1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "media/base/simd/convert_yuv_to_rgb.h" 6 #include "media/base/simd/yuv_to_rgb_table.h" 7 8 namespace media { 9 10 #define packuswb(x) ((x) < 0 ? 0 : ((x) > 255 ? 255 : (x))) 11 #define paddsw(x, y) (((x) + (y)) < -32768 ? -32768 : \ 12 (((x) + (y)) > 32767 ? 32767 : ((x) + (y)))) 13 14 // On Android, pixel layout is RGBA (see skia/include/core/SkColorPriv.h); 15 // however, other Chrome platforms use BGRA (see skia/config/SkUserConfig.h). 16 // Ideally, android should not use the functions here due to performance issue 17 // (http://crbug.com/249980). 18 #if defined(OS_ANDROID) 19 #define SK_R32_SHIFT 0 20 #define SK_G32_SHIFT 8 21 #define SK_B32_SHIFT 16 22 #define SK_A32_SHIFT 24 23 #define R_INDEX 0 24 #define G_INDEX 1 25 #define B_INDEX 2 26 #define A_INDEX 3 27 #else 28 #define SK_B32_SHIFT 0 29 #define SK_G32_SHIFT 8 30 #define SK_R32_SHIFT 16 31 #define SK_A32_SHIFT 24 32 #define B_INDEX 0 33 #define G_INDEX 1 34 #define R_INDEX 2 35 #define A_INDEX 3 36 #endif 37 38 static inline void ConvertYUVToRGB32_C(uint8 y, 39 uint8 u, 40 uint8 v, 41 uint8* rgb_buf) { 42 int b = kCoefficientsRgbY[256+u][B_INDEX]; 43 int g = kCoefficientsRgbY[256+u][G_INDEX]; 44 int r = kCoefficientsRgbY[256+u][R_INDEX]; 45 int a = kCoefficientsRgbY[256+u][A_INDEX]; 46 47 b = paddsw(b, kCoefficientsRgbY[512+v][B_INDEX]); 48 g = paddsw(g, kCoefficientsRgbY[512+v][G_INDEX]); 49 r = paddsw(r, kCoefficientsRgbY[512+v][R_INDEX]); 50 a = paddsw(a, kCoefficientsRgbY[512+v][A_INDEX]); 51 52 b = paddsw(b, kCoefficientsRgbY[y][B_INDEX]); 53 g = paddsw(g, kCoefficientsRgbY[y][G_INDEX]); 54 r = paddsw(r, kCoefficientsRgbY[y][R_INDEX]); 55 a = paddsw(a, kCoefficientsRgbY[y][A_INDEX]); 56 57 b >>= 6; 58 g >>= 6; 59 r >>= 6; 60 a >>= 6; 61 62 *reinterpret_cast<uint32*>(rgb_buf) = (packuswb(b) << SK_B32_SHIFT) | 63 (packuswb(g) << SK_G32_SHIFT) | 64 (packuswb(r) << SK_R32_SHIFT) | 65 (packuswb(a) << SK_A32_SHIFT); 66 } 67 68 static inline void ConvertYUVAToARGB_C(uint8 y, 69 uint8 u, 70 uint8 v, 71 uint8 a, 72 uint8* rgb_buf) { 73 int b = kCoefficientsRgbY[256+u][0]; 74 int g = kCoefficientsRgbY[256+u][1]; 75 int r = kCoefficientsRgbY[256+u][2]; 76 77 b = paddsw(b, kCoefficientsRgbY[512+v][0]); 78 g = paddsw(g, kCoefficientsRgbY[512+v][1]); 79 r = paddsw(r, kCoefficientsRgbY[512+v][2]); 80 81 b = paddsw(b, kCoefficientsRgbY[y][0]); 82 g = paddsw(g, kCoefficientsRgbY[y][1]); 83 r = paddsw(r, kCoefficientsRgbY[y][2]); 84 85 b >>= 6; 86 g >>= 6; 87 r >>= 6; 88 89 b = packuswb(b) * a >> 8; 90 g = packuswb(g) * a >> 8; 91 r = packuswb(r) * a >> 8; 92 93 *reinterpret_cast<uint32*>(rgb_buf) = (b << SK_B32_SHIFT) | 94 (g << SK_G32_SHIFT) | 95 (r << SK_R32_SHIFT) | 96 (a << SK_A32_SHIFT); 97 } 98 99 void ConvertYUVToRGB32Row_C(const uint8* y_buf, 100 const uint8* u_buf, 101 const uint8* v_buf, 102 uint8* rgb_buf, 103 ptrdiff_t width) { 104 for (int x = 0; x < width; x += 2) { 105 uint8 u = u_buf[x >> 1]; 106 uint8 v = v_buf[x >> 1]; 107 uint8 y0 = y_buf[x]; 108 ConvertYUVToRGB32_C(y0, u, v, rgb_buf); 109 if ((x + 1) < width) { 110 uint8 y1 = y_buf[x + 1]; 111 ConvertYUVToRGB32_C(y1, u, v, rgb_buf + 4); 112 } 113 rgb_buf += 8; // Advance 2 pixels. 114 } 115 } 116 117 void ConvertYUVAToARGBRow_C(const uint8* y_buf, 118 const uint8* u_buf, 119 const uint8* v_buf, 120 const uint8* a_buf, 121 uint8* rgba_buf, 122 ptrdiff_t width) { 123 for (int x = 0; x < width; x += 2) { 124 uint8 u = u_buf[x >> 1]; 125 uint8 v = v_buf[x >> 1]; 126 uint8 y0 = y_buf[x]; 127 uint8 a0 = a_buf[x]; 128 ConvertYUVAToARGB_C(y0, u, v, a0, rgba_buf); 129 if ((x + 1) < width) { 130 uint8 y1 = y_buf[x + 1]; 131 uint8 a1 = a_buf[x + 1]; 132 ConvertYUVAToARGB_C(y1, u, v, a1, rgba_buf + 4); 133 } 134 rgba_buf += 8; // Advance 2 pixels. 135 } 136 } 137 138 // 16.16 fixed point is used. A shift by 16 isolates the integer. 139 // A shift by 17 is used to further subsample the chrominence channels. 140 // & 0xffff isolates the fixed point fraction. >> 2 to get the upper 2 bits, 141 // for 1/65536 pixel accurate interpolation. 142 void ScaleYUVToRGB32Row_C(const uint8* y_buf, 143 const uint8* u_buf, 144 const uint8* v_buf, 145 uint8* rgb_buf, 146 ptrdiff_t width, 147 ptrdiff_t source_dx) { 148 int x = 0; 149 for (int i = 0; i < width; i += 2) { 150 int y = y_buf[x >> 16]; 151 int u = u_buf[(x >> 17)]; 152 int v = v_buf[(x >> 17)]; 153 ConvertYUVToRGB32_C(y, u, v, rgb_buf); 154 x += source_dx; 155 if ((i + 1) < width) { 156 y = y_buf[x >> 16]; 157 ConvertYUVToRGB32_C(y, u, v, rgb_buf+4); 158 x += source_dx; 159 } 160 rgb_buf += 8; 161 } 162 } 163 164 void LinearScaleYUVToRGB32Row_C(const uint8* y_buf, 165 const uint8* u_buf, 166 const uint8* v_buf, 167 uint8* rgb_buf, 168 ptrdiff_t width, 169 ptrdiff_t source_dx) { 170 // Avoid point-sampling for down-scaling by > 2:1. 171 int source_x = 0; 172 if (source_dx >= 0x20000) 173 source_x += 0x8000; 174 LinearScaleYUVToRGB32RowWithRange_C(y_buf, u_buf, v_buf, rgb_buf, width, 175 source_x, source_dx); 176 } 177 178 void LinearScaleYUVToRGB32RowWithRange_C(const uint8* y_buf, 179 const uint8* u_buf, 180 const uint8* v_buf, 181 uint8* rgb_buf, 182 int dest_width, 183 int x, 184 int source_dx) { 185 for (int i = 0; i < dest_width; i += 2) { 186 int y0 = y_buf[x >> 16]; 187 int y1 = y_buf[(x >> 16) + 1]; 188 int u0 = u_buf[(x >> 17)]; 189 int u1 = u_buf[(x >> 17) + 1]; 190 int v0 = v_buf[(x >> 17)]; 191 int v1 = v_buf[(x >> 17) + 1]; 192 int y_frac = (x & 65535); 193 int uv_frac = ((x >> 1) & 65535); 194 int y = (y_frac * y1 + (y_frac ^ 65535) * y0) >> 16; 195 int u = (uv_frac * u1 + (uv_frac ^ 65535) * u0) >> 16; 196 int v = (uv_frac * v1 + (uv_frac ^ 65535) * v0) >> 16; 197 ConvertYUVToRGB32_C(y, u, v, rgb_buf); 198 x += source_dx; 199 if ((i + 1) < dest_width) { 200 y0 = y_buf[x >> 16]; 201 y1 = y_buf[(x >> 16) + 1]; 202 y_frac = (x & 65535); 203 y = (y_frac * y1 + (y_frac ^ 65535) * y0) >> 16; 204 ConvertYUVToRGB32_C(y, u, v, rgb_buf+4); 205 x += source_dx; 206 } 207 rgb_buf += 8; 208 } 209 } 210 211 void ConvertYUVToRGB32_C(const uint8* yplane, 212 const uint8* uplane, 213 const uint8* vplane, 214 uint8* rgbframe, 215 int width, 216 int height, 217 int ystride, 218 int uvstride, 219 int rgbstride, 220 YUVType yuv_type) { 221 unsigned int y_shift = yuv_type; 222 for (int y = 0; y < height; ++y) { 223 uint8* rgb_row = rgbframe + y * rgbstride; 224 const uint8* y_ptr = yplane + y * ystride; 225 const uint8* u_ptr = uplane + (y >> y_shift) * uvstride; 226 const uint8* v_ptr = vplane + (y >> y_shift) * uvstride; 227 228 ConvertYUVToRGB32Row_C(y_ptr, 229 u_ptr, 230 v_ptr, 231 rgb_row, 232 width); 233 } 234 } 235 236 void ConvertYUVAToARGB_C(const uint8* yplane, 237 const uint8* uplane, 238 const uint8* vplane, 239 const uint8* aplane, 240 uint8* rgbaframe, 241 int width, 242 int height, 243 int ystride, 244 int uvstride, 245 int astride, 246 int rgbastride, 247 YUVType yuv_type) { 248 unsigned int y_shift = yuv_type; 249 for (int y = 0; y < height; y++) { 250 uint8* rgba_row = rgbaframe + y * rgbastride; 251 const uint8* y_ptr = yplane + y * ystride; 252 const uint8* u_ptr = uplane + (y >> y_shift) * uvstride; 253 const uint8* v_ptr = vplane + (y >> y_shift) * uvstride; 254 const uint8* a_ptr = aplane + y * astride; 255 256 ConvertYUVAToARGBRow_C(y_ptr, 257 u_ptr, 258 v_ptr, 259 a_ptr, 260 rgba_row, 261 width); 262 } 263 } 264 265 } // namespace media 266