Home | History | Annotate | Download | only in products
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #ifndef EIGEN_TRIANGULAR_SOLVER_MATRIX_H
     11 #define EIGEN_TRIANGULAR_SOLVER_MATRIX_H
     12 
     13 namespace Eigen {
     14 
     15 namespace internal {
     16 
     17 // if the rhs is row major, let's transpose the product
     18 template <typename Scalar, typename Index, int Side, int Mode, bool Conjugate, int TriStorageOrder>
     19 struct triangular_solve_matrix<Scalar,Index,Side,Mode,Conjugate,TriStorageOrder,RowMajor>
     20 {
     21   static EIGEN_DONT_INLINE void run(
     22     Index size, Index cols,
     23     const Scalar*  tri, Index triStride,
     24     Scalar* _other, Index otherStride,
     25     level3_blocking<Scalar,Scalar>& blocking)
     26   {
     27     triangular_solve_matrix<
     28       Scalar, Index, Side==OnTheLeft?OnTheRight:OnTheLeft,
     29       (Mode&UnitDiag) | ((Mode&Upper) ? Lower : Upper),
     30       NumTraits<Scalar>::IsComplex && Conjugate,
     31       TriStorageOrder==RowMajor ? ColMajor : RowMajor, ColMajor>
     32       ::run(size, cols, tri, triStride, _other, otherStride, blocking);
     33   }
     34 };
     35 
     36 /* Optimized triangular solver with multiple right hand side and the triangular matrix on the left
     37  */
     38 template <typename Scalar, typename Index, int Mode, bool Conjugate, int TriStorageOrder>
     39 struct triangular_solve_matrix<Scalar,Index,OnTheLeft,Mode,Conjugate,TriStorageOrder,ColMajor>
     40 {
     41   static EIGEN_DONT_INLINE void run(
     42     Index size, Index otherSize,
     43     const Scalar* _tri, Index triStride,
     44     Scalar* _other, Index otherStride,
     45     level3_blocking<Scalar,Scalar>& blocking)
     46   {
     47     Index cols = otherSize;
     48     const_blas_data_mapper<Scalar, Index, TriStorageOrder> tri(_tri,triStride);
     49     blas_data_mapper<Scalar, Index, ColMajor> other(_other,otherStride);
     50 
     51     typedef gebp_traits<Scalar,Scalar> Traits;
     52     enum {
     53       SmallPanelWidth   = EIGEN_PLAIN_ENUM_MAX(Traits::mr,Traits::nr),
     54       IsLower = (Mode&Lower) == Lower
     55     };
     56 
     57     Index kc = blocking.kc();                   // cache block size along the K direction
     58     Index mc = (std::min)(size,blocking.mc());  // cache block size along the M direction
     59 
     60     std::size_t sizeA = kc*mc;
     61     std::size_t sizeB = kc*cols;
     62     std::size_t sizeW = kc*Traits::WorkSpaceFactor;
     63 
     64     ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA());
     65     ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB());
     66     ei_declare_aligned_stack_constructed_variable(Scalar, blockW, sizeW, blocking.blockW());
     67 
     68     conj_if<Conjugate> conj;
     69     gebp_kernel<Scalar, Scalar, Index, Traits::mr, Traits::nr, Conjugate, false> gebp_kernel;
     70     gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, TriStorageOrder> pack_lhs;
     71     gemm_pack_rhs<Scalar, Index, Traits::nr, ColMajor, false, true> pack_rhs;
     72 
     73     // the goal here is to subdivise the Rhs panels such that we keep some cache
     74     // coherence when accessing the rhs elements
     75     std::ptrdiff_t l1, l2;
     76     manage_caching_sizes(GetAction, &l1, &l2);
     77     Index subcols = cols>0 ? l2/(4 * sizeof(Scalar) * otherStride) : 0;
     78     subcols = std::max<Index>((subcols/Traits::nr)*Traits::nr, Traits::nr);
     79 
     80     for(Index k2=IsLower ? 0 : size;
     81         IsLower ? k2<size : k2>0;
     82         IsLower ? k2+=kc : k2-=kc)
     83     {
     84       const Index actual_kc = (std::min)(IsLower ? size-k2 : k2, kc);
     85 
     86       // We have selected and packed a big horizontal panel R1 of rhs. Let B be the packed copy of this panel,
     87       // and R2 the remaining part of rhs. The corresponding vertical panel of lhs is split into
     88       // A11 (the triangular part) and A21 the remaining rectangular part.
     89       // Then the high level algorithm is:
     90       //  - B = R1                    => general block copy (done during the next step)
     91       //  - R1 = A11^-1 B             => tricky part
     92       //  - update B from the new R1  => actually this has to be performed continuously during the above step
     93       //  - R2 -= A21 * B             => GEPP
     94 
     95       // The tricky part: compute R1 = A11^-1 B while updating B from R1
     96       // The idea is to split A11 into multiple small vertical panels.
     97       // Each panel can be split into a small triangular part T1k which is processed without optimization,
     98       // and the remaining small part T2k which is processed using gebp with appropriate block strides
     99       for(Index j2=0; j2<cols; j2+=subcols)
    100       {
    101         Index actual_cols = (std::min)(cols-j2,subcols);
    102         // for each small vertical panels [T1k^T, T2k^T]^T of lhs
    103         for (Index k1=0; k1<actual_kc; k1+=SmallPanelWidth)
    104         {
    105           Index actualPanelWidth = std::min<Index>(actual_kc-k1, SmallPanelWidth);
    106           // tr solve
    107           for (Index k=0; k<actualPanelWidth; ++k)
    108           {
    109             // TODO write a small kernel handling this (can be shared with trsv)
    110             Index i  = IsLower ? k2+k1+k : k2-k1-k-1;
    111             Index s  = IsLower ? k2+k1 : i+1;
    112             Index rs = actualPanelWidth - k - 1; // remaining size
    113 
    114             Scalar a = (Mode & UnitDiag) ? Scalar(1) : Scalar(1)/conj(tri(i,i));
    115             for (Index j=j2; j<j2+actual_cols; ++j)
    116             {
    117               if (TriStorageOrder==RowMajor)
    118               {
    119                 Scalar b(0);
    120                 const Scalar* l = &tri(i,s);
    121                 Scalar* r = &other(s,j);
    122                 for (Index i3=0; i3<k; ++i3)
    123                   b += conj(l[i3]) * r[i3];
    124 
    125                 other(i,j) = (other(i,j) - b)*a;
    126               }
    127               else
    128               {
    129                 Index s = IsLower ? i+1 : i-rs;
    130                 Scalar b = (other(i,j) *= a);
    131                 Scalar* r = &other(s,j);
    132                 const Scalar* l = &tri(s,i);
    133                 for (Index i3=0;i3<rs;++i3)
    134                   r[i3] -= b * conj(l[i3]);
    135               }
    136             }
    137           }
    138 
    139           Index lengthTarget = actual_kc-k1-actualPanelWidth;
    140           Index startBlock   = IsLower ? k2+k1 : k2-k1-actualPanelWidth;
    141           Index blockBOffset = IsLower ? k1 : lengthTarget;
    142 
    143           // update the respective rows of B from other
    144           pack_rhs(blockB+actual_kc*j2, &other(startBlock,j2), otherStride, actualPanelWidth, actual_cols, actual_kc, blockBOffset);
    145 
    146           // GEBP
    147           if (lengthTarget>0)
    148           {
    149             Index startTarget  = IsLower ? k2+k1+actualPanelWidth : k2-actual_kc;
    150 
    151             pack_lhs(blockA, &tri(startTarget,startBlock), triStride, actualPanelWidth, lengthTarget);
    152 
    153             gebp_kernel(&other(startTarget,j2), otherStride, blockA, blockB+actual_kc*j2, lengthTarget, actualPanelWidth, actual_cols, Scalar(-1),
    154                         actualPanelWidth, actual_kc, 0, blockBOffset, blockW);
    155           }
    156         }
    157       }
    158 
    159       // R2 -= A21 * B => GEPP
    160       {
    161         Index start = IsLower ? k2+kc : 0;
    162         Index end   = IsLower ? size : k2-kc;
    163         for(Index i2=start; i2<end; i2+=mc)
    164         {
    165           const Index actual_mc = (std::min)(mc,end-i2);
    166           if (actual_mc>0)
    167           {
    168             pack_lhs(blockA, &tri(i2, IsLower ? k2 : k2-kc), triStride, actual_kc, actual_mc);
    169 
    170             gebp_kernel(_other+i2, otherStride, blockA, blockB, actual_mc, actual_kc, cols, Scalar(-1), -1, -1, 0, 0, blockW);
    171           }
    172         }
    173       }
    174     }
    175   }
    176 };
    177 
    178 /* Optimized triangular solver with multiple left hand sides and the trinagular matrix on the right
    179  */
    180 template <typename Scalar, typename Index, int Mode, bool Conjugate, int TriStorageOrder>
    181 struct triangular_solve_matrix<Scalar,Index,OnTheRight,Mode,Conjugate,TriStorageOrder,ColMajor>
    182 {
    183   static EIGEN_DONT_INLINE void run(
    184     Index size, Index otherSize,
    185     const Scalar* _tri, Index triStride,
    186     Scalar* _other, Index otherStride,
    187     level3_blocking<Scalar,Scalar>& blocking)
    188   {
    189     Index rows = otherSize;
    190     const_blas_data_mapper<Scalar, Index, TriStorageOrder> rhs(_tri,triStride);
    191     blas_data_mapper<Scalar, Index, ColMajor> lhs(_other,otherStride);
    192 
    193     typedef gebp_traits<Scalar,Scalar> Traits;
    194     enum {
    195       RhsStorageOrder   = TriStorageOrder,
    196       SmallPanelWidth   = EIGEN_PLAIN_ENUM_MAX(Traits::mr,Traits::nr),
    197       IsLower = (Mode&Lower) == Lower
    198     };
    199 
    200     Index kc = blocking.kc();                   // cache block size along the K direction
    201     Index mc = (std::min)(rows,blocking.mc());  // cache block size along the M direction
    202 
    203     std::size_t sizeA = kc*mc;
    204     std::size_t sizeB = kc*size;
    205     std::size_t sizeW = kc*Traits::WorkSpaceFactor;
    206 
    207     ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA());
    208     ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB());
    209     ei_declare_aligned_stack_constructed_variable(Scalar, blockW, sizeW, blocking.blockW());
    210 
    211     conj_if<Conjugate> conj;
    212     gebp_kernel<Scalar,Scalar, Index, Traits::mr, Traits::nr, false, Conjugate> gebp_kernel;
    213     gemm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder> pack_rhs;
    214     gemm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder,false,true> pack_rhs_panel;
    215     gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, ColMajor, false, true> pack_lhs_panel;
    216 
    217     for(Index k2=IsLower ? size : 0;
    218         IsLower ? k2>0 : k2<size;
    219         IsLower ? k2-=kc : k2+=kc)
    220     {
    221       const Index actual_kc = (std::min)(IsLower ? k2 : size-k2, kc);
    222       Index actual_k2 = IsLower ? k2-actual_kc : k2 ;
    223 
    224       Index startPanel = IsLower ? 0 : k2+actual_kc;
    225       Index rs = IsLower ? actual_k2 : size - actual_k2 - actual_kc;
    226       Scalar* geb = blockB+actual_kc*actual_kc;
    227 
    228       if (rs>0) pack_rhs(geb, &rhs(actual_k2,startPanel), triStride, actual_kc, rs);
    229 
    230       // triangular packing (we only pack the panels off the diagonal,
    231       // neglecting the blocks overlapping the diagonal
    232       {
    233         for (Index j2=0; j2<actual_kc; j2+=SmallPanelWidth)
    234         {
    235           Index actualPanelWidth = std::min<Index>(actual_kc-j2, SmallPanelWidth);
    236           Index actual_j2 = actual_k2 + j2;
    237           Index panelOffset = IsLower ? j2+actualPanelWidth : 0;
    238           Index panelLength = IsLower ? actual_kc-j2-actualPanelWidth : j2;
    239 
    240           if (panelLength>0)
    241           pack_rhs_panel(blockB+j2*actual_kc,
    242                          &rhs(actual_k2+panelOffset, actual_j2), triStride,
    243                          panelLength, actualPanelWidth,
    244                          actual_kc, panelOffset);
    245         }
    246       }
    247 
    248       for(Index i2=0; i2<rows; i2+=mc)
    249       {
    250         const Index actual_mc = (std::min)(mc,rows-i2);
    251 
    252         // triangular solver kernel
    253         {
    254           // for each small block of the diagonal (=> vertical panels of rhs)
    255           for (Index j2 = IsLower
    256                       ? (actual_kc - ((actual_kc%SmallPanelWidth) ? Index(actual_kc%SmallPanelWidth)
    257                                                                   : Index(SmallPanelWidth)))
    258                       : 0;
    259                IsLower ? j2>=0 : j2<actual_kc;
    260                IsLower ? j2-=SmallPanelWidth : j2+=SmallPanelWidth)
    261           {
    262             Index actualPanelWidth = std::min<Index>(actual_kc-j2, SmallPanelWidth);
    263             Index absolute_j2 = actual_k2 + j2;
    264             Index panelOffset = IsLower ? j2+actualPanelWidth : 0;
    265             Index panelLength = IsLower ? actual_kc - j2 - actualPanelWidth : j2;
    266 
    267             // GEBP
    268             if(panelLength>0)
    269             {
    270               gebp_kernel(&lhs(i2,absolute_j2), otherStride,
    271                           blockA, blockB+j2*actual_kc,
    272                           actual_mc, panelLength, actualPanelWidth,
    273                           Scalar(-1),
    274                           actual_kc, actual_kc, // strides
    275                           panelOffset, panelOffset, // offsets
    276                           blockW);  // workspace
    277             }
    278 
    279             // unblocked triangular solve
    280             for (Index k=0; k<actualPanelWidth; ++k)
    281             {
    282               Index j = IsLower ? absolute_j2+actualPanelWidth-k-1 : absolute_j2+k;
    283 
    284               Scalar* r = &lhs(i2,j);
    285               for (Index k3=0; k3<k; ++k3)
    286               {
    287                 Scalar b = conj(rhs(IsLower ? j+1+k3 : absolute_j2+k3,j));
    288                 Scalar* a = &lhs(i2,IsLower ? j+1+k3 : absolute_j2+k3);
    289                 for (Index i=0; i<actual_mc; ++i)
    290                   r[i] -= a[i] * b;
    291               }
    292               Scalar b = (Mode & UnitDiag) ? Scalar(1) : Scalar(1)/conj(rhs(j,j));
    293               for (Index i=0; i<actual_mc; ++i)
    294                 r[i] *= b;
    295             }
    296 
    297             // pack the just computed part of lhs to A
    298             pack_lhs_panel(blockA, _other+absolute_j2*otherStride+i2, otherStride,
    299                            actualPanelWidth, actual_mc,
    300                            actual_kc, j2);
    301           }
    302         }
    303 
    304         if (rs>0)
    305           gebp_kernel(_other+i2+startPanel*otherStride, otherStride, blockA, geb,
    306                       actual_mc, actual_kc, rs, Scalar(-1),
    307                       -1, -1, 0, 0, blockW);
    308       }
    309     }
    310   }
    311 };
    312 
    313 } // end namespace internal
    314 
    315 } // end namespace Eigen
    316 
    317 #endif // EIGEN_TRIANGULAR_SOLVER_MATRIX_H
    318