1 //===------- CGObjCGNU.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This provides Objective-C code generation targeting the GNU runtime. The 11 // class in this file generates structures used by the GNU Objective-C runtime 12 // library. These structures are defined in objc/objc.h and objc/objc-api.h in 13 // the GNU runtime distribution. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "CGObjCRuntime.h" 18 #include "CGCleanup.h" 19 #include "CodeGenFunction.h" 20 #include "CodeGenModule.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/Decl.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtObjC.h" 26 #include "clang/Basic/FileManager.h" 27 #include "clang/Basic/SourceManager.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/StringMap.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/Support/CallSite.h" 35 #include "llvm/Support/Compiler.h" 36 #include <cstdarg> 37 38 39 using namespace clang; 40 using namespace CodeGen; 41 42 43 namespace { 44 /// Class that lazily initialises the runtime function. Avoids inserting the 45 /// types and the function declaration into a module if they're not used, and 46 /// avoids constructing the type more than once if it's used more than once. 47 class LazyRuntimeFunction { 48 CodeGenModule *CGM; 49 std::vector<llvm::Type*> ArgTys; 50 const char *FunctionName; 51 llvm::Constant *Function; 52 public: 53 /// Constructor leaves this class uninitialized, because it is intended to 54 /// be used as a field in another class and not all of the types that are 55 /// used as arguments will necessarily be available at construction time. 56 LazyRuntimeFunction() : CGM(0), FunctionName(0), Function(0) {} 57 58 /// Initialises the lazy function with the name, return type, and the types 59 /// of the arguments. 60 END_WITH_NULL 61 void init(CodeGenModule *Mod, const char *name, 62 llvm::Type *RetTy, ...) { 63 CGM =Mod; 64 FunctionName = name; 65 Function = 0; 66 ArgTys.clear(); 67 va_list Args; 68 va_start(Args, RetTy); 69 while (llvm::Type *ArgTy = va_arg(Args, llvm::Type*)) 70 ArgTys.push_back(ArgTy); 71 va_end(Args); 72 // Push the return type on at the end so we can pop it off easily 73 ArgTys.push_back(RetTy); 74 } 75 /// Overloaded cast operator, allows the class to be implicitly cast to an 76 /// LLVM constant. 77 operator llvm::Constant*() { 78 if (!Function) { 79 if (0 == FunctionName) return 0; 80 // We put the return type on the end of the vector, so pop it back off 81 llvm::Type *RetTy = ArgTys.back(); 82 ArgTys.pop_back(); 83 llvm::FunctionType *FTy = llvm::FunctionType::get(RetTy, ArgTys, false); 84 Function = 85 cast<llvm::Constant>(CGM->CreateRuntimeFunction(FTy, FunctionName)); 86 // We won't need to use the types again, so we may as well clean up the 87 // vector now 88 ArgTys.resize(0); 89 } 90 return Function; 91 } 92 operator llvm::Function*() { 93 return cast<llvm::Function>((llvm::Constant*)*this); 94 } 95 96 }; 97 98 99 /// GNU Objective-C runtime code generation. This class implements the parts of 100 /// Objective-C support that are specific to the GNU family of runtimes (GCC, 101 /// GNUstep and ObjFW). 102 class CGObjCGNU : public CGObjCRuntime { 103 protected: 104 /// The LLVM module into which output is inserted 105 llvm::Module &TheModule; 106 /// strut objc_super. Used for sending messages to super. This structure 107 /// contains the receiver (object) and the expected class. 108 llvm::StructType *ObjCSuperTy; 109 /// struct objc_super*. The type of the argument to the superclass message 110 /// lookup functions. 111 llvm::PointerType *PtrToObjCSuperTy; 112 /// LLVM type for selectors. Opaque pointer (i8*) unless a header declaring 113 /// SEL is included in a header somewhere, in which case it will be whatever 114 /// type is declared in that header, most likely {i8*, i8*}. 115 llvm::PointerType *SelectorTy; 116 /// LLVM i8 type. Cached here to avoid repeatedly getting it in all of the 117 /// places where it's used 118 llvm::IntegerType *Int8Ty; 119 /// Pointer to i8 - LLVM type of char*, for all of the places where the 120 /// runtime needs to deal with C strings. 121 llvm::PointerType *PtrToInt8Ty; 122 /// Instance Method Pointer type. This is a pointer to a function that takes, 123 /// at a minimum, an object and a selector, and is the generic type for 124 /// Objective-C methods. Due to differences between variadic / non-variadic 125 /// calling conventions, it must always be cast to the correct type before 126 /// actually being used. 127 llvm::PointerType *IMPTy; 128 /// Type of an untyped Objective-C object. Clang treats id as a built-in type 129 /// when compiling Objective-C code, so this may be an opaque pointer (i8*), 130 /// but if the runtime header declaring it is included then it may be a 131 /// pointer to a structure. 132 llvm::PointerType *IdTy; 133 /// Pointer to a pointer to an Objective-C object. Used in the new ABI 134 /// message lookup function and some GC-related functions. 135 llvm::PointerType *PtrToIdTy; 136 /// The clang type of id. Used when using the clang CGCall infrastructure to 137 /// call Objective-C methods. 138 CanQualType ASTIdTy; 139 /// LLVM type for C int type. 140 llvm::IntegerType *IntTy; 141 /// LLVM type for an opaque pointer. This is identical to PtrToInt8Ty, but is 142 /// used in the code to document the difference between i8* meaning a pointer 143 /// to a C string and i8* meaning a pointer to some opaque type. 144 llvm::PointerType *PtrTy; 145 /// LLVM type for C long type. The runtime uses this in a lot of places where 146 /// it should be using intptr_t, but we can't fix this without breaking 147 /// compatibility with GCC... 148 llvm::IntegerType *LongTy; 149 /// LLVM type for C size_t. Used in various runtime data structures. 150 llvm::IntegerType *SizeTy; 151 /// LLVM type for C intptr_t. 152 llvm::IntegerType *IntPtrTy; 153 /// LLVM type for C ptrdiff_t. Mainly used in property accessor functions. 154 llvm::IntegerType *PtrDiffTy; 155 /// LLVM type for C int*. Used for GCC-ABI-compatible non-fragile instance 156 /// variables. 157 llvm::PointerType *PtrToIntTy; 158 /// LLVM type for Objective-C BOOL type. 159 llvm::Type *BoolTy; 160 /// 32-bit integer type, to save us needing to look it up every time it's used. 161 llvm::IntegerType *Int32Ty; 162 /// 64-bit integer type, to save us needing to look it up every time it's used. 163 llvm::IntegerType *Int64Ty; 164 /// Metadata kind used to tie method lookups to message sends. The GNUstep 165 /// runtime provides some LLVM passes that can use this to do things like 166 /// automatic IMP caching and speculative inlining. 167 unsigned msgSendMDKind; 168 /// Helper function that generates a constant string and returns a pointer to 169 /// the start of the string. The result of this function can be used anywhere 170 /// where the C code specifies const char*. 171 llvm::Constant *MakeConstantString(const std::string &Str, 172 const std::string &Name="") { 173 llvm::Constant *ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str()); 174 return llvm::ConstantExpr::getGetElementPtr(ConstStr, Zeros); 175 } 176 /// Emits a linkonce_odr string, whose name is the prefix followed by the 177 /// string value. This allows the linker to combine the strings between 178 /// different modules. Used for EH typeinfo names, selector strings, and a 179 /// few other things. 180 llvm::Constant *ExportUniqueString(const std::string &Str, 181 const std::string prefix) { 182 std::string name = prefix + Str; 183 llvm::Constant *ConstStr = TheModule.getGlobalVariable(name); 184 if (!ConstStr) { 185 llvm::Constant *value = llvm::ConstantDataArray::getString(VMContext,Str); 186 ConstStr = new llvm::GlobalVariable(TheModule, value->getType(), true, 187 llvm::GlobalValue::LinkOnceODRLinkage, value, prefix + Str); 188 } 189 return llvm::ConstantExpr::getGetElementPtr(ConstStr, Zeros); 190 } 191 /// Generates a global structure, initialized by the elements in the vector. 192 /// The element types must match the types of the structure elements in the 193 /// first argument. 194 llvm::GlobalVariable *MakeGlobal(llvm::StructType *Ty, 195 ArrayRef<llvm::Constant *> V, 196 StringRef Name="", 197 llvm::GlobalValue::LinkageTypes linkage 198 =llvm::GlobalValue::InternalLinkage) { 199 llvm::Constant *C = llvm::ConstantStruct::get(Ty, V); 200 return new llvm::GlobalVariable(TheModule, Ty, false, 201 linkage, C, Name); 202 } 203 /// Generates a global array. The vector must contain the same number of 204 /// elements that the array type declares, of the type specified as the array 205 /// element type. 206 llvm::GlobalVariable *MakeGlobal(llvm::ArrayType *Ty, 207 ArrayRef<llvm::Constant *> V, 208 StringRef Name="", 209 llvm::GlobalValue::LinkageTypes linkage 210 =llvm::GlobalValue::InternalLinkage) { 211 llvm::Constant *C = llvm::ConstantArray::get(Ty, V); 212 return new llvm::GlobalVariable(TheModule, Ty, false, 213 linkage, C, Name); 214 } 215 /// Generates a global array, inferring the array type from the specified 216 /// element type and the size of the initialiser. 217 llvm::GlobalVariable *MakeGlobalArray(llvm::Type *Ty, 218 ArrayRef<llvm::Constant *> V, 219 StringRef Name="", 220 llvm::GlobalValue::LinkageTypes linkage 221 =llvm::GlobalValue::InternalLinkage) { 222 llvm::ArrayType *ArrayTy = llvm::ArrayType::get(Ty, V.size()); 223 return MakeGlobal(ArrayTy, V, Name, linkage); 224 } 225 /// Returns a property name and encoding string. 226 llvm::Constant *MakePropertyEncodingString(const ObjCPropertyDecl *PD, 227 const Decl *Container) { 228 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime; 229 if ((R.getKind() == ObjCRuntime::GNUstep) && 230 (R.getVersion() >= VersionTuple(1, 6))) { 231 std::string NameAndAttributes; 232 std::string TypeStr; 233 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container, TypeStr); 234 NameAndAttributes += '\0'; 235 NameAndAttributes += TypeStr.length() + 3; 236 NameAndAttributes += TypeStr; 237 NameAndAttributes += '\0'; 238 NameAndAttributes += PD->getNameAsString(); 239 NameAndAttributes += '\0'; 240 return llvm::ConstantExpr::getGetElementPtr( 241 CGM.GetAddrOfConstantString(NameAndAttributes), Zeros); 242 } 243 return MakeConstantString(PD->getNameAsString()); 244 } 245 /// Push the property attributes into two structure fields. 246 void PushPropertyAttributes(std::vector<llvm::Constant*> &Fields, 247 ObjCPropertyDecl *property, bool isSynthesized=true, bool 248 isDynamic=true) { 249 int attrs = property->getPropertyAttributes(); 250 // For read-only properties, clear the copy and retain flags 251 if (attrs & ObjCPropertyDecl::OBJC_PR_readonly) { 252 attrs &= ~ObjCPropertyDecl::OBJC_PR_copy; 253 attrs &= ~ObjCPropertyDecl::OBJC_PR_retain; 254 attrs &= ~ObjCPropertyDecl::OBJC_PR_weak; 255 attrs &= ~ObjCPropertyDecl::OBJC_PR_strong; 256 } 257 // The first flags field has the same attribute values as clang uses internally 258 Fields.push_back(llvm::ConstantInt::get(Int8Ty, attrs & 0xff)); 259 attrs >>= 8; 260 attrs <<= 2; 261 // For protocol properties, synthesized and dynamic have no meaning, so we 262 // reuse these flags to indicate that this is a protocol property (both set 263 // has no meaning, as a property can't be both synthesized and dynamic) 264 attrs |= isSynthesized ? (1<<0) : 0; 265 attrs |= isDynamic ? (1<<1) : 0; 266 // The second field is the next four fields left shifted by two, with the 267 // low bit set to indicate whether the field is synthesized or dynamic. 268 Fields.push_back(llvm::ConstantInt::get(Int8Ty, attrs & 0xff)); 269 // Two padding fields 270 Fields.push_back(llvm::ConstantInt::get(Int8Ty, 0)); 271 Fields.push_back(llvm::ConstantInt::get(Int8Ty, 0)); 272 } 273 /// Ensures that the value has the required type, by inserting a bitcast if 274 /// required. This function lets us avoid inserting bitcasts that are 275 /// redundant. 276 llvm::Value* EnforceType(CGBuilderTy &B, llvm::Value *V, llvm::Type *Ty) { 277 if (V->getType() == Ty) return V; 278 return B.CreateBitCast(V, Ty); 279 } 280 // Some zeros used for GEPs in lots of places. 281 llvm::Constant *Zeros[2]; 282 /// Null pointer value. Mainly used as a terminator in various arrays. 283 llvm::Constant *NULLPtr; 284 /// LLVM context. 285 llvm::LLVMContext &VMContext; 286 private: 287 /// Placeholder for the class. Lots of things refer to the class before we've 288 /// actually emitted it. We use this alias as a placeholder, and then replace 289 /// it with a pointer to the class structure before finally emitting the 290 /// module. 291 llvm::GlobalAlias *ClassPtrAlias; 292 /// Placeholder for the metaclass. Lots of things refer to the class before 293 /// we've / actually emitted it. We use this alias as a placeholder, and then 294 /// replace / it with a pointer to the metaclass structure before finally 295 /// emitting the / module. 296 llvm::GlobalAlias *MetaClassPtrAlias; 297 /// All of the classes that have been generated for this compilation units. 298 std::vector<llvm::Constant*> Classes; 299 /// All of the categories that have been generated for this compilation units. 300 std::vector<llvm::Constant*> Categories; 301 /// All of the Objective-C constant strings that have been generated for this 302 /// compilation units. 303 std::vector<llvm::Constant*> ConstantStrings; 304 /// Map from string values to Objective-C constant strings in the output. 305 /// Used to prevent emitting Objective-C strings more than once. This should 306 /// not be required at all - CodeGenModule should manage this list. 307 llvm::StringMap<llvm::Constant*> ObjCStrings; 308 /// All of the protocols that have been declared. 309 llvm::StringMap<llvm::Constant*> ExistingProtocols; 310 /// For each variant of a selector, we store the type encoding and a 311 /// placeholder value. For an untyped selector, the type will be the empty 312 /// string. Selector references are all done via the module's selector table, 313 /// so we create an alias as a placeholder and then replace it with the real 314 /// value later. 315 typedef std::pair<std::string, llvm::GlobalAlias*> TypedSelector; 316 /// Type of the selector map. This is roughly equivalent to the structure 317 /// used in the GNUstep runtime, which maintains a list of all of the valid 318 /// types for a selector in a table. 319 typedef llvm::DenseMap<Selector, SmallVector<TypedSelector, 2> > 320 SelectorMap; 321 /// A map from selectors to selector types. This allows us to emit all 322 /// selectors of the same name and type together. 323 SelectorMap SelectorTable; 324 325 /// Selectors related to memory management. When compiling in GC mode, we 326 /// omit these. 327 Selector RetainSel, ReleaseSel, AutoreleaseSel; 328 /// Runtime functions used for memory management in GC mode. Note that clang 329 /// supports code generation for calling these functions, but neither GNU 330 /// runtime actually supports this API properly yet. 331 LazyRuntimeFunction IvarAssignFn, StrongCastAssignFn, MemMoveFn, WeakReadFn, 332 WeakAssignFn, GlobalAssignFn; 333 334 typedef std::pair<std::string, std::string> ClassAliasPair; 335 /// All classes that have aliases set for them. 336 std::vector<ClassAliasPair> ClassAliases; 337 338 protected: 339 /// Function used for throwing Objective-C exceptions. 340 LazyRuntimeFunction ExceptionThrowFn; 341 /// Function used for rethrowing exceptions, used at the end of \@finally or 342 /// \@synchronize blocks. 343 LazyRuntimeFunction ExceptionReThrowFn; 344 /// Function called when entering a catch function. This is required for 345 /// differentiating Objective-C exceptions and foreign exceptions. 346 LazyRuntimeFunction EnterCatchFn; 347 /// Function called when exiting from a catch block. Used to do exception 348 /// cleanup. 349 LazyRuntimeFunction ExitCatchFn; 350 /// Function called when entering an \@synchronize block. Acquires the lock. 351 LazyRuntimeFunction SyncEnterFn; 352 /// Function called when exiting an \@synchronize block. Releases the lock. 353 LazyRuntimeFunction SyncExitFn; 354 355 private: 356 357 /// Function called if fast enumeration detects that the collection is 358 /// modified during the update. 359 LazyRuntimeFunction EnumerationMutationFn; 360 /// Function for implementing synthesized property getters that return an 361 /// object. 362 LazyRuntimeFunction GetPropertyFn; 363 /// Function for implementing synthesized property setters that return an 364 /// object. 365 LazyRuntimeFunction SetPropertyFn; 366 /// Function used for non-object declared property getters. 367 LazyRuntimeFunction GetStructPropertyFn; 368 /// Function used for non-object declared property setters. 369 LazyRuntimeFunction SetStructPropertyFn; 370 371 /// The version of the runtime that this class targets. Must match the 372 /// version in the runtime. 373 int RuntimeVersion; 374 /// The version of the protocol class. Used to differentiate between ObjC1 375 /// and ObjC2 protocols. Objective-C 1 protocols can not contain optional 376 /// components and can not contain declared properties. We always emit 377 /// Objective-C 2 property structures, but we have to pretend that they're 378 /// Objective-C 1 property structures when targeting the GCC runtime or it 379 /// will abort. 380 const int ProtocolVersion; 381 private: 382 /// Generates an instance variable list structure. This is a structure 383 /// containing a size and an array of structures containing instance variable 384 /// metadata. This is used purely for introspection in the fragile ABI. In 385 /// the non-fragile ABI, it's used for instance variable fixup. 386 llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames, 387 ArrayRef<llvm::Constant *> IvarTypes, 388 ArrayRef<llvm::Constant *> IvarOffsets); 389 /// Generates a method list structure. This is a structure containing a size 390 /// and an array of structures containing method metadata. 391 /// 392 /// This structure is used by both classes and categories, and contains a next 393 /// pointer allowing them to be chained together in a linked list. 394 llvm::Constant *GenerateMethodList(const StringRef &ClassName, 395 const StringRef &CategoryName, 396 ArrayRef<Selector> MethodSels, 397 ArrayRef<llvm::Constant *> MethodTypes, 398 bool isClassMethodList); 399 /// Emits an empty protocol. This is used for \@protocol() where no protocol 400 /// is found. The runtime will (hopefully) fix up the pointer to refer to the 401 /// real protocol. 402 llvm::Constant *GenerateEmptyProtocol(const std::string &ProtocolName); 403 /// Generates a list of property metadata structures. This follows the same 404 /// pattern as method and instance variable metadata lists. 405 llvm::Constant *GeneratePropertyList(const ObjCImplementationDecl *OID, 406 SmallVectorImpl<Selector> &InstanceMethodSels, 407 SmallVectorImpl<llvm::Constant*> &InstanceMethodTypes); 408 /// Generates a list of referenced protocols. Classes, categories, and 409 /// protocols all use this structure. 410 llvm::Constant *GenerateProtocolList(ArrayRef<std::string> Protocols); 411 /// To ensure that all protocols are seen by the runtime, we add a category on 412 /// a class defined in the runtime, declaring no methods, but adopting the 413 /// protocols. This is a horribly ugly hack, but it allows us to collect all 414 /// of the protocols without changing the ABI. 415 void GenerateProtocolHolderCategory(); 416 /// Generates a class structure. 417 llvm::Constant *GenerateClassStructure( 418 llvm::Constant *MetaClass, 419 llvm::Constant *SuperClass, 420 unsigned info, 421 const char *Name, 422 llvm::Constant *Version, 423 llvm::Constant *InstanceSize, 424 llvm::Constant *IVars, 425 llvm::Constant *Methods, 426 llvm::Constant *Protocols, 427 llvm::Constant *IvarOffsets, 428 llvm::Constant *Properties, 429 llvm::Constant *StrongIvarBitmap, 430 llvm::Constant *WeakIvarBitmap, 431 bool isMeta=false); 432 /// Generates a method list. This is used by protocols to define the required 433 /// and optional methods. 434 llvm::Constant *GenerateProtocolMethodList( 435 ArrayRef<llvm::Constant *> MethodNames, 436 ArrayRef<llvm::Constant *> MethodTypes); 437 /// Returns a selector with the specified type encoding. An empty string is 438 /// used to return an untyped selector (with the types field set to NULL). 439 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel, 440 const std::string &TypeEncoding, bool lval); 441 /// Returns the variable used to store the offset of an instance variable. 442 llvm::GlobalVariable *ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID, 443 const ObjCIvarDecl *Ivar); 444 /// Emits a reference to a class. This allows the linker to object if there 445 /// is no class of the matching name. 446 protected: 447 void EmitClassRef(const std::string &className); 448 /// Emits a pointer to the named class 449 virtual llvm::Value *GetClassNamed(CodeGenFunction &CGF, 450 const std::string &Name, bool isWeak); 451 /// Looks up the method for sending a message to the specified object. This 452 /// mechanism differs between the GCC and GNU runtimes, so this method must be 453 /// overridden in subclasses. 454 virtual llvm::Value *LookupIMP(CodeGenFunction &CGF, 455 llvm::Value *&Receiver, 456 llvm::Value *cmd, 457 llvm::MDNode *node, 458 MessageSendInfo &MSI) = 0; 459 /// Looks up the method for sending a message to a superclass. This 460 /// mechanism differs between the GCC and GNU runtimes, so this method must 461 /// be overridden in subclasses. 462 virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, 463 llvm::Value *ObjCSuper, 464 llvm::Value *cmd, 465 MessageSendInfo &MSI) = 0; 466 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are 467 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63 468 /// bits set to their values, LSB first, while larger ones are stored in a 469 /// structure of this / form: 470 /// 471 /// struct { int32_t length; int32_t values[length]; }; 472 /// 473 /// The values in the array are stored in host-endian format, with the least 474 /// significant bit being assumed to come first in the bitfield. Therefore, 475 /// a bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, 476 /// while a bitfield / with the 63rd bit set will be 1<<64. 477 llvm::Constant *MakeBitField(ArrayRef<bool> bits); 478 public: 479 CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion, 480 unsigned protocolClassVersion); 481 482 virtual llvm::Constant *GenerateConstantString(const StringLiteral *); 483 484 virtual RValue 485 GenerateMessageSend(CodeGenFunction &CGF, 486 ReturnValueSlot Return, 487 QualType ResultType, 488 Selector Sel, 489 llvm::Value *Receiver, 490 const CallArgList &CallArgs, 491 const ObjCInterfaceDecl *Class, 492 const ObjCMethodDecl *Method); 493 virtual RValue 494 GenerateMessageSendSuper(CodeGenFunction &CGF, 495 ReturnValueSlot Return, 496 QualType ResultType, 497 Selector Sel, 498 const ObjCInterfaceDecl *Class, 499 bool isCategoryImpl, 500 llvm::Value *Receiver, 501 bool IsClassMessage, 502 const CallArgList &CallArgs, 503 const ObjCMethodDecl *Method); 504 virtual llvm::Value *GetClass(CodeGenFunction &CGF, 505 const ObjCInterfaceDecl *OID); 506 virtual llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel, 507 bool lval = false); 508 virtual llvm::Value *GetSelector(CodeGenFunction &CGF, const ObjCMethodDecl 509 *Method); 510 virtual llvm::Constant *GetEHType(QualType T); 511 512 virtual llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD, 513 const ObjCContainerDecl *CD); 514 virtual void GenerateCategory(const ObjCCategoryImplDecl *CMD); 515 virtual void GenerateClass(const ObjCImplementationDecl *ClassDecl); 516 virtual void RegisterAlias(const ObjCCompatibleAliasDecl *OAD); 517 virtual llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 518 const ObjCProtocolDecl *PD); 519 virtual void GenerateProtocol(const ObjCProtocolDecl *PD); 520 virtual llvm::Function *ModuleInitFunction(); 521 virtual llvm::Constant *GetPropertyGetFunction(); 522 virtual llvm::Constant *GetPropertySetFunction(); 523 virtual llvm::Constant *GetOptimizedPropertySetFunction(bool atomic, 524 bool copy); 525 virtual llvm::Constant *GetSetStructFunction(); 526 virtual llvm::Constant *GetGetStructFunction(); 527 virtual llvm::Constant *GetCppAtomicObjectGetFunction(); 528 virtual llvm::Constant *GetCppAtomicObjectSetFunction(); 529 virtual llvm::Constant *EnumerationMutationFunction(); 530 531 virtual void EmitTryStmt(CodeGenFunction &CGF, 532 const ObjCAtTryStmt &S); 533 virtual void EmitSynchronizedStmt(CodeGenFunction &CGF, 534 const ObjCAtSynchronizedStmt &S); 535 virtual void EmitThrowStmt(CodeGenFunction &CGF, 536 const ObjCAtThrowStmt &S, 537 bool ClearInsertionPoint=true); 538 virtual llvm::Value * EmitObjCWeakRead(CodeGenFunction &CGF, 539 llvm::Value *AddrWeakObj); 540 virtual void EmitObjCWeakAssign(CodeGenFunction &CGF, 541 llvm::Value *src, llvm::Value *dst); 542 virtual void EmitObjCGlobalAssign(CodeGenFunction &CGF, 543 llvm::Value *src, llvm::Value *dest, 544 bool threadlocal=false); 545 virtual void EmitObjCIvarAssign(CodeGenFunction &CGF, 546 llvm::Value *src, llvm::Value *dest, 547 llvm::Value *ivarOffset); 548 virtual void EmitObjCStrongCastAssign(CodeGenFunction &CGF, 549 llvm::Value *src, llvm::Value *dest); 550 virtual void EmitGCMemmoveCollectable(CodeGenFunction &CGF, 551 llvm::Value *DestPtr, 552 llvm::Value *SrcPtr, 553 llvm::Value *Size); 554 virtual LValue EmitObjCValueForIvar(CodeGenFunction &CGF, 555 QualType ObjectTy, 556 llvm::Value *BaseValue, 557 const ObjCIvarDecl *Ivar, 558 unsigned CVRQualifiers); 559 virtual llvm::Value *EmitIvarOffset(CodeGenFunction &CGF, 560 const ObjCInterfaceDecl *Interface, 561 const ObjCIvarDecl *Ivar); 562 virtual llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF); 563 virtual llvm::Constant *BuildGCBlockLayout(CodeGenModule &CGM, 564 const CGBlockInfo &blockInfo) { 565 return NULLPtr; 566 } 567 virtual llvm::Constant *BuildRCBlockLayout(CodeGenModule &CGM, 568 const CGBlockInfo &blockInfo) { 569 return NULLPtr; 570 } 571 572 virtual llvm::Constant *BuildByrefLayout(CodeGenModule &CGM, 573 QualType T) { 574 return NULLPtr; 575 } 576 577 virtual llvm::GlobalVariable *GetClassGlobal(const std::string &Name) { 578 return 0; 579 } 580 }; 581 /// Class representing the legacy GCC Objective-C ABI. This is the default when 582 /// -fobjc-nonfragile-abi is not specified. 583 /// 584 /// The GCC ABI target actually generates code that is approximately compatible 585 /// with the new GNUstep runtime ABI, but refrains from using any features that 586 /// would not work with the GCC runtime. For example, clang always generates 587 /// the extended form of the class structure, and the extra fields are simply 588 /// ignored by GCC libobjc. 589 class CGObjCGCC : public CGObjCGNU { 590 /// The GCC ABI message lookup function. Returns an IMP pointing to the 591 /// method implementation for this message. 592 LazyRuntimeFunction MsgLookupFn; 593 /// The GCC ABI superclass message lookup function. Takes a pointer to a 594 /// structure describing the receiver and the class, and a selector as 595 /// arguments. Returns the IMP for the corresponding method. 596 LazyRuntimeFunction MsgLookupSuperFn; 597 protected: 598 virtual llvm::Value *LookupIMP(CodeGenFunction &CGF, 599 llvm::Value *&Receiver, 600 llvm::Value *cmd, 601 llvm::MDNode *node, 602 MessageSendInfo &MSI) { 603 CGBuilderTy &Builder = CGF.Builder; 604 llvm::Value *args[] = { 605 EnforceType(Builder, Receiver, IdTy), 606 EnforceType(Builder, cmd, SelectorTy) }; 607 llvm::CallSite imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args); 608 imp->setMetadata(msgSendMDKind, node); 609 return imp.getInstruction(); 610 } 611 virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, 612 llvm::Value *ObjCSuper, 613 llvm::Value *cmd, 614 MessageSendInfo &MSI) { 615 CGBuilderTy &Builder = CGF.Builder; 616 llvm::Value *lookupArgs[] = {EnforceType(Builder, ObjCSuper, 617 PtrToObjCSuperTy), cmd}; 618 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs); 619 } 620 public: 621 CGObjCGCC(CodeGenModule &Mod) : CGObjCGNU(Mod, 8, 2) { 622 // IMP objc_msg_lookup(id, SEL); 623 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy, NULL); 624 // IMP objc_msg_lookup_super(struct objc_super*, SEL); 625 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy, 626 PtrToObjCSuperTy, SelectorTy, NULL); 627 } 628 }; 629 /// Class used when targeting the new GNUstep runtime ABI. 630 class CGObjCGNUstep : public CGObjCGNU { 631 /// The slot lookup function. Returns a pointer to a cacheable structure 632 /// that contains (among other things) the IMP. 633 LazyRuntimeFunction SlotLookupFn; 634 /// The GNUstep ABI superclass message lookup function. Takes a pointer to 635 /// a structure describing the receiver and the class, and a selector as 636 /// arguments. Returns the slot for the corresponding method. Superclass 637 /// message lookup rarely changes, so this is a good caching opportunity. 638 LazyRuntimeFunction SlotLookupSuperFn; 639 /// Specialised function for setting atomic retain properties 640 LazyRuntimeFunction SetPropertyAtomic; 641 /// Specialised function for setting atomic copy properties 642 LazyRuntimeFunction SetPropertyAtomicCopy; 643 /// Specialised function for setting nonatomic retain properties 644 LazyRuntimeFunction SetPropertyNonAtomic; 645 /// Specialised function for setting nonatomic copy properties 646 LazyRuntimeFunction SetPropertyNonAtomicCopy; 647 /// Function to perform atomic copies of C++ objects with nontrivial copy 648 /// constructors from Objective-C ivars. 649 LazyRuntimeFunction CxxAtomicObjectGetFn; 650 /// Function to perform atomic copies of C++ objects with nontrivial copy 651 /// constructors to Objective-C ivars. 652 LazyRuntimeFunction CxxAtomicObjectSetFn; 653 /// Type of an slot structure pointer. This is returned by the various 654 /// lookup functions. 655 llvm::Type *SlotTy; 656 public: 657 virtual llvm::Constant *GetEHType(QualType T); 658 protected: 659 virtual llvm::Value *LookupIMP(CodeGenFunction &CGF, 660 llvm::Value *&Receiver, 661 llvm::Value *cmd, 662 llvm::MDNode *node, 663 MessageSendInfo &MSI) { 664 CGBuilderTy &Builder = CGF.Builder; 665 llvm::Function *LookupFn = SlotLookupFn; 666 667 // Store the receiver on the stack so that we can reload it later 668 llvm::Value *ReceiverPtr = CGF.CreateTempAlloca(Receiver->getType()); 669 Builder.CreateStore(Receiver, ReceiverPtr); 670 671 llvm::Value *self; 672 673 if (isa<ObjCMethodDecl>(CGF.CurCodeDecl)) { 674 self = CGF.LoadObjCSelf(); 675 } else { 676 self = llvm::ConstantPointerNull::get(IdTy); 677 } 678 679 // The lookup function is guaranteed not to capture the receiver pointer. 680 LookupFn->setDoesNotCapture(1); 681 682 llvm::Value *args[] = { 683 EnforceType(Builder, ReceiverPtr, PtrToIdTy), 684 EnforceType(Builder, cmd, SelectorTy), 685 EnforceType(Builder, self, IdTy) }; 686 llvm::CallSite slot = CGF.EmitRuntimeCallOrInvoke(LookupFn, args); 687 slot.setOnlyReadsMemory(); 688 slot->setMetadata(msgSendMDKind, node); 689 690 // Load the imp from the slot 691 llvm::Value *imp = 692 Builder.CreateLoad(Builder.CreateStructGEP(slot.getInstruction(), 4)); 693 694 // The lookup function may have changed the receiver, so make sure we use 695 // the new one. 696 Receiver = Builder.CreateLoad(ReceiverPtr, true); 697 return imp; 698 } 699 virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, 700 llvm::Value *ObjCSuper, 701 llvm::Value *cmd, 702 MessageSendInfo &MSI) { 703 CGBuilderTy &Builder = CGF.Builder; 704 llvm::Value *lookupArgs[] = {ObjCSuper, cmd}; 705 706 llvm::CallInst *slot = 707 CGF.EmitNounwindRuntimeCall(SlotLookupSuperFn, lookupArgs); 708 slot->setOnlyReadsMemory(); 709 710 return Builder.CreateLoad(Builder.CreateStructGEP(slot, 4)); 711 } 712 public: 713 CGObjCGNUstep(CodeGenModule &Mod) : CGObjCGNU(Mod, 9, 3) { 714 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime; 715 716 llvm::StructType *SlotStructTy = llvm::StructType::get(PtrTy, 717 PtrTy, PtrTy, IntTy, IMPTy, NULL); 718 SlotTy = llvm::PointerType::getUnqual(SlotStructTy); 719 // Slot_t objc_msg_lookup_sender(id *receiver, SEL selector, id sender); 720 SlotLookupFn.init(&CGM, "objc_msg_lookup_sender", SlotTy, PtrToIdTy, 721 SelectorTy, IdTy, NULL); 722 // Slot_t objc_msg_lookup_super(struct objc_super*, SEL); 723 SlotLookupSuperFn.init(&CGM, "objc_slot_lookup_super", SlotTy, 724 PtrToObjCSuperTy, SelectorTy, NULL); 725 // If we're in ObjC++ mode, then we want to make 726 if (CGM.getLangOpts().CPlusPlus) { 727 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); 728 // void *__cxa_begin_catch(void *e) 729 EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy, NULL); 730 // void __cxa_end_catch(void) 731 ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy, NULL); 732 // void _Unwind_Resume_or_Rethrow(void*) 733 ExceptionReThrowFn.init(&CGM, "_Unwind_Resume_or_Rethrow", VoidTy, 734 PtrTy, NULL); 735 } else if (R.getVersion() >= VersionTuple(1, 7)) { 736 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); 737 // id objc_begin_catch(void *e) 738 EnterCatchFn.init(&CGM, "objc_begin_catch", IdTy, PtrTy, NULL); 739 // void objc_end_catch(void) 740 ExitCatchFn.init(&CGM, "objc_end_catch", VoidTy, NULL); 741 // void _Unwind_Resume_or_Rethrow(void*) 742 ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy, 743 PtrTy, NULL); 744 } 745 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); 746 SetPropertyAtomic.init(&CGM, "objc_setProperty_atomic", VoidTy, IdTy, 747 SelectorTy, IdTy, PtrDiffTy, NULL); 748 SetPropertyAtomicCopy.init(&CGM, "objc_setProperty_atomic_copy", VoidTy, 749 IdTy, SelectorTy, IdTy, PtrDiffTy, NULL); 750 SetPropertyNonAtomic.init(&CGM, "objc_setProperty_nonatomic", VoidTy, 751 IdTy, SelectorTy, IdTy, PtrDiffTy, NULL); 752 SetPropertyNonAtomicCopy.init(&CGM, "objc_setProperty_nonatomic_copy", 753 VoidTy, IdTy, SelectorTy, IdTy, PtrDiffTy, NULL); 754 // void objc_setCppObjectAtomic(void *dest, const void *src, void 755 // *helper); 756 CxxAtomicObjectSetFn.init(&CGM, "objc_setCppObjectAtomic", VoidTy, PtrTy, 757 PtrTy, PtrTy, NULL); 758 // void objc_getCppObjectAtomic(void *dest, const void *src, void 759 // *helper); 760 CxxAtomicObjectGetFn.init(&CGM, "objc_getCppObjectAtomic", VoidTy, PtrTy, 761 PtrTy, PtrTy, NULL); 762 } 763 virtual llvm::Constant *GetCppAtomicObjectGetFunction() { 764 // The optimised functions were added in version 1.7 of the GNUstep 765 // runtime. 766 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >= 767 VersionTuple(1, 7)); 768 return CxxAtomicObjectGetFn; 769 } 770 virtual llvm::Constant *GetCppAtomicObjectSetFunction() { 771 // The optimised functions were added in version 1.7 of the GNUstep 772 // runtime. 773 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >= 774 VersionTuple(1, 7)); 775 return CxxAtomicObjectSetFn; 776 } 777 virtual llvm::Constant *GetOptimizedPropertySetFunction(bool atomic, 778 bool copy) { 779 // The optimised property functions omit the GC check, and so are not 780 // safe to use in GC mode. The standard functions are fast in GC mode, 781 // so there is less advantage in using them. 782 assert ((CGM.getLangOpts().getGC() == LangOptions::NonGC)); 783 // The optimised functions were added in version 1.7 of the GNUstep 784 // runtime. 785 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >= 786 VersionTuple(1, 7)); 787 788 if (atomic) { 789 if (copy) return SetPropertyAtomicCopy; 790 return SetPropertyAtomic; 791 } 792 if (copy) return SetPropertyNonAtomicCopy; 793 return SetPropertyNonAtomic; 794 795 return 0; 796 } 797 }; 798 799 /// Support for the ObjFW runtime. Support here is due to 800 /// Jonathan Schleifer <js (at) webkeks.org>, the ObjFW maintainer. 801 class CGObjCObjFW: public CGObjCGNU { 802 protected: 803 /// The GCC ABI message lookup function. Returns an IMP pointing to the 804 /// method implementation for this message. 805 LazyRuntimeFunction MsgLookupFn; 806 /// stret lookup function. While this does not seem to make sense at the 807 /// first look, this is required to call the correct forwarding function. 808 LazyRuntimeFunction MsgLookupFnSRet; 809 /// The GCC ABI superclass message lookup function. Takes a pointer to a 810 /// structure describing the receiver and the class, and a selector as 811 /// arguments. Returns the IMP for the corresponding method. 812 LazyRuntimeFunction MsgLookupSuperFn, MsgLookupSuperFnSRet; 813 814 virtual llvm::Value *LookupIMP(CodeGenFunction &CGF, 815 llvm::Value *&Receiver, 816 llvm::Value *cmd, 817 llvm::MDNode *node, 818 MessageSendInfo &MSI) { 819 CGBuilderTy &Builder = CGF.Builder; 820 llvm::Value *args[] = { 821 EnforceType(Builder, Receiver, IdTy), 822 EnforceType(Builder, cmd, SelectorTy) }; 823 824 llvm::CallSite imp; 825 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) 826 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFnSRet, args); 827 else 828 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args); 829 830 imp->setMetadata(msgSendMDKind, node); 831 return imp.getInstruction(); 832 } 833 834 virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, 835 llvm::Value *ObjCSuper, 836 llvm::Value *cmd, 837 MessageSendInfo &MSI) { 838 CGBuilderTy &Builder = CGF.Builder; 839 llvm::Value *lookupArgs[] = {EnforceType(Builder, ObjCSuper, 840 PtrToObjCSuperTy), cmd}; 841 842 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) 843 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFnSRet, lookupArgs); 844 else 845 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs); 846 } 847 848 virtual llvm::Value *GetClassNamed(CodeGenFunction &CGF, 849 const std::string &Name, bool isWeak) { 850 if (isWeak) 851 return CGObjCGNU::GetClassNamed(CGF, Name, isWeak); 852 853 EmitClassRef(Name); 854 855 std::string SymbolName = "_OBJC_CLASS_" + Name; 856 857 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(SymbolName); 858 859 if (!ClassSymbol) 860 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false, 861 llvm::GlobalValue::ExternalLinkage, 862 0, SymbolName); 863 864 return ClassSymbol; 865 } 866 867 public: 868 CGObjCObjFW(CodeGenModule &Mod): CGObjCGNU(Mod, 9, 3) { 869 // IMP objc_msg_lookup(id, SEL); 870 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy, NULL); 871 MsgLookupFnSRet.init(&CGM, "objc_msg_lookup_stret", IMPTy, IdTy, 872 SelectorTy, NULL); 873 // IMP objc_msg_lookup_super(struct objc_super*, SEL); 874 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy, 875 PtrToObjCSuperTy, SelectorTy, NULL); 876 MsgLookupSuperFnSRet.init(&CGM, "objc_msg_lookup_super_stret", IMPTy, 877 PtrToObjCSuperTy, SelectorTy, NULL); 878 } 879 }; 880 } // end anonymous namespace 881 882 883 /// Emits a reference to a dummy variable which is emitted with each class. 884 /// This ensures that a linker error will be generated when trying to link 885 /// together modules where a referenced class is not defined. 886 void CGObjCGNU::EmitClassRef(const std::string &className) { 887 std::string symbolRef = "__objc_class_ref_" + className; 888 // Don't emit two copies of the same symbol 889 if (TheModule.getGlobalVariable(symbolRef)) 890 return; 891 std::string symbolName = "__objc_class_name_" + className; 892 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(symbolName); 893 if (!ClassSymbol) { 894 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false, 895 llvm::GlobalValue::ExternalLinkage, 0, symbolName); 896 } 897 new llvm::GlobalVariable(TheModule, ClassSymbol->getType(), true, 898 llvm::GlobalValue::WeakAnyLinkage, ClassSymbol, symbolRef); 899 } 900 901 static std::string SymbolNameForMethod(const StringRef &ClassName, 902 const StringRef &CategoryName, const Selector MethodName, 903 bool isClassMethod) { 904 std::string MethodNameColonStripped = MethodName.getAsString(); 905 std::replace(MethodNameColonStripped.begin(), MethodNameColonStripped.end(), 906 ':', '_'); 907 return (Twine(isClassMethod ? "_c_" : "_i_") + ClassName + "_" + 908 CategoryName + "_" + MethodNameColonStripped).str(); 909 } 910 911 CGObjCGNU::CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion, 912 unsigned protocolClassVersion) 913 : CGObjCRuntime(cgm), TheModule(CGM.getModule()), 914 VMContext(cgm.getLLVMContext()), ClassPtrAlias(0), MetaClassPtrAlias(0), 915 RuntimeVersion(runtimeABIVersion), ProtocolVersion(protocolClassVersion) { 916 917 msgSendMDKind = VMContext.getMDKindID("GNUObjCMessageSend"); 918 919 CodeGenTypes &Types = CGM.getTypes(); 920 IntTy = cast<llvm::IntegerType>( 921 Types.ConvertType(CGM.getContext().IntTy)); 922 LongTy = cast<llvm::IntegerType>( 923 Types.ConvertType(CGM.getContext().LongTy)); 924 SizeTy = cast<llvm::IntegerType>( 925 Types.ConvertType(CGM.getContext().getSizeType())); 926 PtrDiffTy = cast<llvm::IntegerType>( 927 Types.ConvertType(CGM.getContext().getPointerDiffType())); 928 BoolTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy); 929 930 Int8Ty = llvm::Type::getInt8Ty(VMContext); 931 // C string type. Used in lots of places. 932 PtrToInt8Ty = llvm::PointerType::getUnqual(Int8Ty); 933 934 Zeros[0] = llvm::ConstantInt::get(LongTy, 0); 935 Zeros[1] = Zeros[0]; 936 NULLPtr = llvm::ConstantPointerNull::get(PtrToInt8Ty); 937 // Get the selector Type. 938 QualType selTy = CGM.getContext().getObjCSelType(); 939 if (QualType() == selTy) { 940 SelectorTy = PtrToInt8Ty; 941 } else { 942 SelectorTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(selTy)); 943 } 944 945 PtrToIntTy = llvm::PointerType::getUnqual(IntTy); 946 PtrTy = PtrToInt8Ty; 947 948 Int32Ty = llvm::Type::getInt32Ty(VMContext); 949 Int64Ty = llvm::Type::getInt64Ty(VMContext); 950 951 IntPtrTy = 952 TheModule.getPointerSize() == llvm::Module::Pointer32 ? Int32Ty : Int64Ty; 953 954 // Object type 955 QualType UnqualIdTy = CGM.getContext().getObjCIdType(); 956 ASTIdTy = CanQualType(); 957 if (UnqualIdTy != QualType()) { 958 ASTIdTy = CGM.getContext().getCanonicalType(UnqualIdTy); 959 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy)); 960 } else { 961 IdTy = PtrToInt8Ty; 962 } 963 PtrToIdTy = llvm::PointerType::getUnqual(IdTy); 964 965 ObjCSuperTy = llvm::StructType::get(IdTy, IdTy, NULL); 966 PtrToObjCSuperTy = llvm::PointerType::getUnqual(ObjCSuperTy); 967 968 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); 969 970 // void objc_exception_throw(id); 971 ExceptionThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy, NULL); 972 ExceptionReThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy, NULL); 973 // int objc_sync_enter(id); 974 SyncEnterFn.init(&CGM, "objc_sync_enter", IntTy, IdTy, NULL); 975 // int objc_sync_exit(id); 976 SyncExitFn.init(&CGM, "objc_sync_exit", IntTy, IdTy, NULL); 977 978 // void objc_enumerationMutation (id) 979 EnumerationMutationFn.init(&CGM, "objc_enumerationMutation", VoidTy, 980 IdTy, NULL); 981 982 // id objc_getProperty(id, SEL, ptrdiff_t, BOOL) 983 GetPropertyFn.init(&CGM, "objc_getProperty", IdTy, IdTy, SelectorTy, 984 PtrDiffTy, BoolTy, NULL); 985 // void objc_setProperty(id, SEL, ptrdiff_t, id, BOOL, BOOL) 986 SetPropertyFn.init(&CGM, "objc_setProperty", VoidTy, IdTy, SelectorTy, 987 PtrDiffTy, IdTy, BoolTy, BoolTy, NULL); 988 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL) 989 GetStructPropertyFn.init(&CGM, "objc_getPropertyStruct", VoidTy, PtrTy, PtrTy, 990 PtrDiffTy, BoolTy, BoolTy, NULL); 991 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL) 992 SetStructPropertyFn.init(&CGM, "objc_setPropertyStruct", VoidTy, PtrTy, PtrTy, 993 PtrDiffTy, BoolTy, BoolTy, NULL); 994 995 // IMP type 996 llvm::Type *IMPArgs[] = { IdTy, SelectorTy }; 997 IMPTy = llvm::PointerType::getUnqual(llvm::FunctionType::get(IdTy, IMPArgs, 998 true)); 999 1000 const LangOptions &Opts = CGM.getLangOpts(); 1001 if ((Opts.getGC() != LangOptions::NonGC) || Opts.ObjCAutoRefCount) 1002 RuntimeVersion = 10; 1003 1004 // Don't bother initialising the GC stuff unless we're compiling in GC mode 1005 if (Opts.getGC() != LangOptions::NonGC) { 1006 // This is a bit of an hack. We should sort this out by having a proper 1007 // CGObjCGNUstep subclass for GC, but we may want to really support the old 1008 // ABI and GC added in ObjectiveC2.framework, so we fudge it a bit for now 1009 // Get selectors needed in GC mode 1010 RetainSel = GetNullarySelector("retain", CGM.getContext()); 1011 ReleaseSel = GetNullarySelector("release", CGM.getContext()); 1012 AutoreleaseSel = GetNullarySelector("autorelease", CGM.getContext()); 1013 1014 // Get functions needed in GC mode 1015 1016 // id objc_assign_ivar(id, id, ptrdiff_t); 1017 IvarAssignFn.init(&CGM, "objc_assign_ivar", IdTy, IdTy, IdTy, PtrDiffTy, 1018 NULL); 1019 // id objc_assign_strongCast (id, id*) 1020 StrongCastAssignFn.init(&CGM, "objc_assign_strongCast", IdTy, IdTy, 1021 PtrToIdTy, NULL); 1022 // id objc_assign_global(id, id*); 1023 GlobalAssignFn.init(&CGM, "objc_assign_global", IdTy, IdTy, PtrToIdTy, 1024 NULL); 1025 // id objc_assign_weak(id, id*); 1026 WeakAssignFn.init(&CGM, "objc_assign_weak", IdTy, IdTy, PtrToIdTy, NULL); 1027 // id objc_read_weak(id*); 1028 WeakReadFn.init(&CGM, "objc_read_weak", IdTy, PtrToIdTy, NULL); 1029 // void *objc_memmove_collectable(void*, void *, size_t); 1030 MemMoveFn.init(&CGM, "objc_memmove_collectable", PtrTy, PtrTy, PtrTy, 1031 SizeTy, NULL); 1032 } 1033 } 1034 1035 llvm::Value *CGObjCGNU::GetClassNamed(CodeGenFunction &CGF, 1036 const std::string &Name, 1037 bool isWeak) { 1038 llvm::Value *ClassName = CGM.GetAddrOfConstantCString(Name); 1039 // With the incompatible ABI, this will need to be replaced with a direct 1040 // reference to the class symbol. For the compatible nonfragile ABI we are 1041 // still performing this lookup at run time but emitting the symbol for the 1042 // class externally so that we can make the switch later. 1043 // 1044 // Libobjc2 contains an LLVM pass that replaces calls to objc_lookup_class 1045 // with memoized versions or with static references if it's safe to do so. 1046 if (!isWeak) 1047 EmitClassRef(Name); 1048 ClassName = CGF.Builder.CreateStructGEP(ClassName, 0); 1049 1050 llvm::Constant *ClassLookupFn = 1051 CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, PtrToInt8Ty, true), 1052 "objc_lookup_class"); 1053 return CGF.EmitNounwindRuntimeCall(ClassLookupFn, ClassName); 1054 } 1055 1056 // This has to perform the lookup every time, since posing and related 1057 // techniques can modify the name -> class mapping. 1058 llvm::Value *CGObjCGNU::GetClass(CodeGenFunction &CGF, 1059 const ObjCInterfaceDecl *OID) { 1060 return GetClassNamed(CGF, OID->getNameAsString(), OID->isWeakImported()); 1061 } 1062 llvm::Value *CGObjCGNU::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) { 1063 return GetClassNamed(CGF, "NSAutoreleasePool", false); 1064 } 1065 1066 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel, 1067 const std::string &TypeEncoding, bool lval) { 1068 1069 SmallVectorImpl<TypedSelector> &Types = SelectorTable[Sel]; 1070 llvm::GlobalAlias *SelValue = 0; 1071 1072 1073 for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(), 1074 e = Types.end() ; i!=e ; i++) { 1075 if (i->first == TypeEncoding) { 1076 SelValue = i->second; 1077 break; 1078 } 1079 } 1080 if (0 == SelValue) { 1081 SelValue = new llvm::GlobalAlias(SelectorTy, 1082 llvm::GlobalValue::PrivateLinkage, 1083 ".objc_selector_"+Sel.getAsString(), NULL, 1084 &TheModule); 1085 Types.push_back(TypedSelector(TypeEncoding, SelValue)); 1086 } 1087 1088 if (lval) { 1089 llvm::Value *tmp = CGF.CreateTempAlloca(SelValue->getType()); 1090 CGF.Builder.CreateStore(SelValue, tmp); 1091 return tmp; 1092 } 1093 return SelValue; 1094 } 1095 1096 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel, 1097 bool lval) { 1098 return GetSelector(CGF, Sel, std::string(), lval); 1099 } 1100 1101 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, 1102 const ObjCMethodDecl *Method) { 1103 std::string SelTypes; 1104 CGM.getContext().getObjCEncodingForMethodDecl(Method, SelTypes); 1105 return GetSelector(CGF, Method->getSelector(), SelTypes, false); 1106 } 1107 1108 llvm::Constant *CGObjCGNU::GetEHType(QualType T) { 1109 if (T->isObjCIdType() || T->isObjCQualifiedIdType()) { 1110 // With the old ABI, there was only one kind of catchall, which broke 1111 // foreign exceptions. With the new ABI, we use __objc_id_typeinfo as 1112 // a pointer indicating object catchalls, and NULL to indicate real 1113 // catchalls 1114 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 1115 return MakeConstantString("@id"); 1116 } else { 1117 return 0; 1118 } 1119 } 1120 1121 // All other types should be Objective-C interface pointer types. 1122 const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>(); 1123 assert(OPT && "Invalid @catch type."); 1124 const ObjCInterfaceDecl *IDecl = OPT->getObjectType()->getInterface(); 1125 assert(IDecl && "Invalid @catch type."); 1126 return MakeConstantString(IDecl->getIdentifier()->getName()); 1127 } 1128 1129 llvm::Constant *CGObjCGNUstep::GetEHType(QualType T) { 1130 if (!CGM.getLangOpts().CPlusPlus) 1131 return CGObjCGNU::GetEHType(T); 1132 1133 // For Objective-C++, we want to provide the ability to catch both C++ and 1134 // Objective-C objects in the same function. 1135 1136 // There's a particular fixed type info for 'id'. 1137 if (T->isObjCIdType() || 1138 T->isObjCQualifiedIdType()) { 1139 llvm::Constant *IDEHType = 1140 CGM.getModule().getGlobalVariable("__objc_id_type_info"); 1141 if (!IDEHType) 1142 IDEHType = 1143 new llvm::GlobalVariable(CGM.getModule(), PtrToInt8Ty, 1144 false, 1145 llvm::GlobalValue::ExternalLinkage, 1146 0, "__objc_id_type_info"); 1147 return llvm::ConstantExpr::getBitCast(IDEHType, PtrToInt8Ty); 1148 } 1149 1150 const ObjCObjectPointerType *PT = 1151 T->getAs<ObjCObjectPointerType>(); 1152 assert(PT && "Invalid @catch type."); 1153 const ObjCInterfaceType *IT = PT->getInterfaceType(); 1154 assert(IT && "Invalid @catch type."); 1155 std::string className = IT->getDecl()->getIdentifier()->getName(); 1156 1157 std::string typeinfoName = "__objc_eh_typeinfo_" + className; 1158 1159 // Return the existing typeinfo if it exists 1160 llvm::Constant *typeinfo = TheModule.getGlobalVariable(typeinfoName); 1161 if (typeinfo) 1162 return llvm::ConstantExpr::getBitCast(typeinfo, PtrToInt8Ty); 1163 1164 // Otherwise create it. 1165 1166 // vtable for gnustep::libobjc::__objc_class_type_info 1167 // It's quite ugly hard-coding this. Ideally we'd generate it using the host 1168 // platform's name mangling. 1169 const char *vtableName = "_ZTVN7gnustep7libobjc22__objc_class_type_infoE"; 1170 llvm::Constant *Vtable = TheModule.getGlobalVariable(vtableName); 1171 if (!Vtable) { 1172 Vtable = new llvm::GlobalVariable(TheModule, PtrToInt8Ty, true, 1173 llvm::GlobalValue::ExternalLinkage, 0, vtableName); 1174 } 1175 llvm::Constant *Two = llvm::ConstantInt::get(IntTy, 2); 1176 Vtable = llvm::ConstantExpr::getGetElementPtr(Vtable, Two); 1177 Vtable = llvm::ConstantExpr::getBitCast(Vtable, PtrToInt8Ty); 1178 1179 llvm::Constant *typeName = 1180 ExportUniqueString(className, "__objc_eh_typename_"); 1181 1182 std::vector<llvm::Constant*> fields; 1183 fields.push_back(Vtable); 1184 fields.push_back(typeName); 1185 llvm::Constant *TI = 1186 MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, 1187 NULL), fields, "__objc_eh_typeinfo_" + className, 1188 llvm::GlobalValue::LinkOnceODRLinkage); 1189 return llvm::ConstantExpr::getBitCast(TI, PtrToInt8Ty); 1190 } 1191 1192 /// Generate an NSConstantString object. 1193 llvm::Constant *CGObjCGNU::GenerateConstantString(const StringLiteral *SL) { 1194 1195 std::string Str = SL->getString().str(); 1196 1197 // Look for an existing one 1198 llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str); 1199 if (old != ObjCStrings.end()) 1200 return old->getValue(); 1201 1202 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1203 1204 if (StringClass.empty()) StringClass = "NXConstantString"; 1205 1206 std::string Sym = "_OBJC_CLASS_"; 1207 Sym += StringClass; 1208 1209 llvm::Constant *isa = TheModule.getNamedGlobal(Sym); 1210 1211 if (!isa) 1212 isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false, 1213 llvm::GlobalValue::ExternalWeakLinkage, 0, Sym); 1214 else if (isa->getType() != PtrToIdTy) 1215 isa = llvm::ConstantExpr::getBitCast(isa, PtrToIdTy); 1216 1217 std::vector<llvm::Constant*> Ivars; 1218 Ivars.push_back(isa); 1219 Ivars.push_back(MakeConstantString(Str)); 1220 Ivars.push_back(llvm::ConstantInt::get(IntTy, Str.size())); 1221 llvm::Constant *ObjCStr = MakeGlobal( 1222 llvm::StructType::get(PtrToIdTy, PtrToInt8Ty, IntTy, NULL), 1223 Ivars, ".objc_str"); 1224 ObjCStr = llvm::ConstantExpr::getBitCast(ObjCStr, PtrToInt8Ty); 1225 ObjCStrings[Str] = ObjCStr; 1226 ConstantStrings.push_back(ObjCStr); 1227 return ObjCStr; 1228 } 1229 1230 ///Generates a message send where the super is the receiver. This is a message 1231 ///send to self with special delivery semantics indicating which class's method 1232 ///should be called. 1233 RValue 1234 CGObjCGNU::GenerateMessageSendSuper(CodeGenFunction &CGF, 1235 ReturnValueSlot Return, 1236 QualType ResultType, 1237 Selector Sel, 1238 const ObjCInterfaceDecl *Class, 1239 bool isCategoryImpl, 1240 llvm::Value *Receiver, 1241 bool IsClassMessage, 1242 const CallArgList &CallArgs, 1243 const ObjCMethodDecl *Method) { 1244 CGBuilderTy &Builder = CGF.Builder; 1245 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 1246 if (Sel == RetainSel || Sel == AutoreleaseSel) { 1247 return RValue::get(EnforceType(Builder, Receiver, 1248 CGM.getTypes().ConvertType(ResultType))); 1249 } 1250 if (Sel == ReleaseSel) { 1251 return RValue::get(0); 1252 } 1253 } 1254 1255 llvm::Value *cmd = GetSelector(CGF, Sel); 1256 1257 1258 CallArgList ActualArgs; 1259 1260 ActualArgs.add(RValue::get(EnforceType(Builder, Receiver, IdTy)), ASTIdTy); 1261 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType()); 1262 ActualArgs.addFrom(CallArgs); 1263 1264 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 1265 1266 llvm::Value *ReceiverClass = 0; 1267 if (isCategoryImpl) { 1268 llvm::Constant *classLookupFunction = 0; 1269 if (IsClassMessage) { 1270 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get( 1271 IdTy, PtrTy, true), "objc_get_meta_class"); 1272 } else { 1273 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get( 1274 IdTy, PtrTy, true), "objc_get_class"); 1275 } 1276 ReceiverClass = Builder.CreateCall(classLookupFunction, 1277 MakeConstantString(Class->getNameAsString())); 1278 } else { 1279 // Set up global aliases for the metaclass or class pointer if they do not 1280 // already exist. These will are forward-references which will be set to 1281 // pointers to the class and metaclass structure created for the runtime 1282 // load function. To send a message to super, we look up the value of the 1283 // super_class pointer from either the class or metaclass structure. 1284 if (IsClassMessage) { 1285 if (!MetaClassPtrAlias) { 1286 MetaClassPtrAlias = new llvm::GlobalAlias(IdTy, 1287 llvm::GlobalValue::InternalLinkage, ".objc_metaclass_ref" + 1288 Class->getNameAsString(), NULL, &TheModule); 1289 } 1290 ReceiverClass = MetaClassPtrAlias; 1291 } else { 1292 if (!ClassPtrAlias) { 1293 ClassPtrAlias = new llvm::GlobalAlias(IdTy, 1294 llvm::GlobalValue::InternalLinkage, ".objc_class_ref" + 1295 Class->getNameAsString(), NULL, &TheModule); 1296 } 1297 ReceiverClass = ClassPtrAlias; 1298 } 1299 } 1300 // Cast the pointer to a simplified version of the class structure 1301 ReceiverClass = Builder.CreateBitCast(ReceiverClass, 1302 llvm::PointerType::getUnqual( 1303 llvm::StructType::get(IdTy, IdTy, NULL))); 1304 // Get the superclass pointer 1305 ReceiverClass = Builder.CreateStructGEP(ReceiverClass, 1); 1306 // Load the superclass pointer 1307 ReceiverClass = Builder.CreateLoad(ReceiverClass); 1308 // Construct the structure used to look up the IMP 1309 llvm::StructType *ObjCSuperTy = llvm::StructType::get( 1310 Receiver->getType(), IdTy, NULL); 1311 llvm::Value *ObjCSuper = Builder.CreateAlloca(ObjCSuperTy); 1312 1313 Builder.CreateStore(Receiver, Builder.CreateStructGEP(ObjCSuper, 0)); 1314 Builder.CreateStore(ReceiverClass, Builder.CreateStructGEP(ObjCSuper, 1)); 1315 1316 ObjCSuper = EnforceType(Builder, ObjCSuper, PtrToObjCSuperTy); 1317 1318 // Get the IMP 1319 llvm::Value *imp = LookupIMPSuper(CGF, ObjCSuper, cmd, MSI); 1320 imp = EnforceType(Builder, imp, MSI.MessengerType); 1321 1322 llvm::Value *impMD[] = { 1323 llvm::MDString::get(VMContext, Sel.getAsString()), 1324 llvm::MDString::get(VMContext, Class->getSuperClass()->getNameAsString()), 1325 llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), IsClassMessage) 1326 }; 1327 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD); 1328 1329 llvm::Instruction *call; 1330 RValue msgRet = CGF.EmitCall(MSI.CallInfo, imp, Return, ActualArgs, 0, &call); 1331 call->setMetadata(msgSendMDKind, node); 1332 return msgRet; 1333 } 1334 1335 /// Generate code for a message send expression. 1336 RValue 1337 CGObjCGNU::GenerateMessageSend(CodeGenFunction &CGF, 1338 ReturnValueSlot Return, 1339 QualType ResultType, 1340 Selector Sel, 1341 llvm::Value *Receiver, 1342 const CallArgList &CallArgs, 1343 const ObjCInterfaceDecl *Class, 1344 const ObjCMethodDecl *Method) { 1345 CGBuilderTy &Builder = CGF.Builder; 1346 1347 // Strip out message sends to retain / release in GC mode 1348 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 1349 if (Sel == RetainSel || Sel == AutoreleaseSel) { 1350 return RValue::get(EnforceType(Builder, Receiver, 1351 CGM.getTypes().ConvertType(ResultType))); 1352 } 1353 if (Sel == ReleaseSel) { 1354 return RValue::get(0); 1355 } 1356 } 1357 1358 // If the return type is something that goes in an integer register, the 1359 // runtime will handle 0 returns. For other cases, we fill in the 0 value 1360 // ourselves. 1361 // 1362 // The language spec says the result of this kind of message send is 1363 // undefined, but lots of people seem to have forgotten to read that 1364 // paragraph and insist on sending messages to nil that have structure 1365 // returns. With GCC, this generates a random return value (whatever happens 1366 // to be on the stack / in those registers at the time) on most platforms, 1367 // and generates an illegal instruction trap on SPARC. With LLVM it corrupts 1368 // the stack. 1369 bool isPointerSizedReturn = (ResultType->isAnyPointerType() || 1370 ResultType->isIntegralOrEnumerationType() || ResultType->isVoidType()); 1371 1372 llvm::BasicBlock *startBB = 0; 1373 llvm::BasicBlock *messageBB = 0; 1374 llvm::BasicBlock *continueBB = 0; 1375 1376 if (!isPointerSizedReturn) { 1377 startBB = Builder.GetInsertBlock(); 1378 messageBB = CGF.createBasicBlock("msgSend"); 1379 continueBB = CGF.createBasicBlock("continue"); 1380 1381 llvm::Value *isNil = Builder.CreateICmpEQ(Receiver, 1382 llvm::Constant::getNullValue(Receiver->getType())); 1383 Builder.CreateCondBr(isNil, continueBB, messageBB); 1384 CGF.EmitBlock(messageBB); 1385 } 1386 1387 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy)); 1388 llvm::Value *cmd; 1389 if (Method) 1390 cmd = GetSelector(CGF, Method); 1391 else 1392 cmd = GetSelector(CGF, Sel); 1393 cmd = EnforceType(Builder, cmd, SelectorTy); 1394 Receiver = EnforceType(Builder, Receiver, IdTy); 1395 1396 llvm::Value *impMD[] = { 1397 llvm::MDString::get(VMContext, Sel.getAsString()), 1398 llvm::MDString::get(VMContext, Class ? Class->getNameAsString() :""), 1399 llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), Class!=0) 1400 }; 1401 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD); 1402 1403 CallArgList ActualArgs; 1404 ActualArgs.add(RValue::get(Receiver), ASTIdTy); 1405 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType()); 1406 ActualArgs.addFrom(CallArgs); 1407 1408 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 1409 1410 // Get the IMP to call 1411 llvm::Value *imp; 1412 1413 // If we have non-legacy dispatch specified, we try using the objc_msgSend() 1414 // functions. These are not supported on all platforms (or all runtimes on a 1415 // given platform), so we 1416 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) { 1417 case CodeGenOptions::Legacy: 1418 imp = LookupIMP(CGF, Receiver, cmd, node, MSI); 1419 break; 1420 case CodeGenOptions::Mixed: 1421 case CodeGenOptions::NonLegacy: 1422 if (CGM.ReturnTypeUsesFPRet(ResultType)) { 1423 imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true), 1424 "objc_msgSend_fpret"); 1425 } else if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) { 1426 // The actual types here don't matter - we're going to bitcast the 1427 // function anyway 1428 imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true), 1429 "objc_msgSend_stret"); 1430 } else { 1431 imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true), 1432 "objc_msgSend"); 1433 } 1434 } 1435 1436 // Reset the receiver in case the lookup modified it 1437 ActualArgs[0] = CallArg(RValue::get(Receiver), ASTIdTy, false); 1438 1439 imp = EnforceType(Builder, imp, MSI.MessengerType); 1440 1441 llvm::Instruction *call; 1442 RValue msgRet = CGF.EmitCall(MSI.CallInfo, imp, Return, ActualArgs, 1443 0, &call); 1444 call->setMetadata(msgSendMDKind, node); 1445 1446 1447 if (!isPointerSizedReturn) { 1448 messageBB = CGF.Builder.GetInsertBlock(); 1449 CGF.Builder.CreateBr(continueBB); 1450 CGF.EmitBlock(continueBB); 1451 if (msgRet.isScalar()) { 1452 llvm::Value *v = msgRet.getScalarVal(); 1453 llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2); 1454 phi->addIncoming(v, messageBB); 1455 phi->addIncoming(llvm::Constant::getNullValue(v->getType()), startBB); 1456 msgRet = RValue::get(phi); 1457 } else if (msgRet.isAggregate()) { 1458 llvm::Value *v = msgRet.getAggregateAddr(); 1459 llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2); 1460 llvm::PointerType *RetTy = cast<llvm::PointerType>(v->getType()); 1461 llvm::AllocaInst *NullVal = 1462 CGF.CreateTempAlloca(RetTy->getElementType(), "null"); 1463 CGF.InitTempAlloca(NullVal, 1464 llvm::Constant::getNullValue(RetTy->getElementType())); 1465 phi->addIncoming(v, messageBB); 1466 phi->addIncoming(NullVal, startBB); 1467 msgRet = RValue::getAggregate(phi); 1468 } else /* isComplex() */ { 1469 std::pair<llvm::Value*,llvm::Value*> v = msgRet.getComplexVal(); 1470 llvm::PHINode *phi = Builder.CreatePHI(v.first->getType(), 2); 1471 phi->addIncoming(v.first, messageBB); 1472 phi->addIncoming(llvm::Constant::getNullValue(v.first->getType()), 1473 startBB); 1474 llvm::PHINode *phi2 = Builder.CreatePHI(v.second->getType(), 2); 1475 phi2->addIncoming(v.second, messageBB); 1476 phi2->addIncoming(llvm::Constant::getNullValue(v.second->getType()), 1477 startBB); 1478 msgRet = RValue::getComplex(phi, phi2); 1479 } 1480 } 1481 return msgRet; 1482 } 1483 1484 /// Generates a MethodList. Used in construction of a objc_class and 1485 /// objc_category structures. 1486 llvm::Constant *CGObjCGNU:: 1487 GenerateMethodList(const StringRef &ClassName, 1488 const StringRef &CategoryName, 1489 ArrayRef<Selector> MethodSels, 1490 ArrayRef<llvm::Constant *> MethodTypes, 1491 bool isClassMethodList) { 1492 if (MethodSels.empty()) 1493 return NULLPtr; 1494 // Get the method structure type. 1495 llvm::StructType *ObjCMethodTy = llvm::StructType::get( 1496 PtrToInt8Ty, // Really a selector, but the runtime creates it us. 1497 PtrToInt8Ty, // Method types 1498 IMPTy, //Method pointer 1499 NULL); 1500 std::vector<llvm::Constant*> Methods; 1501 std::vector<llvm::Constant*> Elements; 1502 for (unsigned int i = 0, e = MethodTypes.size(); i < e; ++i) { 1503 Elements.clear(); 1504 llvm::Constant *Method = 1505 TheModule.getFunction(SymbolNameForMethod(ClassName, CategoryName, 1506 MethodSels[i], 1507 isClassMethodList)); 1508 assert(Method && "Can't generate metadata for method that doesn't exist"); 1509 llvm::Constant *C = MakeConstantString(MethodSels[i].getAsString()); 1510 Elements.push_back(C); 1511 Elements.push_back(MethodTypes[i]); 1512 Method = llvm::ConstantExpr::getBitCast(Method, 1513 IMPTy); 1514 Elements.push_back(Method); 1515 Methods.push_back(llvm::ConstantStruct::get(ObjCMethodTy, Elements)); 1516 } 1517 1518 // Array of method structures 1519 llvm::ArrayType *ObjCMethodArrayTy = llvm::ArrayType::get(ObjCMethodTy, 1520 Methods.size()); 1521 llvm::Constant *MethodArray = llvm::ConstantArray::get(ObjCMethodArrayTy, 1522 Methods); 1523 1524 // Structure containing list pointer, array and array count 1525 llvm::StructType *ObjCMethodListTy = llvm::StructType::create(VMContext); 1526 llvm::Type *NextPtrTy = llvm::PointerType::getUnqual(ObjCMethodListTy); 1527 ObjCMethodListTy->setBody( 1528 NextPtrTy, 1529 IntTy, 1530 ObjCMethodArrayTy, 1531 NULL); 1532 1533 Methods.clear(); 1534 Methods.push_back(llvm::ConstantPointerNull::get( 1535 llvm::PointerType::getUnqual(ObjCMethodListTy))); 1536 Methods.push_back(llvm::ConstantInt::get(Int32Ty, MethodTypes.size())); 1537 Methods.push_back(MethodArray); 1538 1539 // Create an instance of the structure 1540 return MakeGlobal(ObjCMethodListTy, Methods, ".objc_method_list"); 1541 } 1542 1543 /// Generates an IvarList. Used in construction of a objc_class. 1544 llvm::Constant *CGObjCGNU:: 1545 GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames, 1546 ArrayRef<llvm::Constant *> IvarTypes, 1547 ArrayRef<llvm::Constant *> IvarOffsets) { 1548 if (IvarNames.size() == 0) 1549 return NULLPtr; 1550 // Get the method structure type. 1551 llvm::StructType *ObjCIvarTy = llvm::StructType::get( 1552 PtrToInt8Ty, 1553 PtrToInt8Ty, 1554 IntTy, 1555 NULL); 1556 std::vector<llvm::Constant*> Ivars; 1557 std::vector<llvm::Constant*> Elements; 1558 for (unsigned int i = 0, e = IvarNames.size() ; i < e ; i++) { 1559 Elements.clear(); 1560 Elements.push_back(IvarNames[i]); 1561 Elements.push_back(IvarTypes[i]); 1562 Elements.push_back(IvarOffsets[i]); 1563 Ivars.push_back(llvm::ConstantStruct::get(ObjCIvarTy, Elements)); 1564 } 1565 1566 // Array of method structures 1567 llvm::ArrayType *ObjCIvarArrayTy = llvm::ArrayType::get(ObjCIvarTy, 1568 IvarNames.size()); 1569 1570 1571 Elements.clear(); 1572 Elements.push_back(llvm::ConstantInt::get(IntTy, (int)IvarNames.size())); 1573 Elements.push_back(llvm::ConstantArray::get(ObjCIvarArrayTy, Ivars)); 1574 // Structure containing array and array count 1575 llvm::StructType *ObjCIvarListTy = llvm::StructType::get(IntTy, 1576 ObjCIvarArrayTy, 1577 NULL); 1578 1579 // Create an instance of the structure 1580 return MakeGlobal(ObjCIvarListTy, Elements, ".objc_ivar_list"); 1581 } 1582 1583 /// Generate a class structure 1584 llvm::Constant *CGObjCGNU::GenerateClassStructure( 1585 llvm::Constant *MetaClass, 1586 llvm::Constant *SuperClass, 1587 unsigned info, 1588 const char *Name, 1589 llvm::Constant *Version, 1590 llvm::Constant *InstanceSize, 1591 llvm::Constant *IVars, 1592 llvm::Constant *Methods, 1593 llvm::Constant *Protocols, 1594 llvm::Constant *IvarOffsets, 1595 llvm::Constant *Properties, 1596 llvm::Constant *StrongIvarBitmap, 1597 llvm::Constant *WeakIvarBitmap, 1598 bool isMeta) { 1599 // Set up the class structure 1600 // Note: Several of these are char*s when they should be ids. This is 1601 // because the runtime performs this translation on load. 1602 // 1603 // Fields marked New ABI are part of the GNUstep runtime. We emit them 1604 // anyway; the classes will still work with the GNU runtime, they will just 1605 // be ignored. 1606 llvm::StructType *ClassTy = llvm::StructType::get( 1607 PtrToInt8Ty, // isa 1608 PtrToInt8Ty, // super_class 1609 PtrToInt8Ty, // name 1610 LongTy, // version 1611 LongTy, // info 1612 LongTy, // instance_size 1613 IVars->getType(), // ivars 1614 Methods->getType(), // methods 1615 // These are all filled in by the runtime, so we pretend 1616 PtrTy, // dtable 1617 PtrTy, // subclass_list 1618 PtrTy, // sibling_class 1619 PtrTy, // protocols 1620 PtrTy, // gc_object_type 1621 // New ABI: 1622 LongTy, // abi_version 1623 IvarOffsets->getType(), // ivar_offsets 1624 Properties->getType(), // properties 1625 IntPtrTy, // strong_pointers 1626 IntPtrTy, // weak_pointers 1627 NULL); 1628 llvm::Constant *Zero = llvm::ConstantInt::get(LongTy, 0); 1629 // Fill in the structure 1630 std::vector<llvm::Constant*> Elements; 1631 Elements.push_back(llvm::ConstantExpr::getBitCast(MetaClass, PtrToInt8Ty)); 1632 Elements.push_back(SuperClass); 1633 Elements.push_back(MakeConstantString(Name, ".class_name")); 1634 Elements.push_back(Zero); 1635 Elements.push_back(llvm::ConstantInt::get(LongTy, info)); 1636 if (isMeta) { 1637 llvm::DataLayout td(&TheModule); 1638 Elements.push_back( 1639 llvm::ConstantInt::get(LongTy, 1640 td.getTypeSizeInBits(ClassTy) / 1641 CGM.getContext().getCharWidth())); 1642 } else 1643 Elements.push_back(InstanceSize); 1644 Elements.push_back(IVars); 1645 Elements.push_back(Methods); 1646 Elements.push_back(NULLPtr); 1647 Elements.push_back(NULLPtr); 1648 Elements.push_back(NULLPtr); 1649 Elements.push_back(llvm::ConstantExpr::getBitCast(Protocols, PtrTy)); 1650 Elements.push_back(NULLPtr); 1651 Elements.push_back(llvm::ConstantInt::get(LongTy, 1)); 1652 Elements.push_back(IvarOffsets); 1653 Elements.push_back(Properties); 1654 Elements.push_back(StrongIvarBitmap); 1655 Elements.push_back(WeakIvarBitmap); 1656 // Create an instance of the structure 1657 // This is now an externally visible symbol, so that we can speed up class 1658 // messages in the next ABI. We may already have some weak references to 1659 // this, so check and fix them properly. 1660 std::string ClassSym((isMeta ? "_OBJC_METACLASS_": "_OBJC_CLASS_") + 1661 std::string(Name)); 1662 llvm::GlobalVariable *ClassRef = TheModule.getNamedGlobal(ClassSym); 1663 llvm::Constant *Class = MakeGlobal(ClassTy, Elements, ClassSym, 1664 llvm::GlobalValue::ExternalLinkage); 1665 if (ClassRef) { 1666 ClassRef->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(Class, 1667 ClassRef->getType())); 1668 ClassRef->removeFromParent(); 1669 Class->setName(ClassSym); 1670 } 1671 return Class; 1672 } 1673 1674 llvm::Constant *CGObjCGNU:: 1675 GenerateProtocolMethodList(ArrayRef<llvm::Constant *> MethodNames, 1676 ArrayRef<llvm::Constant *> MethodTypes) { 1677 // Get the method structure type. 1678 llvm::StructType *ObjCMethodDescTy = llvm::StructType::get( 1679 PtrToInt8Ty, // Really a selector, but the runtime does the casting for us. 1680 PtrToInt8Ty, 1681 NULL); 1682 std::vector<llvm::Constant*> Methods; 1683 std::vector<llvm::Constant*> Elements; 1684 for (unsigned int i = 0, e = MethodTypes.size() ; i < e ; i++) { 1685 Elements.clear(); 1686 Elements.push_back(MethodNames[i]); 1687 Elements.push_back(MethodTypes[i]); 1688 Methods.push_back(llvm::ConstantStruct::get(ObjCMethodDescTy, Elements)); 1689 } 1690 llvm::ArrayType *ObjCMethodArrayTy = llvm::ArrayType::get(ObjCMethodDescTy, 1691 MethodNames.size()); 1692 llvm::Constant *Array = llvm::ConstantArray::get(ObjCMethodArrayTy, 1693 Methods); 1694 llvm::StructType *ObjCMethodDescListTy = llvm::StructType::get( 1695 IntTy, ObjCMethodArrayTy, NULL); 1696 Methods.clear(); 1697 Methods.push_back(llvm::ConstantInt::get(IntTy, MethodNames.size())); 1698 Methods.push_back(Array); 1699 return MakeGlobal(ObjCMethodDescListTy, Methods, ".objc_method_list"); 1700 } 1701 1702 // Create the protocol list structure used in classes, categories and so on 1703 llvm::Constant *CGObjCGNU::GenerateProtocolList(ArrayRef<std::string>Protocols){ 1704 llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(PtrToInt8Ty, 1705 Protocols.size()); 1706 llvm::StructType *ProtocolListTy = llvm::StructType::get( 1707 PtrTy, //Should be a recurisve pointer, but it's always NULL here. 1708 SizeTy, 1709 ProtocolArrayTy, 1710 NULL); 1711 std::vector<llvm::Constant*> Elements; 1712 for (const std::string *iter = Protocols.begin(), *endIter = Protocols.end(); 1713 iter != endIter ; iter++) { 1714 llvm::Constant *protocol = 0; 1715 llvm::StringMap<llvm::Constant*>::iterator value = 1716 ExistingProtocols.find(*iter); 1717 if (value == ExistingProtocols.end()) { 1718 protocol = GenerateEmptyProtocol(*iter); 1719 } else { 1720 protocol = value->getValue(); 1721 } 1722 llvm::Constant *Ptr = llvm::ConstantExpr::getBitCast(protocol, 1723 PtrToInt8Ty); 1724 Elements.push_back(Ptr); 1725 } 1726 llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy, 1727 Elements); 1728 Elements.clear(); 1729 Elements.push_back(NULLPtr); 1730 Elements.push_back(llvm::ConstantInt::get(LongTy, Protocols.size())); 1731 Elements.push_back(ProtocolArray); 1732 return MakeGlobal(ProtocolListTy, Elements, ".objc_protocol_list"); 1733 } 1734 1735 llvm::Value *CGObjCGNU::GenerateProtocolRef(CodeGenFunction &CGF, 1736 const ObjCProtocolDecl *PD) { 1737 llvm::Value *protocol = ExistingProtocols[PD->getNameAsString()]; 1738 llvm::Type *T = 1739 CGM.getTypes().ConvertType(CGM.getContext().getObjCProtoType()); 1740 return CGF.Builder.CreateBitCast(protocol, llvm::PointerType::getUnqual(T)); 1741 } 1742 1743 llvm::Constant *CGObjCGNU::GenerateEmptyProtocol( 1744 const std::string &ProtocolName) { 1745 SmallVector<std::string, 0> EmptyStringVector; 1746 SmallVector<llvm::Constant*, 0> EmptyConstantVector; 1747 1748 llvm::Constant *ProtocolList = GenerateProtocolList(EmptyStringVector); 1749 llvm::Constant *MethodList = 1750 GenerateProtocolMethodList(EmptyConstantVector, EmptyConstantVector); 1751 // Protocols are objects containing lists of the methods implemented and 1752 // protocols adopted. 1753 llvm::StructType *ProtocolTy = llvm::StructType::get(IdTy, 1754 PtrToInt8Ty, 1755 ProtocolList->getType(), 1756 MethodList->getType(), 1757 MethodList->getType(), 1758 MethodList->getType(), 1759 MethodList->getType(), 1760 NULL); 1761 std::vector<llvm::Constant*> Elements; 1762 // The isa pointer must be set to a magic number so the runtime knows it's 1763 // the correct layout. 1764 Elements.push_back(llvm::ConstantExpr::getIntToPtr( 1765 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy)); 1766 Elements.push_back(MakeConstantString(ProtocolName, ".objc_protocol_name")); 1767 Elements.push_back(ProtocolList); 1768 Elements.push_back(MethodList); 1769 Elements.push_back(MethodList); 1770 Elements.push_back(MethodList); 1771 Elements.push_back(MethodList); 1772 return MakeGlobal(ProtocolTy, Elements, ".objc_protocol"); 1773 } 1774 1775 void CGObjCGNU::GenerateProtocol(const ObjCProtocolDecl *PD) { 1776 ASTContext &Context = CGM.getContext(); 1777 std::string ProtocolName = PD->getNameAsString(); 1778 1779 // Use the protocol definition, if there is one. 1780 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 1781 PD = Def; 1782 1783 SmallVector<std::string, 16> Protocols; 1784 for (ObjCProtocolDecl::protocol_iterator PI = PD->protocol_begin(), 1785 E = PD->protocol_end(); PI != E; ++PI) 1786 Protocols.push_back((*PI)->getNameAsString()); 1787 SmallVector<llvm::Constant*, 16> InstanceMethodNames; 1788 SmallVector<llvm::Constant*, 16> InstanceMethodTypes; 1789 SmallVector<llvm::Constant*, 16> OptionalInstanceMethodNames; 1790 SmallVector<llvm::Constant*, 16> OptionalInstanceMethodTypes; 1791 for (ObjCProtocolDecl::instmeth_iterator iter = PD->instmeth_begin(), 1792 E = PD->instmeth_end(); iter != E; iter++) { 1793 std::string TypeStr; 1794 Context.getObjCEncodingForMethodDecl(*iter, TypeStr); 1795 if ((*iter)->getImplementationControl() == ObjCMethodDecl::Optional) { 1796 OptionalInstanceMethodNames.push_back( 1797 MakeConstantString((*iter)->getSelector().getAsString())); 1798 OptionalInstanceMethodTypes.push_back(MakeConstantString(TypeStr)); 1799 } else { 1800 InstanceMethodNames.push_back( 1801 MakeConstantString((*iter)->getSelector().getAsString())); 1802 InstanceMethodTypes.push_back(MakeConstantString(TypeStr)); 1803 } 1804 } 1805 // Collect information about class methods: 1806 SmallVector<llvm::Constant*, 16> ClassMethodNames; 1807 SmallVector<llvm::Constant*, 16> ClassMethodTypes; 1808 SmallVector<llvm::Constant*, 16> OptionalClassMethodNames; 1809 SmallVector<llvm::Constant*, 16> OptionalClassMethodTypes; 1810 for (ObjCProtocolDecl::classmeth_iterator 1811 iter = PD->classmeth_begin(), endIter = PD->classmeth_end(); 1812 iter != endIter ; iter++) { 1813 std::string TypeStr; 1814 Context.getObjCEncodingForMethodDecl((*iter),TypeStr); 1815 if ((*iter)->getImplementationControl() == ObjCMethodDecl::Optional) { 1816 OptionalClassMethodNames.push_back( 1817 MakeConstantString((*iter)->getSelector().getAsString())); 1818 OptionalClassMethodTypes.push_back(MakeConstantString(TypeStr)); 1819 } else { 1820 ClassMethodNames.push_back( 1821 MakeConstantString((*iter)->getSelector().getAsString())); 1822 ClassMethodTypes.push_back(MakeConstantString(TypeStr)); 1823 } 1824 } 1825 1826 llvm::Constant *ProtocolList = GenerateProtocolList(Protocols); 1827 llvm::Constant *InstanceMethodList = 1828 GenerateProtocolMethodList(InstanceMethodNames, InstanceMethodTypes); 1829 llvm::Constant *ClassMethodList = 1830 GenerateProtocolMethodList(ClassMethodNames, ClassMethodTypes); 1831 llvm::Constant *OptionalInstanceMethodList = 1832 GenerateProtocolMethodList(OptionalInstanceMethodNames, 1833 OptionalInstanceMethodTypes); 1834 llvm::Constant *OptionalClassMethodList = 1835 GenerateProtocolMethodList(OptionalClassMethodNames, 1836 OptionalClassMethodTypes); 1837 1838 // Property metadata: name, attributes, isSynthesized, setter name, setter 1839 // types, getter name, getter types. 1840 // The isSynthesized value is always set to 0 in a protocol. It exists to 1841 // simplify the runtime library by allowing it to use the same data 1842 // structures for protocol metadata everywhere. 1843 llvm::StructType *PropertyMetadataTy = llvm::StructType::get( 1844 PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty, 1845 PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, NULL); 1846 std::vector<llvm::Constant*> Properties; 1847 std::vector<llvm::Constant*> OptionalProperties; 1848 1849 // Add all of the property methods need adding to the method list and to the 1850 // property metadata list. 1851 for (ObjCContainerDecl::prop_iterator 1852 iter = PD->prop_begin(), endIter = PD->prop_end(); 1853 iter != endIter ; iter++) { 1854 std::vector<llvm::Constant*> Fields; 1855 ObjCPropertyDecl *property = *iter; 1856 1857 Fields.push_back(MakePropertyEncodingString(property, 0)); 1858 PushPropertyAttributes(Fields, property); 1859 1860 if (ObjCMethodDecl *getter = property->getGetterMethodDecl()) { 1861 std::string TypeStr; 1862 Context.getObjCEncodingForMethodDecl(getter,TypeStr); 1863 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr); 1864 InstanceMethodTypes.push_back(TypeEncoding); 1865 Fields.push_back(MakeConstantString(getter->getSelector().getAsString())); 1866 Fields.push_back(TypeEncoding); 1867 } else { 1868 Fields.push_back(NULLPtr); 1869 Fields.push_back(NULLPtr); 1870 } 1871 if (ObjCMethodDecl *setter = property->getSetterMethodDecl()) { 1872 std::string TypeStr; 1873 Context.getObjCEncodingForMethodDecl(setter,TypeStr); 1874 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr); 1875 InstanceMethodTypes.push_back(TypeEncoding); 1876 Fields.push_back(MakeConstantString(setter->getSelector().getAsString())); 1877 Fields.push_back(TypeEncoding); 1878 } else { 1879 Fields.push_back(NULLPtr); 1880 Fields.push_back(NULLPtr); 1881 } 1882 if (property->getPropertyImplementation() == ObjCPropertyDecl::Optional) { 1883 OptionalProperties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields)); 1884 } else { 1885 Properties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields)); 1886 } 1887 } 1888 llvm::Constant *PropertyArray = llvm::ConstantArray::get( 1889 llvm::ArrayType::get(PropertyMetadataTy, Properties.size()), Properties); 1890 llvm::Constant* PropertyListInitFields[] = 1891 {llvm::ConstantInt::get(IntTy, Properties.size()), NULLPtr, PropertyArray}; 1892 1893 llvm::Constant *PropertyListInit = 1894 llvm::ConstantStruct::getAnon(PropertyListInitFields); 1895 llvm::Constant *PropertyList = new llvm::GlobalVariable(TheModule, 1896 PropertyListInit->getType(), false, llvm::GlobalValue::InternalLinkage, 1897 PropertyListInit, ".objc_property_list"); 1898 1899 llvm::Constant *OptionalPropertyArray = 1900 llvm::ConstantArray::get(llvm::ArrayType::get(PropertyMetadataTy, 1901 OptionalProperties.size()) , OptionalProperties); 1902 llvm::Constant* OptionalPropertyListInitFields[] = { 1903 llvm::ConstantInt::get(IntTy, OptionalProperties.size()), NULLPtr, 1904 OptionalPropertyArray }; 1905 1906 llvm::Constant *OptionalPropertyListInit = 1907 llvm::ConstantStruct::getAnon(OptionalPropertyListInitFields); 1908 llvm::Constant *OptionalPropertyList = new llvm::GlobalVariable(TheModule, 1909 OptionalPropertyListInit->getType(), false, 1910 llvm::GlobalValue::InternalLinkage, OptionalPropertyListInit, 1911 ".objc_property_list"); 1912 1913 // Protocols are objects containing lists of the methods implemented and 1914 // protocols adopted. 1915 llvm::StructType *ProtocolTy = llvm::StructType::get(IdTy, 1916 PtrToInt8Ty, 1917 ProtocolList->getType(), 1918 InstanceMethodList->getType(), 1919 ClassMethodList->getType(), 1920 OptionalInstanceMethodList->getType(), 1921 OptionalClassMethodList->getType(), 1922 PropertyList->getType(), 1923 OptionalPropertyList->getType(), 1924 NULL); 1925 std::vector<llvm::Constant*> Elements; 1926 // The isa pointer must be set to a magic number so the runtime knows it's 1927 // the correct layout. 1928 Elements.push_back(llvm::ConstantExpr::getIntToPtr( 1929 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy)); 1930 Elements.push_back(MakeConstantString(ProtocolName, ".objc_protocol_name")); 1931 Elements.push_back(ProtocolList); 1932 Elements.push_back(InstanceMethodList); 1933 Elements.push_back(ClassMethodList); 1934 Elements.push_back(OptionalInstanceMethodList); 1935 Elements.push_back(OptionalClassMethodList); 1936 Elements.push_back(PropertyList); 1937 Elements.push_back(OptionalPropertyList); 1938 ExistingProtocols[ProtocolName] = 1939 llvm::ConstantExpr::getBitCast(MakeGlobal(ProtocolTy, Elements, 1940 ".objc_protocol"), IdTy); 1941 } 1942 void CGObjCGNU::GenerateProtocolHolderCategory() { 1943 // Collect information about instance methods 1944 SmallVector<Selector, 1> MethodSels; 1945 SmallVector<llvm::Constant*, 1> MethodTypes; 1946 1947 std::vector<llvm::Constant*> Elements; 1948 const std::string ClassName = "__ObjC_Protocol_Holder_Ugly_Hack"; 1949 const std::string CategoryName = "AnotherHack"; 1950 Elements.push_back(MakeConstantString(CategoryName)); 1951 Elements.push_back(MakeConstantString(ClassName)); 1952 // Instance method list 1953 Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList( 1954 ClassName, CategoryName, MethodSels, MethodTypes, false), PtrTy)); 1955 // Class method list 1956 Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList( 1957 ClassName, CategoryName, MethodSels, MethodTypes, true), PtrTy)); 1958 // Protocol list 1959 llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(PtrTy, 1960 ExistingProtocols.size()); 1961 llvm::StructType *ProtocolListTy = llvm::StructType::get( 1962 PtrTy, //Should be a recurisve pointer, but it's always NULL here. 1963 SizeTy, 1964 ProtocolArrayTy, 1965 NULL); 1966 std::vector<llvm::Constant*> ProtocolElements; 1967 for (llvm::StringMapIterator<llvm::Constant*> iter = 1968 ExistingProtocols.begin(), endIter = ExistingProtocols.end(); 1969 iter != endIter ; iter++) { 1970 llvm::Constant *Ptr = llvm::ConstantExpr::getBitCast(iter->getValue(), 1971 PtrTy); 1972 ProtocolElements.push_back(Ptr); 1973 } 1974 llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy, 1975 ProtocolElements); 1976 ProtocolElements.clear(); 1977 ProtocolElements.push_back(NULLPtr); 1978 ProtocolElements.push_back(llvm::ConstantInt::get(LongTy, 1979 ExistingProtocols.size())); 1980 ProtocolElements.push_back(ProtocolArray); 1981 Elements.push_back(llvm::ConstantExpr::getBitCast(MakeGlobal(ProtocolListTy, 1982 ProtocolElements, ".objc_protocol_list"), PtrTy)); 1983 Categories.push_back(llvm::ConstantExpr::getBitCast( 1984 MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, 1985 PtrTy, PtrTy, PtrTy, NULL), Elements), PtrTy)); 1986 } 1987 1988 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are 1989 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63 1990 /// bits set to their values, LSB first, while larger ones are stored in a 1991 /// structure of this / form: 1992 /// 1993 /// struct { int32_t length; int32_t values[length]; }; 1994 /// 1995 /// The values in the array are stored in host-endian format, with the least 1996 /// significant bit being assumed to come first in the bitfield. Therefore, a 1997 /// bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, while a 1998 /// bitfield / with the 63rd bit set will be 1<<64. 1999 llvm::Constant *CGObjCGNU::MakeBitField(ArrayRef<bool> bits) { 2000 int bitCount = bits.size(); 2001 int ptrBits = 2002 (TheModule.getPointerSize() == llvm::Module::Pointer32) ? 32 : 64; 2003 if (bitCount < ptrBits) { 2004 uint64_t val = 1; 2005 for (int i=0 ; i<bitCount ; ++i) { 2006 if (bits[i]) val |= 1ULL<<(i+1); 2007 } 2008 return llvm::ConstantInt::get(IntPtrTy, val); 2009 } 2010 SmallVector<llvm::Constant *, 8> values; 2011 int v=0; 2012 while (v < bitCount) { 2013 int32_t word = 0; 2014 for (int i=0 ; (i<32) && (v<bitCount) ; ++i) { 2015 if (bits[v]) word |= 1<<i; 2016 v++; 2017 } 2018 values.push_back(llvm::ConstantInt::get(Int32Ty, word)); 2019 } 2020 llvm::ArrayType *arrayTy = llvm::ArrayType::get(Int32Ty, values.size()); 2021 llvm::Constant *array = llvm::ConstantArray::get(arrayTy, values); 2022 llvm::Constant *fields[2] = { 2023 llvm::ConstantInt::get(Int32Ty, values.size()), 2024 array }; 2025 llvm::Constant *GS = MakeGlobal(llvm::StructType::get(Int32Ty, arrayTy, 2026 NULL), fields); 2027 llvm::Constant *ptr = llvm::ConstantExpr::getPtrToInt(GS, IntPtrTy); 2028 return ptr; 2029 } 2030 2031 void CGObjCGNU::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 2032 std::string ClassName = OCD->getClassInterface()->getNameAsString(); 2033 std::string CategoryName = OCD->getNameAsString(); 2034 // Collect information about instance methods 2035 SmallVector<Selector, 16> InstanceMethodSels; 2036 SmallVector<llvm::Constant*, 16> InstanceMethodTypes; 2037 for (ObjCCategoryImplDecl::instmeth_iterator 2038 iter = OCD->instmeth_begin(), endIter = OCD->instmeth_end(); 2039 iter != endIter ; iter++) { 2040 InstanceMethodSels.push_back((*iter)->getSelector()); 2041 std::string TypeStr; 2042 CGM.getContext().getObjCEncodingForMethodDecl(*iter,TypeStr); 2043 InstanceMethodTypes.push_back(MakeConstantString(TypeStr)); 2044 } 2045 2046 // Collect information about class methods 2047 SmallVector<Selector, 16> ClassMethodSels; 2048 SmallVector<llvm::Constant*, 16> ClassMethodTypes; 2049 for (ObjCCategoryImplDecl::classmeth_iterator 2050 iter = OCD->classmeth_begin(), endIter = OCD->classmeth_end(); 2051 iter != endIter ; iter++) { 2052 ClassMethodSels.push_back((*iter)->getSelector()); 2053 std::string TypeStr; 2054 CGM.getContext().getObjCEncodingForMethodDecl(*iter,TypeStr); 2055 ClassMethodTypes.push_back(MakeConstantString(TypeStr)); 2056 } 2057 2058 // Collect the names of referenced protocols 2059 SmallVector<std::string, 16> Protocols; 2060 const ObjCCategoryDecl *CatDecl = OCD->getCategoryDecl(); 2061 const ObjCList<ObjCProtocolDecl> &Protos = CatDecl->getReferencedProtocols(); 2062 for (ObjCList<ObjCProtocolDecl>::iterator I = Protos.begin(), 2063 E = Protos.end(); I != E; ++I) 2064 Protocols.push_back((*I)->getNameAsString()); 2065 2066 std::vector<llvm::Constant*> Elements; 2067 Elements.push_back(MakeConstantString(CategoryName)); 2068 Elements.push_back(MakeConstantString(ClassName)); 2069 // Instance method list 2070 Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList( 2071 ClassName, CategoryName, InstanceMethodSels, InstanceMethodTypes, 2072 false), PtrTy)); 2073 // Class method list 2074 Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList( 2075 ClassName, CategoryName, ClassMethodSels, ClassMethodTypes, true), 2076 PtrTy)); 2077 // Protocol list 2078 Elements.push_back(llvm::ConstantExpr::getBitCast( 2079 GenerateProtocolList(Protocols), PtrTy)); 2080 Categories.push_back(llvm::ConstantExpr::getBitCast( 2081 MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, 2082 PtrTy, PtrTy, PtrTy, NULL), Elements), PtrTy)); 2083 } 2084 2085 llvm::Constant *CGObjCGNU::GeneratePropertyList(const ObjCImplementationDecl *OID, 2086 SmallVectorImpl<Selector> &InstanceMethodSels, 2087 SmallVectorImpl<llvm::Constant*> &InstanceMethodTypes) { 2088 ASTContext &Context = CGM.getContext(); 2089 // Property metadata: name, attributes, attributes2, padding1, padding2, 2090 // setter name, setter types, getter name, getter types. 2091 llvm::StructType *PropertyMetadataTy = llvm::StructType::get( 2092 PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty, 2093 PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, NULL); 2094 std::vector<llvm::Constant*> Properties; 2095 2096 // Add all of the property methods need adding to the method list and to the 2097 // property metadata list. 2098 for (ObjCImplDecl::propimpl_iterator 2099 iter = OID->propimpl_begin(), endIter = OID->propimpl_end(); 2100 iter != endIter ; iter++) { 2101 std::vector<llvm::Constant*> Fields; 2102 ObjCPropertyDecl *property = iter->getPropertyDecl(); 2103 ObjCPropertyImplDecl *propertyImpl = *iter; 2104 bool isSynthesized = (propertyImpl->getPropertyImplementation() == 2105 ObjCPropertyImplDecl::Synthesize); 2106 bool isDynamic = (propertyImpl->getPropertyImplementation() == 2107 ObjCPropertyImplDecl::Dynamic); 2108 2109 Fields.push_back(MakePropertyEncodingString(property, OID)); 2110 PushPropertyAttributes(Fields, property, isSynthesized, isDynamic); 2111 if (ObjCMethodDecl *getter = property->getGetterMethodDecl()) { 2112 std::string TypeStr; 2113 Context.getObjCEncodingForMethodDecl(getter,TypeStr); 2114 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr); 2115 if (isSynthesized) { 2116 InstanceMethodTypes.push_back(TypeEncoding); 2117 InstanceMethodSels.push_back(getter->getSelector()); 2118 } 2119 Fields.push_back(MakeConstantString(getter->getSelector().getAsString())); 2120 Fields.push_back(TypeEncoding); 2121 } else { 2122 Fields.push_back(NULLPtr); 2123 Fields.push_back(NULLPtr); 2124 } 2125 if (ObjCMethodDecl *setter = property->getSetterMethodDecl()) { 2126 std::string TypeStr; 2127 Context.getObjCEncodingForMethodDecl(setter,TypeStr); 2128 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr); 2129 if (isSynthesized) { 2130 InstanceMethodTypes.push_back(TypeEncoding); 2131 InstanceMethodSels.push_back(setter->getSelector()); 2132 } 2133 Fields.push_back(MakeConstantString(setter->getSelector().getAsString())); 2134 Fields.push_back(TypeEncoding); 2135 } else { 2136 Fields.push_back(NULLPtr); 2137 Fields.push_back(NULLPtr); 2138 } 2139 Properties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields)); 2140 } 2141 llvm::ArrayType *PropertyArrayTy = 2142 llvm::ArrayType::get(PropertyMetadataTy, Properties.size()); 2143 llvm::Constant *PropertyArray = llvm::ConstantArray::get(PropertyArrayTy, 2144 Properties); 2145 llvm::Constant* PropertyListInitFields[] = 2146 {llvm::ConstantInt::get(IntTy, Properties.size()), NULLPtr, PropertyArray}; 2147 2148 llvm::Constant *PropertyListInit = 2149 llvm::ConstantStruct::getAnon(PropertyListInitFields); 2150 return new llvm::GlobalVariable(TheModule, PropertyListInit->getType(), false, 2151 llvm::GlobalValue::InternalLinkage, PropertyListInit, 2152 ".objc_property_list"); 2153 } 2154 2155 void CGObjCGNU::RegisterAlias(const ObjCCompatibleAliasDecl *OAD) { 2156 // Get the class declaration for which the alias is specified. 2157 ObjCInterfaceDecl *ClassDecl = 2158 const_cast<ObjCInterfaceDecl *>(OAD->getClassInterface()); 2159 std::string ClassName = ClassDecl->getNameAsString(); 2160 std::string AliasName = OAD->getNameAsString(); 2161 ClassAliases.push_back(ClassAliasPair(ClassName,AliasName)); 2162 } 2163 2164 void CGObjCGNU::GenerateClass(const ObjCImplementationDecl *OID) { 2165 ASTContext &Context = CGM.getContext(); 2166 2167 // Get the superclass name. 2168 const ObjCInterfaceDecl * SuperClassDecl = 2169 OID->getClassInterface()->getSuperClass(); 2170 std::string SuperClassName; 2171 if (SuperClassDecl) { 2172 SuperClassName = SuperClassDecl->getNameAsString(); 2173 EmitClassRef(SuperClassName); 2174 } 2175 2176 // Get the class name 2177 ObjCInterfaceDecl *ClassDecl = 2178 const_cast<ObjCInterfaceDecl *>(OID->getClassInterface()); 2179 std::string ClassName = ClassDecl->getNameAsString(); 2180 // Emit the symbol that is used to generate linker errors if this class is 2181 // referenced in other modules but not declared. 2182 std::string classSymbolName = "__objc_class_name_" + ClassName; 2183 if (llvm::GlobalVariable *symbol = 2184 TheModule.getGlobalVariable(classSymbolName)) { 2185 symbol->setInitializer(llvm::ConstantInt::get(LongTy, 0)); 2186 } else { 2187 new llvm::GlobalVariable(TheModule, LongTy, false, 2188 llvm::GlobalValue::ExternalLinkage, llvm::ConstantInt::get(LongTy, 0), 2189 classSymbolName); 2190 } 2191 2192 // Get the size of instances. 2193 int instanceSize = 2194 Context.getASTObjCImplementationLayout(OID).getSize().getQuantity(); 2195 2196 // Collect information about instance variables. 2197 SmallVector<llvm::Constant*, 16> IvarNames; 2198 SmallVector<llvm::Constant*, 16> IvarTypes; 2199 SmallVector<llvm::Constant*, 16> IvarOffsets; 2200 2201 std::vector<llvm::Constant*> IvarOffsetValues; 2202 SmallVector<bool, 16> WeakIvars; 2203 SmallVector<bool, 16> StrongIvars; 2204 2205 int superInstanceSize = !SuperClassDecl ? 0 : 2206 Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity(); 2207 // For non-fragile ivars, set the instance size to 0 - {the size of just this 2208 // class}. The runtime will then set this to the correct value on load. 2209 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 2210 instanceSize = 0 - (instanceSize - superInstanceSize); 2211 } 2212 2213 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD; 2214 IVD = IVD->getNextIvar()) { 2215 // Store the name 2216 IvarNames.push_back(MakeConstantString(IVD->getNameAsString())); 2217 // Get the type encoding for this ivar 2218 std::string TypeStr; 2219 Context.getObjCEncodingForType(IVD->getType(), TypeStr); 2220 IvarTypes.push_back(MakeConstantString(TypeStr)); 2221 // Get the offset 2222 uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD); 2223 uint64_t Offset = BaseOffset; 2224 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 2225 Offset = BaseOffset - superInstanceSize; 2226 } 2227 llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset); 2228 // Create the direct offset value 2229 std::string OffsetName = "__objc_ivar_offset_value_" + ClassName +"." + 2230 IVD->getNameAsString(); 2231 llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName); 2232 if (OffsetVar) { 2233 OffsetVar->setInitializer(OffsetValue); 2234 // If this is the real definition, change its linkage type so that 2235 // different modules will use this one, rather than their private 2236 // copy. 2237 OffsetVar->setLinkage(llvm::GlobalValue::ExternalLinkage); 2238 } else 2239 OffsetVar = new llvm::GlobalVariable(TheModule, IntTy, 2240 false, llvm::GlobalValue::ExternalLinkage, 2241 OffsetValue, 2242 "__objc_ivar_offset_value_" + ClassName +"." + 2243 IVD->getNameAsString()); 2244 IvarOffsets.push_back(OffsetValue); 2245 IvarOffsetValues.push_back(OffsetVar); 2246 Qualifiers::ObjCLifetime lt = IVD->getType().getQualifiers().getObjCLifetime(); 2247 switch (lt) { 2248 case Qualifiers::OCL_Strong: 2249 StrongIvars.push_back(true); 2250 WeakIvars.push_back(false); 2251 break; 2252 case Qualifiers::OCL_Weak: 2253 StrongIvars.push_back(false); 2254 WeakIvars.push_back(true); 2255 break; 2256 default: 2257 StrongIvars.push_back(false); 2258 WeakIvars.push_back(false); 2259 } 2260 } 2261 llvm::Constant *StrongIvarBitmap = MakeBitField(StrongIvars); 2262 llvm::Constant *WeakIvarBitmap = MakeBitField(WeakIvars); 2263 llvm::GlobalVariable *IvarOffsetArray = 2264 MakeGlobalArray(PtrToIntTy, IvarOffsetValues, ".ivar.offsets"); 2265 2266 2267 // Collect information about instance methods 2268 SmallVector<Selector, 16> InstanceMethodSels; 2269 SmallVector<llvm::Constant*, 16> InstanceMethodTypes; 2270 for (ObjCImplementationDecl::instmeth_iterator 2271 iter = OID->instmeth_begin(), endIter = OID->instmeth_end(); 2272 iter != endIter ; iter++) { 2273 InstanceMethodSels.push_back((*iter)->getSelector()); 2274 std::string TypeStr; 2275 Context.getObjCEncodingForMethodDecl((*iter),TypeStr); 2276 InstanceMethodTypes.push_back(MakeConstantString(TypeStr)); 2277 } 2278 2279 llvm::Constant *Properties = GeneratePropertyList(OID, InstanceMethodSels, 2280 InstanceMethodTypes); 2281 2282 2283 // Collect information about class methods 2284 SmallVector<Selector, 16> ClassMethodSels; 2285 SmallVector<llvm::Constant*, 16> ClassMethodTypes; 2286 for (ObjCImplementationDecl::classmeth_iterator 2287 iter = OID->classmeth_begin(), endIter = OID->classmeth_end(); 2288 iter != endIter ; iter++) { 2289 ClassMethodSels.push_back((*iter)->getSelector()); 2290 std::string TypeStr; 2291 Context.getObjCEncodingForMethodDecl((*iter),TypeStr); 2292 ClassMethodTypes.push_back(MakeConstantString(TypeStr)); 2293 } 2294 // Collect the names of referenced protocols 2295 SmallVector<std::string, 16> Protocols; 2296 for (ObjCInterfaceDecl::protocol_iterator 2297 I = ClassDecl->protocol_begin(), 2298 E = ClassDecl->protocol_end(); I != E; ++I) 2299 Protocols.push_back((*I)->getNameAsString()); 2300 2301 2302 2303 // Get the superclass pointer. 2304 llvm::Constant *SuperClass; 2305 if (!SuperClassName.empty()) { 2306 SuperClass = MakeConstantString(SuperClassName, ".super_class_name"); 2307 } else { 2308 SuperClass = llvm::ConstantPointerNull::get(PtrToInt8Ty); 2309 } 2310 // Empty vector used to construct empty method lists 2311 SmallVector<llvm::Constant*, 1> empty; 2312 // Generate the method and instance variable lists 2313 llvm::Constant *MethodList = GenerateMethodList(ClassName, "", 2314 InstanceMethodSels, InstanceMethodTypes, false); 2315 llvm::Constant *ClassMethodList = GenerateMethodList(ClassName, "", 2316 ClassMethodSels, ClassMethodTypes, true); 2317 llvm::Constant *IvarList = GenerateIvarList(IvarNames, IvarTypes, 2318 IvarOffsets); 2319 // Irrespective of whether we are compiling for a fragile or non-fragile ABI, 2320 // we emit a symbol containing the offset for each ivar in the class. This 2321 // allows code compiled for the non-Fragile ABI to inherit from code compiled 2322 // for the legacy ABI, without causing problems. The converse is also 2323 // possible, but causes all ivar accesses to be fragile. 2324 2325 // Offset pointer for getting at the correct field in the ivar list when 2326 // setting up the alias. These are: The base address for the global, the 2327 // ivar array (second field), the ivar in this list (set for each ivar), and 2328 // the offset (third field in ivar structure) 2329 llvm::Type *IndexTy = Int32Ty; 2330 llvm::Constant *offsetPointerIndexes[] = {Zeros[0], 2331 llvm::ConstantInt::get(IndexTy, 1), 0, 2332 llvm::ConstantInt::get(IndexTy, 2) }; 2333 2334 unsigned ivarIndex = 0; 2335 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD; 2336 IVD = IVD->getNextIvar()) { 2337 const std::string Name = "__objc_ivar_offset_" + ClassName + '.' 2338 + IVD->getNameAsString(); 2339 offsetPointerIndexes[2] = llvm::ConstantInt::get(IndexTy, ivarIndex); 2340 // Get the correct ivar field 2341 llvm::Constant *offsetValue = llvm::ConstantExpr::getGetElementPtr( 2342 IvarList, offsetPointerIndexes); 2343 // Get the existing variable, if one exists. 2344 llvm::GlobalVariable *offset = TheModule.getNamedGlobal(Name); 2345 if (offset) { 2346 offset->setInitializer(offsetValue); 2347 // If this is the real definition, change its linkage type so that 2348 // different modules will use this one, rather than their private 2349 // copy. 2350 offset->setLinkage(llvm::GlobalValue::ExternalLinkage); 2351 } else { 2352 // Add a new alias if there isn't one already. 2353 offset = new llvm::GlobalVariable(TheModule, offsetValue->getType(), 2354 false, llvm::GlobalValue::ExternalLinkage, offsetValue, Name); 2355 (void) offset; // Silence dead store warning. 2356 } 2357 ++ivarIndex; 2358 } 2359 llvm::Constant *ZeroPtr = llvm::ConstantInt::get(IntPtrTy, 0); 2360 //Generate metaclass for class methods 2361 llvm::Constant *MetaClassStruct = GenerateClassStructure(NULLPtr, 2362 NULLPtr, 0x12L, ClassName.c_str(), 0, Zeros[0], GenerateIvarList( 2363 empty, empty, empty), ClassMethodList, NULLPtr, 2364 NULLPtr, NULLPtr, ZeroPtr, ZeroPtr, true); 2365 2366 // Generate the class structure 2367 llvm::Constant *ClassStruct = 2368 GenerateClassStructure(MetaClassStruct, SuperClass, 0x11L, 2369 ClassName.c_str(), 0, 2370 llvm::ConstantInt::get(LongTy, instanceSize), IvarList, 2371 MethodList, GenerateProtocolList(Protocols), IvarOffsetArray, 2372 Properties, StrongIvarBitmap, WeakIvarBitmap); 2373 2374 // Resolve the class aliases, if they exist. 2375 if (ClassPtrAlias) { 2376 ClassPtrAlias->replaceAllUsesWith( 2377 llvm::ConstantExpr::getBitCast(ClassStruct, IdTy)); 2378 ClassPtrAlias->eraseFromParent(); 2379 ClassPtrAlias = 0; 2380 } 2381 if (MetaClassPtrAlias) { 2382 MetaClassPtrAlias->replaceAllUsesWith( 2383 llvm::ConstantExpr::getBitCast(MetaClassStruct, IdTy)); 2384 MetaClassPtrAlias->eraseFromParent(); 2385 MetaClassPtrAlias = 0; 2386 } 2387 2388 // Add class structure to list to be added to the symtab later 2389 ClassStruct = llvm::ConstantExpr::getBitCast(ClassStruct, PtrToInt8Ty); 2390 Classes.push_back(ClassStruct); 2391 } 2392 2393 2394 llvm::Function *CGObjCGNU::ModuleInitFunction() { 2395 // Only emit an ObjC load function if no Objective-C stuff has been called 2396 if (Classes.empty() && Categories.empty() && ConstantStrings.empty() && 2397 ExistingProtocols.empty() && SelectorTable.empty()) 2398 return NULL; 2399 2400 // Add all referenced protocols to a category. 2401 GenerateProtocolHolderCategory(); 2402 2403 llvm::StructType *SelStructTy = dyn_cast<llvm::StructType>( 2404 SelectorTy->getElementType()); 2405 llvm::Type *SelStructPtrTy = SelectorTy; 2406 if (SelStructTy == 0) { 2407 SelStructTy = llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, NULL); 2408 SelStructPtrTy = llvm::PointerType::getUnqual(SelStructTy); 2409 } 2410 2411 std::vector<llvm::Constant*> Elements; 2412 llvm::Constant *Statics = NULLPtr; 2413 // Generate statics list: 2414 if (ConstantStrings.size()) { 2415 llvm::ArrayType *StaticsArrayTy = llvm::ArrayType::get(PtrToInt8Ty, 2416 ConstantStrings.size() + 1); 2417 ConstantStrings.push_back(NULLPtr); 2418 2419 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass; 2420 2421 if (StringClass.empty()) StringClass = "NXConstantString"; 2422 2423 Elements.push_back(MakeConstantString(StringClass, 2424 ".objc_static_class_name")); 2425 Elements.push_back(llvm::ConstantArray::get(StaticsArrayTy, 2426 ConstantStrings)); 2427 llvm::StructType *StaticsListTy = 2428 llvm::StructType::get(PtrToInt8Ty, StaticsArrayTy, NULL); 2429 llvm::Type *StaticsListPtrTy = 2430 llvm::PointerType::getUnqual(StaticsListTy); 2431 Statics = MakeGlobal(StaticsListTy, Elements, ".objc_statics"); 2432 llvm::ArrayType *StaticsListArrayTy = 2433 llvm::ArrayType::get(StaticsListPtrTy, 2); 2434 Elements.clear(); 2435 Elements.push_back(Statics); 2436 Elements.push_back(llvm::Constant::getNullValue(StaticsListPtrTy)); 2437 Statics = MakeGlobal(StaticsListArrayTy, Elements, ".objc_statics_ptr"); 2438 Statics = llvm::ConstantExpr::getBitCast(Statics, PtrTy); 2439 } 2440 // Array of classes, categories, and constant objects 2441 llvm::ArrayType *ClassListTy = llvm::ArrayType::get(PtrToInt8Ty, 2442 Classes.size() + Categories.size() + 2); 2443 llvm::StructType *SymTabTy = llvm::StructType::get(LongTy, SelStructPtrTy, 2444 llvm::Type::getInt16Ty(VMContext), 2445 llvm::Type::getInt16Ty(VMContext), 2446 ClassListTy, NULL); 2447 2448 Elements.clear(); 2449 // Pointer to an array of selectors used in this module. 2450 std::vector<llvm::Constant*> Selectors; 2451 std::vector<llvm::GlobalAlias*> SelectorAliases; 2452 for (SelectorMap::iterator iter = SelectorTable.begin(), 2453 iterEnd = SelectorTable.end(); iter != iterEnd ; ++iter) { 2454 2455 std::string SelNameStr = iter->first.getAsString(); 2456 llvm::Constant *SelName = ExportUniqueString(SelNameStr, ".objc_sel_name"); 2457 2458 SmallVectorImpl<TypedSelector> &Types = iter->second; 2459 for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(), 2460 e = Types.end() ; i!=e ; i++) { 2461 2462 llvm::Constant *SelectorTypeEncoding = NULLPtr; 2463 if (!i->first.empty()) 2464 SelectorTypeEncoding = MakeConstantString(i->first, ".objc_sel_types"); 2465 2466 Elements.push_back(SelName); 2467 Elements.push_back(SelectorTypeEncoding); 2468 Selectors.push_back(llvm::ConstantStruct::get(SelStructTy, Elements)); 2469 Elements.clear(); 2470 2471 // Store the selector alias for later replacement 2472 SelectorAliases.push_back(i->second); 2473 } 2474 } 2475 unsigned SelectorCount = Selectors.size(); 2476 // NULL-terminate the selector list. This should not actually be required, 2477 // because the selector list has a length field. Unfortunately, the GCC 2478 // runtime decides to ignore the length field and expects a NULL terminator, 2479 // and GCC cooperates with this by always setting the length to 0. 2480 Elements.push_back(NULLPtr); 2481 Elements.push_back(NULLPtr); 2482 Selectors.push_back(llvm::ConstantStruct::get(SelStructTy, Elements)); 2483 Elements.clear(); 2484 2485 // Number of static selectors 2486 Elements.push_back(llvm::ConstantInt::get(LongTy, SelectorCount)); 2487 llvm::Constant *SelectorList = MakeGlobalArray(SelStructTy, Selectors, 2488 ".objc_selector_list"); 2489 Elements.push_back(llvm::ConstantExpr::getBitCast(SelectorList, 2490 SelStructPtrTy)); 2491 2492 // Now that all of the static selectors exist, create pointers to them. 2493 for (unsigned int i=0 ; i<SelectorCount ; i++) { 2494 2495 llvm::Constant *Idxs[] = {Zeros[0], 2496 llvm::ConstantInt::get(Int32Ty, i), Zeros[0]}; 2497 // FIXME: We're generating redundant loads and stores here! 2498 llvm::Constant *SelPtr = llvm::ConstantExpr::getGetElementPtr(SelectorList, 2499 makeArrayRef(Idxs, 2)); 2500 // If selectors are defined as an opaque type, cast the pointer to this 2501 // type. 2502 SelPtr = llvm::ConstantExpr::getBitCast(SelPtr, SelectorTy); 2503 SelectorAliases[i]->replaceAllUsesWith(SelPtr); 2504 SelectorAliases[i]->eraseFromParent(); 2505 } 2506 2507 // Number of classes defined. 2508 Elements.push_back(llvm::ConstantInt::get(llvm::Type::getInt16Ty(VMContext), 2509 Classes.size())); 2510 // Number of categories defined 2511 Elements.push_back(llvm::ConstantInt::get(llvm::Type::getInt16Ty(VMContext), 2512 Categories.size())); 2513 // Create an array of classes, then categories, then static object instances 2514 Classes.insert(Classes.end(), Categories.begin(), Categories.end()); 2515 // NULL-terminated list of static object instances (mainly constant strings) 2516 Classes.push_back(Statics); 2517 Classes.push_back(NULLPtr); 2518 llvm::Constant *ClassList = llvm::ConstantArray::get(ClassListTy, Classes); 2519 Elements.push_back(ClassList); 2520 // Construct the symbol table 2521 llvm::Constant *SymTab= MakeGlobal(SymTabTy, Elements); 2522 2523 // The symbol table is contained in a module which has some version-checking 2524 // constants 2525 llvm::StructType * ModuleTy = llvm::StructType::get(LongTy, LongTy, 2526 PtrToInt8Ty, llvm::PointerType::getUnqual(SymTabTy), 2527 (RuntimeVersion >= 10) ? IntTy : NULL, NULL); 2528 Elements.clear(); 2529 // Runtime version, used for ABI compatibility checking. 2530 Elements.push_back(llvm::ConstantInt::get(LongTy, RuntimeVersion)); 2531 // sizeof(ModuleTy) 2532 llvm::DataLayout td(&TheModule); 2533 Elements.push_back( 2534 llvm::ConstantInt::get(LongTy, 2535 td.getTypeSizeInBits(ModuleTy) / 2536 CGM.getContext().getCharWidth())); 2537 2538 // The path to the source file where this module was declared 2539 SourceManager &SM = CGM.getContext().getSourceManager(); 2540 const FileEntry *mainFile = SM.getFileEntryForID(SM.getMainFileID()); 2541 std::string path = 2542 std::string(mainFile->getDir()->getName()) + '/' + mainFile->getName(); 2543 Elements.push_back(MakeConstantString(path, ".objc_source_file_name")); 2544 Elements.push_back(SymTab); 2545 2546 if (RuntimeVersion >= 10) 2547 switch (CGM.getLangOpts().getGC()) { 2548 case LangOptions::GCOnly: 2549 Elements.push_back(llvm::ConstantInt::get(IntTy, 2)); 2550 break; 2551 case LangOptions::NonGC: 2552 if (CGM.getLangOpts().ObjCAutoRefCount) 2553 Elements.push_back(llvm::ConstantInt::get(IntTy, 1)); 2554 else 2555 Elements.push_back(llvm::ConstantInt::get(IntTy, 0)); 2556 break; 2557 case LangOptions::HybridGC: 2558 Elements.push_back(llvm::ConstantInt::get(IntTy, 1)); 2559 break; 2560 } 2561 2562 llvm::Value *Module = MakeGlobal(ModuleTy, Elements); 2563 2564 // Create the load function calling the runtime entry point with the module 2565 // structure 2566 llvm::Function * LoadFunction = llvm::Function::Create( 2567 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false), 2568 llvm::GlobalValue::InternalLinkage, ".objc_load_function", 2569 &TheModule); 2570 llvm::BasicBlock *EntryBB = 2571 llvm::BasicBlock::Create(VMContext, "entry", LoadFunction); 2572 CGBuilderTy Builder(VMContext); 2573 Builder.SetInsertPoint(EntryBB); 2574 2575 llvm::FunctionType *FT = 2576 llvm::FunctionType::get(Builder.getVoidTy(), 2577 llvm::PointerType::getUnqual(ModuleTy), true); 2578 llvm::Value *Register = CGM.CreateRuntimeFunction(FT, "__objc_exec_class"); 2579 Builder.CreateCall(Register, Module); 2580 2581 if (!ClassAliases.empty()) { 2582 llvm::Type *ArgTypes[2] = {PtrTy, PtrToInt8Ty}; 2583 llvm::FunctionType *RegisterAliasTy = 2584 llvm::FunctionType::get(Builder.getVoidTy(), 2585 ArgTypes, false); 2586 llvm::Function *RegisterAlias = llvm::Function::Create( 2587 RegisterAliasTy, 2588 llvm::GlobalValue::ExternalWeakLinkage, "class_registerAlias_np", 2589 &TheModule); 2590 llvm::BasicBlock *AliasBB = 2591 llvm::BasicBlock::Create(VMContext, "alias", LoadFunction); 2592 llvm::BasicBlock *NoAliasBB = 2593 llvm::BasicBlock::Create(VMContext, "no_alias", LoadFunction); 2594 2595 // Branch based on whether the runtime provided class_registerAlias_np() 2596 llvm::Value *HasRegisterAlias = Builder.CreateICmpNE(RegisterAlias, 2597 llvm::Constant::getNullValue(RegisterAlias->getType())); 2598 Builder.CreateCondBr(HasRegisterAlias, AliasBB, NoAliasBB); 2599 2600 // The true branch (has alias registration fucntion): 2601 Builder.SetInsertPoint(AliasBB); 2602 // Emit alias registration calls: 2603 for (std::vector<ClassAliasPair>::iterator iter = ClassAliases.begin(); 2604 iter != ClassAliases.end(); ++iter) { 2605 llvm::Constant *TheClass = 2606 TheModule.getGlobalVariable(("_OBJC_CLASS_" + iter->first).c_str(), 2607 true); 2608 if (0 != TheClass) { 2609 TheClass = llvm::ConstantExpr::getBitCast(TheClass, PtrTy); 2610 Builder.CreateCall2(RegisterAlias, TheClass, 2611 MakeConstantString(iter->second)); 2612 } 2613 } 2614 // Jump to end: 2615 Builder.CreateBr(NoAliasBB); 2616 2617 // Missing alias registration function, just return from the function: 2618 Builder.SetInsertPoint(NoAliasBB); 2619 } 2620 Builder.CreateRetVoid(); 2621 2622 return LoadFunction; 2623 } 2624 2625 llvm::Function *CGObjCGNU::GenerateMethod(const ObjCMethodDecl *OMD, 2626 const ObjCContainerDecl *CD) { 2627 const ObjCCategoryImplDecl *OCD = 2628 dyn_cast<ObjCCategoryImplDecl>(OMD->getDeclContext()); 2629 StringRef CategoryName = OCD ? OCD->getName() : ""; 2630 StringRef ClassName = CD->getName(); 2631 Selector MethodName = OMD->getSelector(); 2632 bool isClassMethod = !OMD->isInstanceMethod(); 2633 2634 CodeGenTypes &Types = CGM.getTypes(); 2635 llvm::FunctionType *MethodTy = 2636 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 2637 std::string FunctionName = SymbolNameForMethod(ClassName, CategoryName, 2638 MethodName, isClassMethod); 2639 2640 llvm::Function *Method 2641 = llvm::Function::Create(MethodTy, 2642 llvm::GlobalValue::InternalLinkage, 2643 FunctionName, 2644 &TheModule); 2645 return Method; 2646 } 2647 2648 llvm::Constant *CGObjCGNU::GetPropertyGetFunction() { 2649 return GetPropertyFn; 2650 } 2651 2652 llvm::Constant *CGObjCGNU::GetPropertySetFunction() { 2653 return SetPropertyFn; 2654 } 2655 2656 llvm::Constant *CGObjCGNU::GetOptimizedPropertySetFunction(bool atomic, 2657 bool copy) { 2658 return 0; 2659 } 2660 2661 llvm::Constant *CGObjCGNU::GetGetStructFunction() { 2662 return GetStructPropertyFn; 2663 } 2664 llvm::Constant *CGObjCGNU::GetSetStructFunction() { 2665 return SetStructPropertyFn; 2666 } 2667 llvm::Constant *CGObjCGNU::GetCppAtomicObjectGetFunction() { 2668 return 0; 2669 } 2670 llvm::Constant *CGObjCGNU::GetCppAtomicObjectSetFunction() { 2671 return 0; 2672 } 2673 2674 llvm::Constant *CGObjCGNU::EnumerationMutationFunction() { 2675 return EnumerationMutationFn; 2676 } 2677 2678 void CGObjCGNU::EmitSynchronizedStmt(CodeGenFunction &CGF, 2679 const ObjCAtSynchronizedStmt &S) { 2680 EmitAtSynchronizedStmt(CGF, S, SyncEnterFn, SyncExitFn); 2681 } 2682 2683 2684 void CGObjCGNU::EmitTryStmt(CodeGenFunction &CGF, 2685 const ObjCAtTryStmt &S) { 2686 // Unlike the Apple non-fragile runtimes, which also uses 2687 // unwind-based zero cost exceptions, the GNU Objective C runtime's 2688 // EH support isn't a veneer over C++ EH. Instead, exception 2689 // objects are created by objc_exception_throw and destroyed by 2690 // the personality function; this avoids the need for bracketing 2691 // catch handlers with calls to __blah_begin_catch/__blah_end_catch 2692 // (or even _Unwind_DeleteException), but probably doesn't 2693 // interoperate very well with foreign exceptions. 2694 // 2695 // In Objective-C++ mode, we actually emit something equivalent to the C++ 2696 // exception handler. 2697 EmitTryCatchStmt(CGF, S, EnterCatchFn, ExitCatchFn, ExceptionReThrowFn); 2698 return ; 2699 } 2700 2701 void CGObjCGNU::EmitThrowStmt(CodeGenFunction &CGF, 2702 const ObjCAtThrowStmt &S, 2703 bool ClearInsertionPoint) { 2704 llvm::Value *ExceptionAsObject; 2705 2706 if (const Expr *ThrowExpr = S.getThrowExpr()) { 2707 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 2708 ExceptionAsObject = Exception; 2709 } else { 2710 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) && 2711 "Unexpected rethrow outside @catch block."); 2712 ExceptionAsObject = CGF.ObjCEHValueStack.back(); 2713 } 2714 ExceptionAsObject = CGF.Builder.CreateBitCast(ExceptionAsObject, IdTy); 2715 llvm::CallSite Throw = 2716 CGF.EmitRuntimeCallOrInvoke(ExceptionThrowFn, ExceptionAsObject); 2717 Throw.setDoesNotReturn(); 2718 CGF.Builder.CreateUnreachable(); 2719 if (ClearInsertionPoint) 2720 CGF.Builder.ClearInsertionPoint(); 2721 } 2722 2723 llvm::Value * CGObjCGNU::EmitObjCWeakRead(CodeGenFunction &CGF, 2724 llvm::Value *AddrWeakObj) { 2725 CGBuilderTy &B = CGF.Builder; 2726 AddrWeakObj = EnforceType(B, AddrWeakObj, PtrToIdTy); 2727 return B.CreateCall(WeakReadFn, AddrWeakObj); 2728 } 2729 2730 void CGObjCGNU::EmitObjCWeakAssign(CodeGenFunction &CGF, 2731 llvm::Value *src, llvm::Value *dst) { 2732 CGBuilderTy &B = CGF.Builder; 2733 src = EnforceType(B, src, IdTy); 2734 dst = EnforceType(B, dst, PtrToIdTy); 2735 B.CreateCall2(WeakAssignFn, src, dst); 2736 } 2737 2738 void CGObjCGNU::EmitObjCGlobalAssign(CodeGenFunction &CGF, 2739 llvm::Value *src, llvm::Value *dst, 2740 bool threadlocal) { 2741 CGBuilderTy &B = CGF.Builder; 2742 src = EnforceType(B, src, IdTy); 2743 dst = EnforceType(B, dst, PtrToIdTy); 2744 if (!threadlocal) 2745 B.CreateCall2(GlobalAssignFn, src, dst); 2746 else 2747 // FIXME. Add threadloca assign API 2748 llvm_unreachable("EmitObjCGlobalAssign - Threal Local API NYI"); 2749 } 2750 2751 void CGObjCGNU::EmitObjCIvarAssign(CodeGenFunction &CGF, 2752 llvm::Value *src, llvm::Value *dst, 2753 llvm::Value *ivarOffset) { 2754 CGBuilderTy &B = CGF.Builder; 2755 src = EnforceType(B, src, IdTy); 2756 dst = EnforceType(B, dst, IdTy); 2757 B.CreateCall3(IvarAssignFn, src, dst, ivarOffset); 2758 } 2759 2760 void CGObjCGNU::EmitObjCStrongCastAssign(CodeGenFunction &CGF, 2761 llvm::Value *src, llvm::Value *dst) { 2762 CGBuilderTy &B = CGF.Builder; 2763 src = EnforceType(B, src, IdTy); 2764 dst = EnforceType(B, dst, PtrToIdTy); 2765 B.CreateCall2(StrongCastAssignFn, src, dst); 2766 } 2767 2768 void CGObjCGNU::EmitGCMemmoveCollectable(CodeGenFunction &CGF, 2769 llvm::Value *DestPtr, 2770 llvm::Value *SrcPtr, 2771 llvm::Value *Size) { 2772 CGBuilderTy &B = CGF.Builder; 2773 DestPtr = EnforceType(B, DestPtr, PtrTy); 2774 SrcPtr = EnforceType(B, SrcPtr, PtrTy); 2775 2776 B.CreateCall3(MemMoveFn, DestPtr, SrcPtr, Size); 2777 } 2778 2779 llvm::GlobalVariable *CGObjCGNU::ObjCIvarOffsetVariable( 2780 const ObjCInterfaceDecl *ID, 2781 const ObjCIvarDecl *Ivar) { 2782 const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString() 2783 + '.' + Ivar->getNameAsString(); 2784 // Emit the variable and initialize it with what we think the correct value 2785 // is. This allows code compiled with non-fragile ivars to work correctly 2786 // when linked against code which isn't (most of the time). 2787 llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name); 2788 if (!IvarOffsetPointer) { 2789 // This will cause a run-time crash if we accidentally use it. A value of 2790 // 0 would seem more sensible, but will silently overwrite the isa pointer 2791 // causing a great deal of confusion. 2792 uint64_t Offset = -1; 2793 // We can't call ComputeIvarBaseOffset() here if we have the 2794 // implementation, because it will create an invalid ASTRecordLayout object 2795 // that we are then stuck with forever, so we only initialize the ivar 2796 // offset variable with a guess if we only have the interface. The 2797 // initializer will be reset later anyway, when we are generating the class 2798 // description. 2799 if (!CGM.getContext().getObjCImplementation( 2800 const_cast<ObjCInterfaceDecl *>(ID))) 2801 Offset = ComputeIvarBaseOffset(CGM, ID, Ivar); 2802 2803 llvm::ConstantInt *OffsetGuess = llvm::ConstantInt::get(Int32Ty, Offset, 2804 /*isSigned*/true); 2805 // Don't emit the guess in non-PIC code because the linker will not be able 2806 // to replace it with the real version for a library. In non-PIC code you 2807 // must compile with the fragile ABI if you want to use ivars from a 2808 // GCC-compiled class. 2809 if (CGM.getLangOpts().PICLevel || CGM.getLangOpts().PIELevel) { 2810 llvm::GlobalVariable *IvarOffsetGV = new llvm::GlobalVariable(TheModule, 2811 Int32Ty, false, 2812 llvm::GlobalValue::PrivateLinkage, OffsetGuess, Name+".guess"); 2813 IvarOffsetPointer = new llvm::GlobalVariable(TheModule, 2814 IvarOffsetGV->getType(), false, llvm::GlobalValue::LinkOnceAnyLinkage, 2815 IvarOffsetGV, Name); 2816 } else { 2817 IvarOffsetPointer = new llvm::GlobalVariable(TheModule, 2818 llvm::Type::getInt32PtrTy(VMContext), false, 2819 llvm::GlobalValue::ExternalLinkage, 0, Name); 2820 } 2821 } 2822 return IvarOffsetPointer; 2823 } 2824 2825 LValue CGObjCGNU::EmitObjCValueForIvar(CodeGenFunction &CGF, 2826 QualType ObjectTy, 2827 llvm::Value *BaseValue, 2828 const ObjCIvarDecl *Ivar, 2829 unsigned CVRQualifiers) { 2830 const ObjCInterfaceDecl *ID = 2831 ObjectTy->getAs<ObjCObjectType>()->getInterface(); 2832 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 2833 EmitIvarOffset(CGF, ID, Ivar)); 2834 } 2835 2836 static const ObjCInterfaceDecl *FindIvarInterface(ASTContext &Context, 2837 const ObjCInterfaceDecl *OID, 2838 const ObjCIvarDecl *OIVD) { 2839 for (const ObjCIvarDecl *next = OID->all_declared_ivar_begin(); next; 2840 next = next->getNextIvar()) { 2841 if (OIVD == next) 2842 return OID; 2843 } 2844 2845 // Otherwise check in the super class. 2846 if (const ObjCInterfaceDecl *Super = OID->getSuperClass()) 2847 return FindIvarInterface(Context, Super, OIVD); 2848 2849 return 0; 2850 } 2851 2852 llvm::Value *CGObjCGNU::EmitIvarOffset(CodeGenFunction &CGF, 2853 const ObjCInterfaceDecl *Interface, 2854 const ObjCIvarDecl *Ivar) { 2855 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 2856 Interface = FindIvarInterface(CGM.getContext(), Interface, Ivar); 2857 if (RuntimeVersion < 10) 2858 return CGF.Builder.CreateZExtOrBitCast( 2859 CGF.Builder.CreateLoad(CGF.Builder.CreateLoad( 2860 ObjCIvarOffsetVariable(Interface, Ivar), false, "ivar")), 2861 PtrDiffTy); 2862 std::string name = "__objc_ivar_offset_value_" + 2863 Interface->getNameAsString() +"." + Ivar->getNameAsString(); 2864 llvm::Value *Offset = TheModule.getGlobalVariable(name); 2865 if (!Offset) 2866 Offset = new llvm::GlobalVariable(TheModule, IntTy, 2867 false, llvm::GlobalValue::LinkOnceAnyLinkage, 2868 llvm::Constant::getNullValue(IntTy), name); 2869 Offset = CGF.Builder.CreateLoad(Offset); 2870 if (Offset->getType() != PtrDiffTy) 2871 Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy); 2872 return Offset; 2873 } 2874 uint64_t Offset = ComputeIvarBaseOffset(CGF.CGM, Interface, Ivar); 2875 return llvm::ConstantInt::get(PtrDiffTy, Offset, /*isSigned*/true); 2876 } 2877 2878 CGObjCRuntime * 2879 clang::CodeGen::CreateGNUObjCRuntime(CodeGenModule &CGM) { 2880 switch (CGM.getLangOpts().ObjCRuntime.getKind()) { 2881 case ObjCRuntime::GNUstep: 2882 return new CGObjCGNUstep(CGM); 2883 2884 case ObjCRuntime::GCC: 2885 return new CGObjCGCC(CGM); 2886 2887 case ObjCRuntime::ObjFW: 2888 return new CGObjCObjFW(CGM); 2889 2890 case ObjCRuntime::FragileMacOSX: 2891 case ObjCRuntime::MacOSX: 2892 case ObjCRuntime::iOS: 2893 llvm_unreachable("these runtimes are not GNU runtimes"); 2894 } 2895 llvm_unreachable("bad runtime"); 2896 } 2897