenerator::StackValueContext::PrepareTest(
    571     Label* materialize_true,
    572     Label* materialize_false,
    573     Label** if_true,
    574     Label** if_false,
    575     Label** fall_through) const {
    576   *if_true = *fall_through = materialize_true;
    577   *if_false = materialize_false;
    578 }
    579 
    580 
    581 void FullCodeGenerator::TestContext::PrepareTest(
    582     Label* materialize_true,
    583     Label* materialize_false,
    584     Label** if_true,
    585     Label** if_false,
    586     Label** fall_through) const {
    587   *if_true = true_label_;
    588   *if_false = false_label_;
    589   *fall_through = fall_through_;
    590 }
    591 
    592 
    593 void FullCodeGenerator::DoTest(const TestContext* context) {
    594   DoTest(context->condition(),
    595          context->true_label(),
    596          context->false_label(),
    597          context->fall_through());
    598 }
    599 
    600 
    601 void FullCodeGenerator::AllocateModules(ZoneList<Declaration*>* declarations) {
    602   ASSERT(scope_->is_global_scope());
    603 
    604   for (int i = 0; i < declarations->length(); i++) {
    605     ModuleDeclaration* declaration = declarations->at(i)->AsModuleDeclaration();
    606     if (declaration != NULL) {
    607       ModuleLiteral* module = declaration->module()->AsModuleLiteral();
    608       if (module != NULL) {
    609         Comment cmnt(masm_, "[ Link nested modules");
    610         Scope* scope = module->body()->scope();
    611         Interface* interface = scope->interface();
    612         ASSERT(interface->IsModule() && interface->IsFrozen());
    613 
    614         interface->Allocate(scope->module_var()->index());
    615 
    616         // Set up module context.
    617         ASSERT(scope->interface()->Index() >= 0);
    618         __ Push(Smi::FromInt(scope->interface()->Index()));
    619         __ Push(scope->GetScopeInfo());
    620         __ CallRuntime(Runtime::kPushModuleContext, 2);
    621         StoreToFrameField(StandardFrameConstants::kContextOffset,
    622                           context_register());
    623 
    624         AllocateModules(scope->declarations());
    625 
    626         // Pop module context.
    627         LoadContextField(context_register(), Context::PREVIOUS_INDEX);
    628         // Update local stack frame context field.
    629         StoreToFrameField(StandardFrameConstants::kContextOffset,
    630                           context_register());
    631       }
    632     }
    633   }
    634 }
    635 
    636 
    637 // Modules have their own local scope, represented by their own context.
    638 // Module instance objects have an accessor for every export that forwards
    639 // access to the respective slot from the module's context. (Exports that are
    640 // modules themselves, however, are simple data properties.)
    641 //
    642 // All modules have a _hosting_ scope/context, which (currently) is the
    643 // (innermost) enclosing global scope. To deal with recursion, nested modules
    644 // are hosted by the same scope as global ones.
    645 //
    646 // For every (global or nested) module literal, the hosting context has an
    647 // internal slot that points directly to the respective module context. This
    648 // enables quick access to (statically resolved) module members by 2-dimensional
    649 // access through the hosting context. For example,
    650 //
    651 //   module A {
    652 //     let x;
    653 //     module B { let y; }
    654 //   }
    655 //   module C { let z; }
    656 //
    657 // allocates contexts as follows:
    658 //
    659 // [header| .A | .B | .C | A | C ]  (global)
    660 //           |    |    |
    661 //           |    |    +-- [header| z ]  (module)
    662 //           |    |
    663 //           |    +------- [header| y ]  (module)
    664 //           |
    665 //           +------------ [header| x | B ]  (module)
    666 //
    667 // Here, .A, .B, .C are the internal slots pointing to the hosted module
    668 // contexts, whereas A, B, C hold the actual instance objects (note that every
    669 // module context also points to the respective instance object through its
    670 // extension slot in the header).
    671 //
    672 // To deal with arbitrary recursion and aliases between modules,
    673 // they are created and initialized in several stages. Each stage applies to
    674 // all modules in the hosting global scope, including nested ones.
    675 //
    676 // 1. Allocate: for each module _literal_, allocate the module contexts and
    677 //    respective instance object and wire them up. This happens in the
    678 //    PushModuleContext runtime function, as generated by AllocateModules
    679 //    (invoked by VisitDeclarations in the hosting scope).
    680 //
    681 // 2. Bind: for each module _declaration_ (i.e. literals as well as aliases),
    682 //    assign the respective instance object to respective local variables. This
    683 //    happens in VisitModuleDeclaration, and uses the instance objects created
    684 //    in the previous stage.
    685 //    For each module _literal_, this phase also constructs a module descriptor
    686 //    for the next stage. This happens in VisitModuleLiteral.
    687 //
    688 // 3. Populate: invoke the DeclareModules runtime function to populate each
    689 //    _instance_ object with accessors for it exports. This is generated by
    690 //    DeclareModules (invoked by VisitDeclarations in the hosting scope again),
    691 //    and uses the descriptors generated in the previous stage.
    692 //
    693 // 4. Initialize: execute the module bodies (and other code) in sequence. This
    694 //    happens by the separate statements generated for module bodies. To reenter
    695 //    the module scopes properly, the parser inserted ModuleStatements.
    696 
    697 void FullCodeGenerator::VisitDeclarations(
    698     ZoneList<Declaration*>* declarations) {
    699   Handle<FixedArray> saved_modules = modules_;
    700   int saved_module_index = module_index_;
    701   ZoneList<Handle<Object> >* saved_globals = globals_;
    702   ZoneList<Handle<Object> > inner_globals(10, zone());
    703   globals_ = &inner_globals;
    704 
    705   if (scope_->num_modules() != 0) {
    706     // This is a scope hosting modules. Allocate a descriptor array to pass
    707     // to the runtime for initialization.
    708     Comment cmnt(masm_, "[ Allocate modules");
    709     ASSERT(scope_->is_global_scope());
    710     modules_ =
    711         isolate()->factory()->NewFixedArray(scope_->num_modules(), TENURED);
    712     module_index_ = 0;
    713 
    714     // Generate code for allocating all modules, including nested ones.
    715     // The allocated contexts are stored in internal variables in this scope.
    716     AllocateModules(declarations);
    717   }
    718 
    719   AstVisitor::VisitDeclarations(declarations);
    720 
    721   if (scope_->num_modules() != 0) {
    722     // Initialize modules from descriptor array.
    723     ASSERT(module_index_ == modules_->length());
    724     DeclareModules(modules_);
    725     modules_ = saved_modules;
    726     module_index_ = saved_module_index;
    727   }
    728 
    729   if (!globals_->is_empty()) {
    730     // Invoke the platform-dependent code generator to do the actual
    731     // declaration of the global functions and variables.
    732     Handle<FixedArray> array =
    733        isolate()->factory()->NewFixedArray(globals_->length(), TENURED);
    734     for (int i = 0; i < globals_->length(); ++i)
    735       array->set(i, *globals_->at(i));
    736     DeclareGlobals(array);
    737   }
    738 
    739   globals_ = saved_globals;
    740 }
    741 
    742 
    743 void FullCodeGenerator::VisitModuleLiteral(ModuleLiteral* module) {
    744   Block* block = module->body();
    745   Scope* saved_scope = scope();
    746   scope_ = block->scope();
    747   Interface* interface = scope_->interface();
    748 
    749   Comment cmnt(masm_, "[ ModuleLiteral");
    750   SetStatementPosition(block);
    751 
    752   ASSERT(!modules_.is_null());
    753   ASSERT(module_index_ < modules_->length());
    754   int index = module_index_++;
    755 
    756   // Set up module context.
    757   ASSERT(interface->Index() >= 0);
    758   __ Push(Smi::FromInt(interface->Index()));
    759   __ Push(Smi::FromInt(0));
    760   __ CallRuntime(Runtime::kPushModuleContext, 2);
    761   StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
    762 
    763   {
    764     Comment cmnt(masm_, "[ Declarations");
    765     VisitDeclarations(scope_->declarations());
    766   }
    767 
    768   // Populate the module description.
    769   Handle<ModuleInfo> description =
    770       ModuleInfo::Create(isolate(), interface, scope_);
    771   modules_->set(index, *description);
    772 
    773   scope_ = saved_scope;
    774   // Pop module context.
    775   LoadContextField(context_register(), Context::PREVIOUS_INDEX);
    776   // Update local stack frame context field.
    777   StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
    778 }
    779 
    780 
    781 void FullCodeGenerator::VisitModuleVariable(ModuleVariable* module) {
    782   // Nothing to do.
    783   // The instance object is resolved statically through the module's interface.
    784 }
    785 
    786 
    787 void FullCodeGenerator::VisitModulePath(ModulePath* module) {
    788   // Nothing to do.
    789   // The instance object is resolved statically through the module's interface.
    790 }
    791 
    792 
    793 void FullCodeGenerator::VisitModuleUrl(ModuleUrl* module) {
    794   // TODO(rossberg): dummy allocation for now.
    795   Scope* scope = module->body()->scope();
    796   Interface* interface = scope_->interface();
    797 
    798   ASSERT(interface->IsModule() && interface->IsFrozen());
    799   ASSERT(!modules_.is_null());
    800   ASSERT(module_index_ < modules_->length());
    801   interface->Allocate(scope->module_var()->index());
    802   int index = module_index_++;
    803 
    804   Handle<ModuleInfo> description =
    805       ModuleInfo::Create(isolate(), interface, scope_);
    806   modules_->set(index, *description);
    807 }
    808 
    809 
    810 int FullCodeGenerator::DeclareGlobalsFlags() {
    811   ASSERT(DeclareGlobalsLanguageMode::is_valid(language_mode()));
    812   return DeclareGlobalsEvalFlag::encode(is_eval()) |
    813       DeclareGlobalsNativeFlag::encode(is_native()) |
    814       DeclareGlobalsLanguageMode::encode(language_mode());
    815 }
    816 
    817 
    818 void FullCodeGenerator::SetFunctionPosition(FunctionLiteral* fun) {
    819   CodeGenerator::RecordPositions(masm_, fun->start_position());
    820 }
    821 
    822 
    823 void FullCodeGenerator::SetReturnPosition(FunctionLiteral* fun) {
    824   CodeGenerator::RecordPositions(masm_, fun->end_position() - 1);
    825 }
    826 
    827 
    828 void FullCodeGenerator::SetStatementPosition(Statement* stmt) {
    829 #ifdef ENABLE_DEBUGGER_SUPPORT
    830   if (!isolate()->debugger()->IsDebuggerActive()) {
    831     CodeGenerator::RecordPositions(masm_, stmt->position());
    832   } else {
    833     // Check if the statement will be breakable without adding a debug break
    834     // slot.
    835     BreakableStatementChecker checker(isolate());
    836     checker.Check(stmt);
    837     // Record the statement position right here if the statement is not
    838     // breakable. For breakable statements the actual recording of the
    839     // position will be postponed to the breakable code (typically an IC).
    840     bool position_recorded = CodeGenerator::RecordPositions(
    841         masm_, stmt->position(), !checker.is_breakable());
    842     // If the position recording did record a new position generate a debug
    843     // break slot to make the statement breakable.
    844     if (position_recorded) {
    845       Debug::GenerateSlot(masm_);
    846     }
    847   }
    848 #else
    849   CodeGenerator::RecordPositions(masm_, stmt->position());
    850 #endif
    851 }
    852 
    853 
    854 void FullCodeGenerator::SetExpressionPosition(Expression* expr) {
    855 #ifdef ENABLE_DEBUGGER_SUPPORT
    856   if (!isolate()->debugger()->IsDebuggerActive()) {
    857     CodeGenerator::RecordPositions(masm_, expr->position());
    858   } else {
    859     // Check if the expression will be breakable without adding a debug break
    860     // slot.
    861     BreakableStatementChecker checker(isolate());
    862     checker.Check(expr);
    863     // Record a statement position right here if the expression is not
    864     // breakable. For breakable expressions the actual recording of the
    865     // position will be postponed to the breakable code (typically an IC).
    866     // NOTE this will record a statement position for something which might
    867     // not be a statement. As stepping in the debugger will only stop at
    868     // statement positions this is used for e.g. the condition expression of
    869     // a do while loop.
    870     bool position_recorded = CodeGenerator::RecordPositions(
    871         masm_, expr->position(), !checker.is_breakable());
    872     // If the position recording did record a new position generate a debug
    873     // break slot to make the statement breakable.
    874     if (position_recorded) {
    875       Debug::GenerateSlot(masm_);
    876     }
    877   }
    878 #else
    879   CodeGenerator::RecordPositions(masm_, pos);
    880 #endif
    881 }
    882 
    883 
    884 void FullCodeGenerator::SetStatementPosition(int pos) {
    885   CodeGenerator::RecordPositions(masm_, pos);
    886 }
    887 
    888 
    889 void FullCodeGenerator::SetSourcePosition(int pos) {
    890   if (pos != RelocInfo::kNoPosition) {
    891     masm_->positions_recorder()->RecordPosition(pos);
    892   }
    893 }
    894 
    895 
    896 // Lookup table for code generators for  special runtime calls which are
    897 // generated inline.
    898 #define INLINE_FUNCTION_GENERATOR_ADDRESS(Name, argc, ressize)          \
    899     &FullCodeGenerator::Emit##Name,
    900 
    901 const FullCodeGenerator::InlineFunctionGenerator
    902   FullCodeGenerator::kInlineFunctionGenerators[] = {
    903     INLINE_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS)
    904     INLINE_RUNTIME_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS)
    905   };
    906 #undef INLINE_FUNCTION_GENERATOR_ADDRESS
    907 
    908 
    909 FullCodeGenerator::InlineFunctionGenerator
    910   FullCodeGenerator::FindInlineFunctionGenerator(Runtime::FunctionId id) {
    911     int lookup_index =
    912         static_cast<int>(id) - static_cast<int>(Runtime::kFirstInlineFunction);
    913     ASSERT(lookup_index >= 0);
    914     ASSERT(static_cast<size_t>(lookup_index) <
    915            ARRAY_SIZE(kInlineFunctionGenerators));
    916     return kInlineFunctionGenerators[lookup_index];
    917 }
    918 
    919 
    920 void FullCodeGenerator::EmitInlineRuntimeCall(CallRuntime* expr) {
    921   const Runtime::Function* function = expr->function();
    922   ASSERT(function != NULL);
    923   ASSERT(function->intrinsic_type == Runtime::INLINE);
    924   InlineFunctionGenerator generator =
    925       FindInlineFunctionGenerator(function->function_id);
    926   ((*this).*(generator))(expr);
    927 }
    928 
    929 
    930 void FullCodeGenerator::EmitGeneratorNext(CallRuntime* expr) {
    931   ZoneList<Expression*>* args = expr->arguments();
    932   ASSERT(args->length() == 2);
    933   EmitGeneratorResume(args->at(0), args->at(1), JSGeneratorObject::NEXT);
    934 }
    935 
    936 
    937 void FullCodeGenerator::EmitGeneratorThrow(CallRuntime* expr) {
    938   ZoneList<Expression*>* args = expr->arguments();
    939   ASSERT(args->length() == 2);
    940   EmitGeneratorResume(args->at(0), args->at(1), JSGeneratorObject::THROW);
    941 }
    942 
    943 
    944 void FullCodeGenerator::EmitDebugBreakInOptimizedCode(CallRuntime* expr) {
    945   context()->Plug(handle(Smi::FromInt(0), isolate()));
    946 }
    947 
    948 
    949 void FullCodeGenerator::VisitBinaryOperation(BinaryOperation* expr) {
    950   switch (expr->op()) {
    951     case Token::COMMA:
    952       return VisitComma(expr);
    953     case Token::OR:
    954     case Token::AND:
    955       return VisitLogicalExpression(expr);
    956     default:
    957       return VisitArithmeticExpression(expr);
    958   }
    959 }
    960 
    961 
    962 void FullCodeGenerator::VisitInDuplicateContext(Expression* expr) {
    963   if (context()->IsEffect()) {
    964     VisitForEffect(expr);
    965   } else if (context()->IsAccumulatorValue()) {
    966     VisitForAccumulatorValue(expr);
    967   } else if (context()->IsStackValue()) {
    968     VisitForStackValue(expr);
    969   } else if (context()->IsTest()) {
    970     const TestContext* test = TestContext::cast(context());
    971     VisitForControl(expr, test->true_label(), test->false_label(),
    972                     test->fall_through());
    973   }
    974 }
    975 
    976 
    977 void FullCodeGenerator::VisitComma(BinaryOperation* expr) {
    978   Comment cmnt(masm_, "[ Comma");
    979   VisitForEffect(expr->left());
    980   VisitInDuplicateContext(expr->right());
    981 }
    982 
    983 
    984 void FullCodeGenerator::VisitLogicalExpression(BinaryOperation* expr) {
    985   bool is_logical_and = expr->op() == Token::AND;
    986   Comment cmnt(masm_, is_logical_and ? "[ Logical AND" :  "[ Logical OR");
    987   Expression* left = expr->left();
    988   Expression* right = expr->right();
    989   BailoutId right_id = expr->RightId();
    990   Label done;
    991 
    992   if (context()->IsTest()) {
    993     Label eval_right;
    994     const TestContext* test = TestContext::cast(context());
    995     if (is_logical_and) {
    996       VisitForControl(left, &eval_right, test->false_label(), &eval_right);
    997     } else {
    998       VisitForControl(left, test->true_label(), &eval_right, &eval_right);
    999     }
   1000     PrepareForBailoutForId(right_id, NO_REGISTERS);
   1001     __ bind(&eval_right);
   1002 
   1003   } else if (context()->IsAccumulatorValue()) {
   1004     VisitForAccumulatorValue(left);
   1005     // We want the value in the accumulator for the test, and on the stack in
   1006     // case we need it.
   1007     __ Push(result_register());
   1008     Label discard, restore;
   1009     if (is_logical_and) {
   1010       DoTest(left, &discard, &restore, &restore);
   1011     } else {
   1012       DoTest(left, &restore, &discard, &restore);
   1013     }
   1014     __ bind(&restore);
   1015     __ Pop(result_register());
   1016     __ jmp(&done);
   1017     __ bind(&discard);
   1018     __ Drop(1);
   1019     PrepareForBailoutForId(right_id, NO_REGISTERS);
   1020 
   1021   } else if (context()->IsStackValue()) {
   1022     VisitForAccumulatorValue(left);
   1023     // We want the value in the accumulator for the test, and on the stack in
   1024     // case we need it.
   1025     __ Push(result_register());
   1026     Label discard;
   1027     if (is_logical_and) {
   1028       DoTest(left, &discard, &done, &discard);
   1029     } else {
   1030       DoTest(left, &done, &discard, &discard);
   1031     }
   1032     __ bind(&discard);
   1033     __ Drop(1);
   1034     PrepareForBailoutForId(right_id, NO_REGISTERS);
   1035 
   1036   } else {
   1037     ASSERT(context()->IsEffect());
   1038     Label eval_right;
   1039     if (is_logical_and) {
   1040       VisitForControl(left, &eval_right, &done, &eval_right);
   1041     } else {
   1042       VisitForControl(left, &done, &eval_right, &eval_right);
   1043     }
   1044     PrepareForBailoutForId(right_id, NO_REGISTERS);
   1045     __ bind(&eval_right);
   1046   }
   1047 
   1048   VisitInDuplicateContext(right);
   1049   __ bind(&done);
   1050 }
   1051 
   1052 
   1053 void FullCodeGenerator::VisitArithmeticExpression(BinaryOperation* expr) {
   1054   Token::Value op = expr->op();
   1055   Comment cmnt(masm_, "[ ArithmeticExpression");
   1056   Expression* left = expr->left();
   1057   Expression* right = expr->right();
   1058   OverwriteMode mode =
   1059       left->ResultOverwriteAllowed()
   1060       ? OVERWRITE_LEFT
   1061       : (right->ResultOverwriteAllowed() ? OVERWRITE_RIGHT : NO_OVERWRITE);
   1062 
   1063   VisitForStackValue(left);
   1064   VisitForAccumulatorValue(right);
   1065 
   1066   SetSourcePosition(expr->position());
   1067   if (ShouldInlineSmiCase(op)) {
   1068     EmitInlineSmiBinaryOp(expr, op, mode, left, right);
   1069   } else {
   1070     EmitBinaryOp(expr, op, mode);
   1071   }
   1072 }
   1073 
   1074 
   1075 void FullCodeGenerator::VisitBlock(Block* stmt) {
   1076   Comment cmnt(masm_, "[ Block");
   1077   NestedBlock nested_block(this, stmt);
   1078   SetStatementPosition(stmt);
   1079 
   1080   Scope* saved_scope = scope();
   1081   // Push a block context when entering a block with block scoped variables.
   1082   if (stmt->scope() != NULL) {
   1083     scope_ = stmt->scope();
   1084     ASSERT(!scope_->is_module_scope());
   1085     { Comment cmnt(masm_, "[ Extend block context");
   1086       Handle<ScopeInfo> scope_info = scope_->GetScopeInfo();
   1087       int heap_slots = scope_info->ContextLength() - Context::MIN_CONTEXT_SLOTS;
   1088       __ Push(scope_info);
   1089       PushFunctionArgumentForContextAllocation();
   1090       if (heap_slots <= FastNewBlockContextStub::kMaximumSlots) {
   1091         FastNewBlockContextStub stub(heap_slots);
   1092         __ CallStub(&stub);
   1093       } else {
   1094         __ CallRuntime(Runtime::kPushBlockContext, 2);
   1095       }
   1096 
   1097       // Replace the context stored in the frame.
   1098       StoreToFrameField(StandardFrameConstants::kContextOffset,
   1099                         context_register());
   1100     }
   1101     { Comment cmnt(masm_, "[ Declarations");
   1102       VisitDeclarations(scope_->declarations());
   1103     }
   1104   }
   1105 
   1106   PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
   1107   VisitStatements(stmt->statements());
   1108   scope_ = saved_scope;
   1109   __ bind(nested_block.break_label());
   1110   PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
   1111 
   1112   // Pop block context if necessary.
   1113   if (stmt->scope() != NULL) {
   1114     LoadContextField(context_register(), Context::PREVIOUS_INDEX);
   1115     // Update local stack frame context field.
   1116     StoreToFrameField(StandardFrameConstants::kContextOffset,
   1117                       context_register());
   1118   }
   1119 }
   1120 
   1121 
   1122 void FullCodeGenerator::VisitModuleStatement(ModuleStatement* stmt) {
   1123   Comment cmnt(masm_, "[ Module context");
   1124 
   1125   __ Push(Smi::FromInt(stmt->proxy()->interface()->Index()));
   1126   __ Push(Smi::FromInt(0));
   1127   __ CallRuntime(Runtime::kPushModuleContext, 2);
   1128   StoreToFrameField(
   1129       StandardFrameConstants::kContextOffset, context_register());
   1130 
   1131   Scope* saved_scope = scope_;
   1132   scope_ = stmt->body()->scope();
   1133   VisitStatements(stmt->body()->statements());
   1134   scope_ = saved_scope;
   1135   LoadContextField(context_register(), Context::PREVIOUS_INDEX);
   1136   // Update local stack frame context field.
   1137   StoreToFrameField(StandardFrameConstants::kContextOffset,
   1138                     context_register());
   1139 }
   1140 
   1141 
   1142 void FullCodeGenerator::VisitExpressionStatement(ExpressionStatement* stmt) {
   1143   Comment cmnt(masm_, "[ ExpressionStatement");
   1144   SetStatementPosition(stmt);
   1145   VisitForEffect(stmt->expression());
   1146 }
   1147 
   1148 
   1149 void FullCodeGenerator::VisitEmptyStatement(EmptyStatement* stmt) {
   1150   Comment cmnt(masm_, "[ EmptyStatement");
   1151   SetStatementPosition(stmt);
   1152 }
   1153 
   1154 
   1155 void FullCodeGenerator::VisitIfStatement(IfStatement* stmt) {
   1156   Comment cmnt(masm_, "[ IfStatement");
   1157   SetStatementPosition(stmt);
   1158   Label then_part, else_part, done;
   1159 
   1160   if (stmt->HasElseStatement()) {
   1161     VisitForControl(stmt->condition(), &then_part, &else_part, &then_part);
   1162     PrepareForBailoutForId(stmt->ThenId(), NO_REGISTERS);
   1163     __ bind(&then_part);
   1164     Visit(stmt->then_statement());
   1165     __ jmp(&done);
   1166 
   1167     PrepareForBailoutForId(stmt->ElseId(), NO_REGISTERS);
   1168     __ bind(&else_part);
   1169     Visit(stmt->else_statement());
   1170   } else {
   1171     VisitForControl(stmt->condition(), &then_part, &done, &then_part);
   1172     PrepareForBailoutForId(stmt->ThenId(), NO_REGISTERS);
   1173     __ bind(&then_part);
   1174     Visit(stmt->then_statement());
   1175 
   1176     PrepareForBailoutForId(stmt->ElseId(), NO_REGISTERS);
   1177   }
   1178   __ bind(&done);
   1179   PrepareForBailoutForId(stmt->IfId(), NO_REGISTERS);
   1180 }
   1181 
   1182 
   1183 void FullCodeGenerator::VisitContinueStatement(ContinueStatement* stmt) {
   1184   Comment cmnt(masm_,  "[ ContinueStatement");
   1185   SetStatementPosition(stmt);
   1186   NestedStatement* current = nesting_stack_;
   1187   int stack_depth = 0;
   1188   int context_length = 0;
   1189   // When continuing, we clobber the unpredictable value in the accumulator
   1190   // with one that's safe for GC.  If we hit an exit from the try block of
   1191   // try...finally on our way out, we will unconditionally preserve the
   1192   // accumulator on the stack.
   1193   ClearAccumulator();
   1194   while (!current->IsContinueTarget(stmt->target())) {
   1195     current = current->Exit(&stack_depth, &context_length);
   1196   }
   1197   __ Drop(stack_depth);
   1198   if (context_length > 0) {
   1199     while (context_length > 0) {
   1200       LoadContextField(context_register(), Context::PREVIOUS_INDEX);
   1201       --context_length;
   1202     }
   1203     StoreToFrameField(StandardFrameConstants::kContextOffset,
   1204                       context_register());
   1205   }
   1206 
   1207   __ jmp(current->AsIteration()->continue_label());
   1208 }
   1209 
   1210 
   1211 void FullCodeGenerator::VisitBreakStatement(BreakStatement* stmt) {
   1212   Comment cmnt(masm_,  "[ BreakStatement");
   1213   SetStatementPosition(stmt);
   1214   NestedStatement* current = nesting_stack_;
   1215   int stack_depth = 0;
   1216   int context_length = 0;
   1217   // When breaking, we clobber the unpredictable value in the accumulator
   1218   // with one that's safe for GC.  If we hit an exit from the try block of
   1219   // try...finally on our way out, we will unconditionally preserve the
   1220   // accumulator on the stack.
   1221   ClearAccumulator();
   1222   while (!current->IsBreakTarget(stmt->target())) {
   1223     current = current->Exit(&stack_depth, &context_length);
   1224   }
   1225   __ Drop(stack_depth);
   1226   if (context_length > 0) {
   1227     while (context_length > 0) {
   1228       LoadContextField(context_register(), Context::PREVIOUS_INDEX);
   1229       --context_length;
   1230     }
   1231     StoreToFrameField(StandardFrameConstants::kContextOffset,
   1232                       context_register());
   1233   }
   1234 
   1235   __ jmp(current->AsBreakable()->break_label());
   1236 }
   1237 
   1238 
   1239 void FullCodeGenerator::EmitUnwindBeforeReturn() {
   1240   NestedStatement* current = nesting_stack_;
   1241   int stack_depth = 0;
   1242   int context_length = 0;
   1243   while (current != NULL) {
   1244     current = current->Exit(&stack_depth, &context_length);
   1245   }
   1246   __ Drop(stack_depth);
   1247 }
   1248 
   1249 
   1250 void FullCodeGenerator::VisitReturnStatement(ReturnStatement* stmt) {
   1251   Comment cmnt(masm_, "[ ReturnStatement");
   1252   SetStatementPosition(stmt);
   1253   Expression* expr = stmt->expression();
   1254   VisitForAccumulatorValue(expr);
   1255   EmitUnwindBeforeReturn();
   1256   EmitReturnSequence();
   1257 }
   1258 
   1259 
   1260 void FullCodeGenerator::VisitWithStatement(WithStatement* stmt) {
   1261   Comment cmnt(masm_, "[ WithStatement");
   1262   SetStatementPosition(stmt);
   1263 
   1264   VisitForStackValue(stmt->expression());
   1265   PushFunctionArgumentForContextAllocation();
   1266   __ CallRuntime(Runtime::kPushWithContext, 2);
   1267   StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
   1268 
   1269   Scope* saved_scope = scope();
   1270   scope_ = stmt->scope();
   1271   { WithOrCatch body(this);
   1272     Visit(stmt->statement());
   1273   }
   1274   scope_ = saved_scope;
   1275 
   1276   // Pop context.
   1277   LoadContextField(context_register(), Context::PREVIOUS_INDEX);
   1278   // Update local stack frame context field.
   1279   StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
   1280 }
   1281 
   1282 
   1283 void FullCodeGenerator::VisitDoWhileStatement(DoWhileStatement* stmt) {
   1284   Comment cmnt(masm_, "[ DoWhileStatement");
   1285   SetStatementPosition(stmt);
   1286   Label body, book_keeping;
   1287 
   1288   Iteration loop_statement(this, stmt);
   1289   increment_loop_depth();
   1290 
   1291   __ bind(&body);
   1292   Visit(stmt->body());
   1293 
   1294   // Record the position of the do while condition and make sure it is
   1295   // possible to break on the condition.
   1296   __ bind(loop_statement.continue_label());
   1297   PrepareForBailoutForId(stmt->ContinueId(), NO_REGISTERS);
   1298   SetExpressionPosition(stmt->cond());
   1299   VisitForControl(stmt->cond(),
   1300                   &book_keeping,
   1301                   loop_statement.break_label(),
   1302                   &book_keeping);
   1303 
   1304   // Check stack before looping.
   1305   PrepareForBailoutForId(stmt->BackEdgeId(), NO_REGISTERS);
   1306   __ bind(&book_keeping);
   1307   EmitBackEdgeBookkeeping(stmt, &body);
   1308   __ jmp(&body);
   1309 
   1310   PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
   1311   __ bind(loop_statement.break_label());
   1312   decrement_loop_depth();
   1313 }
   1314 
   1315 
   1316 void FullCodeGenerator::VisitWhileStatement(WhileStatement* stmt) {
   1317   Comment cmnt(masm_, "[ WhileStatement");
   1318   Label test, body;
   1319 
   1320   Iteration loop_statement(this, stmt);
   1321   increment_loop_depth();
   1322 
   1323   // Emit the test at the bottom of the loop.
   1324   __ jmp(&test);
   1325 
   1326   PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
   1327   __ bind(&body);
   1328   Visit(stmt->body());
   1329 
   1330   // Emit the statement position here as this is where the while
   1331   // statement code starts.
   1332   __ bind(loop_statement.continue_label());
   1333   SetStatementPosition(stmt);
   1334 
   1335   // Check stack before looping.
   1336   EmitBackEdgeBookkeeping(stmt, &body);
   1337 
   1338   __ bind(&test);
   1339   VisitForControl(stmt->cond(),
   1340                   &body,
   1341                   loop_statement.break_label(),
   1342                   loop_statement.break_label());
   1343 
   1344   PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
   1345   __ bind(loop_statement.break_label());
   1346   decrement_loop_depth();
   1347 }
   1348 
   1349 
   1350 void FullCodeGenerator::VisitForStatement(ForStatement* stmt) {
   1351   Comment cmnt(masm_, "[ ForStatement");
   1352   Label test, body;
   1353 
   1354   Iteration loop_statement(this, stmt);
   1355 
   1356   // Set statement position for a break slot before entering the for-body.
   1357   SetStatementPosition(stmt);
   1358 
   1359   if (stmt->init() != NULL) {
   1360     Visit(stmt->init());
   1361   }
   1362 
   1363   increment_loop_depth();
   1364   // Emit the test at the bottom of the loop (even if empty).
   1365   __ jmp(&test);
   1366 
   1367   PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
   1368   __ bind(&body);
   1369   Visit(stmt->body());
   1370 
   1371   PrepareForBailoutForId(stmt->ContinueId(), NO_REGISTERS);
   1372   __ bind(loop_statement.continue_label());
   1373   if (stmt->next() != NULL) {
   1374     Visit(stmt->next());
   1375   }
   1376 
   1377   // Emit the statement position here as this is where the for
   1378   // statement code starts.
   1379   SetStatementPosition(stmt);
   1380 
   1381   // Check stack before looping.
   1382   EmitBackEdgeBookkeeping(stmt, &body);
   1383 
   1384   __ bind(&test);
   1385   if (stmt->cond() != NULL) {
   1386     VisitForControl(stmt->cond(),
   1387                     &body,
   1388                     loop_statement.break_label(),
   1389                     loop_statement.break_label());
   1390   } else {
   1391     __ jmp(&body);
   1392   }
   1393 
   1394   PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
   1395   __ bind(loop_statement.break_label());
   1396   decrement_loop_depth();
   1397 }
   1398 
   1399 
   1400 void FullCodeGenerator::VisitTryCatchStatement(TryCatchStatement* stmt) {
   1401   Comment cmnt(masm_, "[ TryCatchStatement");
   1402   SetStatementPosition(stmt);
   1403   // The try block adds a handler to the exception handler chain before
   1404   // entering, and removes it again when exiting normally.  If an exception
   1405   // is thrown during execution of the try block, the handler is consumed
   1406   // and control is passed to the catch block with the exception in the
   1407   // result register.
   1408 
   1409   Label try_entry, handler_entry, exit;
   1410   __ jmp(&try_entry);
   1411   __ bind(&handler_entry);
   1412   handler_table()->set(stmt->index(), Smi::FromInt(handler_entry.pos()));
   1413   // Exception handler code, the exception is in the result register.
   1414   // Extend the context before executing the catch block.
   1415   { Comment cmnt(masm_, "[ Extend catch context");
   1416     __ Push(stmt->variable()->name());
   1417     __ Push(result_register());
   1418     PushFunctionArgumentForContextAllocation();
   1419     __ CallRuntime(Runtime::kPushCatchContext, 3);
   1420     StoreToFrameField(StandardFrameConstants::kContextOffset,
   1421                       context_register());
   1422   }
   1423 
   1424   Scope* saved_scope = scope();
   1425   scope_ = stmt->scope();
   1426   ASSERT(scope_->declarations()->is_empty());
   1427   { WithOrCatch catch_body(this);
   1428     Visit(stmt->catch_block());
   1429   }
   1430   // Restore the context.
   1431   LoadContextField(context_register(), Context::PREVIOUS_INDEX);
   1432   StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
   1433   scope_ = saved_scope;
   1434   __ jmp(&exit);
   1435 
   1436   // Try block code. Sets up the exception handler chain.
   1437   __ bind(&try_entry);
   1438   __ PushTryHandler(StackHandler::CATCH, stmt->index());
   1439   { TryCatch try_body(this);
   1440     Visit(stmt->try_block());
   1441   }
   1442   __ PopTryHandler();
   1443   __ bind(&exit);
   1444 }
   1445 
   1446 
   1447 void FullCodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* stmt) {
   1448   Comment cmnt(masm_, "[ TryFinallyStatement");
   1449   SetStatementPosition(stmt);
   1450   // Try finally is compiled by setting up a try-handler on the stack while
   1451   // executing the try body, and removing it again afterwards.
   1452   //
   1453   // The try-finally construct can enter the finally block in three ways:
   1454   // 1. By exiting the try-block normally. This removes the try-handler and
   1455   //    calls the finally block code before continuing.
   1456   // 2. By exiting the try-block with a function-local control flow transfer
   1457   //    (break/continue/return). The site of the, e.g., break removes the
   1458   //    try handler and calls the finally block code before continuing
   1459   //    its outward control transfer.
   1460   // 3. By exiting the try-block with a thrown exception.
   1461   //    This can happen in nested function calls. It traverses the try-handler
   1462   //    chain and consumes the try-handler entry before jumping to the
   1463   //    handler code. The handler code then calls the finally-block before
   1464   //    rethrowing the exception.
   1465   //
   1466   // The finally block must assume a return address on top of the stack
   1467   // (or in the link register on ARM chips) and a value (return value or
   1468   // exception) in the result register (rax/eax/r0), both of which must
   1469   // be preserved. The return address isn't GC-safe, so it should be
   1470   // cooked before GC.
   1471   Label try_entry, handler_entry, finally_entry;
   1472 
   1473   // Jump to try-handler setup and try-block code.
   1474   __ jmp(&try_entry);
   1475   __ bind(&handler_entry);
   1476   handler_table()->set(stmt->index(), Smi::FromInt(handler_entry.pos()));
   1477   // Exception handler code.  This code is only executed when an exception
   1478   // is thrown.  The exception is in the result register, and must be
   1479   // preserved by the finally block.  Call the finally block and then
   1480   // rethrow the exception if it returns.
   1481   __ Call(&finally_entry);
   1482   __ Push(result_register());
   1483   __ CallRuntime(Runtime::kReThrow, 1);
   1484 
   1485   // Finally block implementation.
   1486   __ bind(&finally_entry);
   1487   EnterFinallyBlock();
   1488   { Finally finally_body(this);
   1489     Visit(stmt->finally_block());
   1490   }
   1491   ExitFinallyBlock();  // Return to the calling code.
   1492 
   1493   // Set up try handler.
   1494   __ bind(&try_entry);
   1495   __ PushTryHandler(StackHandler::FINALLY, stmt->index());
   1496   { TryFinally try_body(this, &finally_entry);
   1497     Visit(stmt->try_block());
   1498   }
   1499   __ PopTryHandler();
   1500   // Execute the finally block on the way out.  Clobber the unpredictable
   1501   // value in the result register with one that's safe for GC because the
   1502   // finally block will unconditionally preserve the result register on the
   1503   // stack.
   1504   ClearAccumulator();
   1505   __ Call(&finally_entry);
   1506 }
   1507 
   1508 
   1509 void FullCodeGenerator::VisitDebuggerStatement(DebuggerStatement* stmt) {
   1510 #ifdef ENABLE_DEBUGGER_SUPPORT
   1511   Comment cmnt(masm_, "[ DebuggerStatement");
   1512   SetStatementPosition(stmt);
   1513 
   1514   __ DebugBreak();
   1515   // Ignore the return value.
   1516 #endif
   1517 }
   1518 
   1519 
   1520 void FullCodeGenerator::VisitCaseClause(CaseClause* clause) {
   1521   UNREACHABLE();
   1522 }
   1523 
   1524 
   1525 void FullCodeGenerator::VisitConditional(Conditional* expr) {
   1526   Comment cmnt(masm_, "[ Conditional");
   1527   Label true_case, false_case, done;
   1528   VisitForControl(expr->condition(), &true_case, &false_case, &true_case);
   1529 
   1530   PrepareForBailoutForId(expr->ThenId(), NO_REGISTERS);
   1531   __ bind(&true_case);
   1532   SetExpressionPosition(expr->then_expression());
   1533   if (context()->IsTest()) {
   1534     const TestContext* for_test = TestContext::cast(context());
   1535     VisitForControl(expr->then_expression(),
   1536                     for_test->true_label(),
   1537                     for_test->false_label(),
   1538                     NULL);
   1539   } else {
   1540     VisitInDuplicateContext(expr->then_expression());
   1541     __ jmp(&done);
   1542   }
   1543 
   1544   PrepareForBailoutForId(expr->ElseId(), NO_REGISTERS);
   1545   __ bind(&false_case);
   1546   SetExpressionPosition(expr->else_expression());
   1547   VisitInDuplicateContext(expr->else_expression());
   1548   // If control flow falls through Visit, merge it with true case here.
   1549   if (!context()->IsTest()) {
   1550     __ bind(&done);
   1551   }
   1552 }
   1553 
   1554 
   1555 void FullCodeGenerator::VisitLiteral(Literal* expr) {
   1556   Comment cmnt(masm_, "[ Literal");
   1557   context()->Plug(expr->value());
   1558 }
   1559 
   1560 
   1561 void FullCodeGenerator::VisitFunctionLiteral(FunctionLiteral* expr) {
   1562   Comment cmnt(masm_, "[ FunctionLiteral");
   1563 
   1564   // Build the function boilerplate and instantiate it.
   1565   Handle<SharedFunctionInfo> function_info =
   1566       Compiler::BuildFunctionInfo(expr, script());
   1567   if (function_info.is_null()) {
   1568     SetStackOverflow();
   1569     return;
   1570   }
   1571   EmitNewClosure(function_info, expr->pretenure());
   1572 }
   1573 
   1574 
   1575 void FullCodeGenerator::VisitNativeFunctionLiteral(
   1576     NativeFunctionLiteral* expr) {
   1577   Comment cmnt(masm_, "[ NativeFunctionLiteral");
   1578 
   1579   // Compute the function template for the native function.
   1580   Handle<String> name = expr->name();
   1581   v8::Handle<v8::FunctionTemplate> fun_template =
   1582       expr->extension()->GetNativeFunctionTemplate(
   1583           reinterpret_cast<v8::Isolate*>(isolate()), v8::Utils::ToLocal(name));
   1584   ASSERT(!fun_template.IsEmpty());
   1585 
   1586   // Instantiate the function and create a shared function info from it.
   1587   Handle<JSFunction> fun = Utils::OpenHandle(*fun_template->GetFunction());
   1588   const int literals = fun->NumberOfLiterals();
   1589   Handle<Code> code = Handle<Code>(fun->shared()->code());
   1590   Handle<Code> construct_stub = Handle<Code>(fun->shared()->construct_stub());
   1591   bool is_generator = false;
   1592   Handle<SharedFunctionInfo> shared =
   1593       isolate()->factory()->NewSharedFunctionInfo(name, literals, is_generator,
   1594           code, Handle<ScopeInfo>(fun->shared()->scope_info()));
   1595   shared->set_construct_stub(*construct_stub);
   1596 
   1597   // Copy the function data to the shared function info.
   1598   shared->set_function_data(fun->shared()->function_data());
   1599   int parameters = fun->shared()->formal_parameter_count();
   1600   shared->set_formal_parameter_count(parameters);
   1601 
   1602   EmitNewClosure(shared, false);
   1603 }
   1604 
   1605 
   1606 void FullCodeGenerator::VisitThrow(Throw* expr) {
   1607   Comment cmnt(masm_, "[ Throw");
   1608   VisitForStackValue(expr->exception());
   1609   __ CallRuntime(Runtime::kThrow, 1);
   1610   // Never returns here.
   1611 }
   1612 
   1613 
   1614 FullCodeGenerator::NestedStatement* FullCodeGenerator::TryCatch::Exit(
   1615     int* stack_depth,
   1616     int* context_length) {
   1617   // The macros used here must preserve the result register.
   1618   __ Drop(*stack_depth);
   1619   __ PopTryHandler();
   1620   *stack_depth = 0;
   1621   return previous_;
   1622 }
   1623 
   1624 
   1625 bool FullCodeGenerator::TryLiteralCompare(CompareOperation* expr) {
   1626   Expression* sub_expr;
   1627   Handle<String> check;
   1628   if (expr->IsLiteralCompareTypeof(&sub_expr, &check)) {
   1629     EmitLiteralCompareTypeof(expr, sub_expr, check);
   1630     return true;
   1631   }
   1632 
   1633   if (expr->IsLiteralCompareUndefined(&sub_expr, isolate())) {
   1634     EmitLiteralCompareNil(expr, sub_expr, kUndefinedValue);
   1635     return true;
   1636   }
   1637 
   1638   if (expr->IsLiteralCompareNull(&sub_expr)) {
   1639     EmitLiteralCompareNil(expr, sub_expr, kNullValue);
   1640     return true;
   1641   }
   1642 
   1643   return false;
   1644 }
   1645 
   1646 
   1647 void BackEdgeTable::Patch(Isolate* isolate,
   1648                           Code* unoptimized) {
   1649   DisallowHeapAllocation no_gc;
   1650   Code* patch = isolate->builtins()->builtin(Builtins::kOnStackReplacement);
   1651 
   1652   // Iterate over the back edge table and patch every interrupt
   1653   // call to an unconditional call to the replacement code.
   1654   int loop_nesting_level = unoptimized->allow_osr_at_loop_nesting_level();
   1655 
   1656   BackEdgeTable back_edges(unoptimized, &no_gc);
   1657   for (uint32_t i = 0; i < back_edges.length(); i++) {
   1658     if (static_cast<int>(back_edges.loop_depth(i)) == loop_nesting_level) {
   1659       ASSERT_EQ(INTERRUPT, GetBackEdgeState(isolate,
   1660                                             unoptimized,
   1661                                             back_edges.pc(i)));
   1662       PatchAt(unoptimized, back_edges.pc(i), ON_STACK_REPLACEMENT, patch);
   1663     }
   1664   }
   1665 
   1666   unoptimized->set_back_edges_patched_for_osr(true);
   1667   ASSERT(Verify(isolate, unoptimized, loop_nesting_level));
   1668 }
   1669 
   1670 
   1671 void BackEdgeTable::Revert(Isolate* isolate,
   1672                            Code* unoptimized) {
   1673   DisallowHeapAllocation no_gc;
   1674   Code* patch = isolate->builtins()->builtin(Builtins::kInterruptCheck);
   1675 
   1676   // Iterate over the back edge table and revert the patched interrupt calls.
   1677   ASSERT(unoptimized->back_edges_patched_for_osr());
   1678   int loop_nesting_level = unoptimized->allow_osr_at_loop_nesting_level();
   1679 
   1680   BackEdgeTable back_edges(unoptimized, &no_gc);
   1681   for (uint32_t i = 0; i < back_edges.length(); i++) {
   1682     if (static_cast<int>(back_edges.loop_depth(i)) <= loop_nesting_level) {
   1683       ASSERT_NE(INTERRUPT, GetBackEdgeState(isolate,
   1684                                             unoptimized,
   1685                                             back_edges.pc(i)));
   1686       PatchAt(unoptimized, back_edges.pc(i), INTERRUPT, patch);
   1687     }
   1688   }
   1689 
   1690   unoptimized->set_back_edges_patched_for_osr(false);
   1691   unoptimized->set_allow_osr_at_loop_nesting_level(0);
   1692   // Assert that none of the back edges are patched anymore.
   1693   ASSERT(Verify(isolate, unoptimized, -1));
   1694 }
   1695 
   1696 
   1697 void BackEdgeTable::AddStackCheck(CompilationInfo* info) {
   1698   DisallowHeapAllocation no_gc;
   1699   Isolate* isolate = info->isolate();
   1700   Code* code = info->shared_info()->code();
   1701   Address pc = code->instruction_start() + info->osr_pc_offset();
   1702   ASSERT_EQ(ON_STACK_REPLACEMENT, GetBackEdgeState(isolate, code, pc));
   1703   Code* patch = isolate->builtins()->builtin(Builtins::kOsrAfterStackCheck);
   1704   PatchAt(code, pc, OSR_AFTER_STACK_CHECK, patch);
   1705 }
   1706 
   1707 
   1708 void BackEdgeTable::RemoveStackCheck(CompilationInfo* info) {
   1709   DisallowHeapAllocation no_gc;
   1710   Isolate* isolate = info->isolate();
   1711   Code* code = info->shared_info()->code();
   1712   Address pc = code->instruction_start() + info->osr_pc_offset();
   1713   if (GetBackEdgeState(isolate, code, pc) == OSR_AFTER_STACK_CHECK) {
   1714     Code* patch = isolate->builtins()->builtin(Builtins::kOnStackReplacement);
   1715     PatchAt(code, pc, ON_STACK_REPLACEMENT, patch);
   1716   }
   1717 }
   1718 
   1719 
   1720 #ifdef DEBUG
   1721 bool BackEdgeTable::Verify(Isolate* isolate,
   1722                            Code* unoptimized,
   1723                            int loop_nesting_level) {
   1724   DisallowHeapAllocation no_gc;
   1725   BackEdgeTable back_edges(unoptimized, &no_gc);
   1726   for (uint32_t i = 0; i < back_edges.length(); i++) {
   1727     uint32_t loop_depth = back_edges.loop_depth(i);
   1728     CHECK_LE(static_cast<int>(loop_depth), Code::kMaxLoopNestingMarker);
   1729     // Assert that all back edges for shallower loops (and only those)
   1730     // have already been patched.
   1731     CHECK_EQ((static_cast<int>(loop_depth) <= loop_nesting_level),
   1732              GetBackEdgeState(isolate,
   1733                               unoptimized,
   1734                               back_edges.pc(i)) != INTERRUPT);
   1735   }
   1736   return true;
   1737 }
   1738 #endif  // DEBUG
   1739 
   1740 
   1741 #undef __
   1742 
   1743 
   1744 } }  // namespace v8::internal
   1745