Home | History | Annotate | Download | only in src
      1 //
      2 // SpookyHash: a 128-bit noncryptographic hash function
      3 // By Bob Jenkins, public domain
      4 //   Oct 31 2010: alpha, framework + SpookyHash::Mix appears right
      5 //   Oct 31 2011: alpha again, Mix only good to 2^^69 but rest appears right
      6 //   Dec 31 2011: beta, improved Mix, tested it for 2-bit deltas
      7 //   Feb  2 2012: production, same bits as beta
      8 //   Feb  5 2012: adjusted definitions of uint* to be more portable
      9 //
     10 // Up to 4 bytes/cycle for long messages.  Reasonably fast for short messages.
     11 // All 1 or 2 bit deltas achieve avalanche within 1% bias per output bit.
     12 //
     13 // This was developed for and tested on 64-bit x86-compatible processors.
     14 // It assumes the processor is little-endian.  There is a macro
     15 // controlling whether unaligned reads are allowed (by default they are).
     16 // This should be an equally good hash on big-endian machines, but it will
     17 // compute different results on them than on little-endian machines.
     18 //
     19 // Google's CityHash has similar specs to SpookyHash, and CityHash is faster
     20 // on some platforms.  MD4 and MD5 also have similar specs, but they are orders
     21 // of magnitude slower.  CRCs are two or more times slower, but unlike
     22 // SpookyHash, they have nice math for combining the CRCs of pieces to form
     23 // the CRCs of wholes.  There are also cryptographic hashes, but those are even
     24 // slower than MD5.
     25 //
     26 
     27 #include "Platform.h"
     28 #include <stddef.h>
     29 
     30 #ifdef _MSC_VER
     31 # define INLINE __forceinline
     32   typedef  unsigned __int64 uint64;
     33   typedef  unsigned __int32 uint32;
     34   typedef  unsigned __int16 uint16;
     35   typedef  unsigned __int8  uint8;
     36 #else
     37 # include <stdint.h>
     38 # define INLINE inline
     39   typedef  uint64_t  uint64;
     40   typedef  uint32_t  uint32;
     41   typedef  uint16_t  uint16;
     42   typedef  uint8_t   uint8;
     43 #endif
     44 
     45 
     46 class SpookyHash
     47 {
     48 public:
     49     //
     50     // SpookyHash: hash a single message in one call, produce 128-bit output
     51     //
     52     static void Hash128(
     53         const void *message,  // message to hash
     54         size_t length,        // length of message in bytes
     55         uint64 *hash1,        // in/out: in seed 1, out hash value 1
     56         uint64 *hash2);       // in/out: in seed 2, out hash value 2
     57 
     58     //
     59     // Hash64: hash a single message in one call, return 64-bit output
     60     //
     61     static uint64 Hash64(
     62         const void *message,  // message to hash
     63         size_t length,        // length of message in bytes
     64         uint64 seed)          // seed
     65     {
     66         uint64 hash1 = seed;
     67         Hash128(message, length, &hash1, &seed);
     68         return hash1;
     69     }
     70 
     71     //
     72     // Hash32: hash a single message in one call, produce 32-bit output
     73     //
     74     static uint32 Hash32(
     75         const void *message,  // message to hash
     76         size_t length,        // length of message in bytes
     77         uint32 seed)          // seed
     78     {
     79         uint64 hash1 = seed, hash2 = seed;
     80         Hash128(message, length, &hash1, &hash2);
     81         return (uint32)hash1;
     82     }
     83 
     84     //
     85     // Init: initialize the context of a SpookyHash
     86     //
     87     void Init(
     88         uint64 seed1,       // any 64-bit value will do, including 0
     89         uint64 seed2);      // different seeds produce independent hashes
     90 
     91     //
     92     // Update: add a piece of a message to a SpookyHash state
     93     //
     94     void Update(
     95         const void *message,  // message fragment
     96         size_t length);       // length of message fragment in bytes
     97 
     98 
     99     //
    100     // Final: compute the hash for the current SpookyHash state
    101     //
    102     // This does not modify the state; you can keep updating it afterward
    103     //
    104     // The result is the same as if SpookyHash() had been called with
    105     // all the pieces concatenated into one message.
    106     //
    107     void Final(
    108         uint64 *hash1,    // out only: first 64 bits of hash value.
    109         uint64 *hash2);   // out only: second 64 bits of hash value.
    110 
    111     //
    112     // left rotate a 64-bit value by k bytes
    113     //
    114     static INLINE uint64 Rot64(uint64 x, int k)
    115     {
    116         return (x << k) | (x >> (64 - k));
    117     }
    118 
    119     //
    120     // This is used if the input is 96 bytes long or longer.
    121     //
    122     // The internal state is fully overwritten every 96 bytes.
    123     // Every input bit appears to cause at least 128 bits of entropy
    124     // before 96 other bytes are combined, when run forward or backward
    125     //   For every input bit,
    126     //   Two inputs differing in just that input bit
    127     //   Where "differ" means xor or subtraction
    128     //   And the base value is random
    129     //   When run forward or backwards one Mix
    130     // I tried 3 pairs of each; they all differed by at least 212 bits.
    131     //
    132     static INLINE void Mix(
    133         const uint64 *data,
    134         uint64 &s0, uint64 &s1, uint64 &s2, uint64 &s3,
    135         uint64 &s4, uint64 &s5, uint64 &s6, uint64 &s7,
    136         uint64 &s8, uint64 &s9, uint64 &s10,uint64 &s11)
    137     {
    138       s0 += data[0];    s2 ^= s10;    s11 ^= s0;    s0 = Rot64(s0,11);    s11 += s1;
    139       s1 += data[1];    s3 ^= s11;    s0 ^= s1;    s1 = Rot64(s1,32);    s0 += s2;
    140       s2 += data[2];    s4 ^= s0;    s1 ^= s2;    s2 = Rot64(s2,43);    s1 += s3;
    141       s3 += data[3];    s5 ^= s1;    s2 ^= s3;    s3 = Rot64(s3,31);    s2 += s4;
    142       s4 += data[4];    s6 ^= s2;    s3 ^= s4;    s4 = Rot64(s4,17);    s3 += s5;
    143       s5 += data[5];    s7 ^= s3;    s4 ^= s5;    s5 = Rot64(s5,28);    s4 += s6;
    144       s6 += data[6];    s8 ^= s4;    s5 ^= s6;    s6 = Rot64(s6,39);    s5 += s7;
    145       s7 += data[7];    s9 ^= s5;    s6 ^= s7;    s7 = Rot64(s7,57);    s6 += s8;
    146       s8 += data[8];    s10 ^= s6;    s7 ^= s8;    s8 = Rot64(s8,55);    s7 += s9;
    147       s9 += data[9];    s11 ^= s7;    s8 ^= s9;    s9 = Rot64(s9,54);    s8 += s10;
    148       s10 += data[10];    s0 ^= s8;    s9 ^= s10;    s10 = Rot64(s10,22);    s9 += s11;
    149       s11 += data[11];    s1 ^= s9;    s10 ^= s11;    s11 = Rot64(s11,46);    s10 += s0;
    150     }
    151 
    152     //
    153     // Mix all 12 inputs together so that h0, h1 are a hash of them all.
    154     //
    155     // For two inputs differing in just the input bits
    156     // Where "differ" means xor or subtraction
    157     // And the base value is random, or a counting value starting at that bit
    158     // The final result will have each bit of h0, h1 flip
    159     // For every input bit,
    160     // with probability 50 +- .3%
    161     // For every pair of input bits,
    162     // with probability 50 +- 3%
    163     //
    164     // This does not rely on the last Mix() call having already mixed some.
    165     // Two iterations was almost good enough for a 64-bit result, but a
    166     // 128-bit result is reported, so End() does three iterations.
    167     //
    168     static INLINE void EndPartial(
    169         uint64 &h0, uint64 &h1, uint64 &h2, uint64 &h3,
    170         uint64 &h4, uint64 &h5, uint64 &h6, uint64 &h7,
    171         uint64 &h8, uint64 &h9, uint64 &h10,uint64 &h11)
    172     {
    173         h11+= h1;    h2 ^= h11;   h1 = Rot64(h1,44);
    174 	h0 += h2;    h3 ^= h0;    h2 = Rot64(h2,15);
    175 	h1 += h3;    h4 ^= h1;    h3 = Rot64(h3,34);
    176 	h2 += h4;    h5 ^= h2;    h4 = Rot64(h4,21);
    177 	h3 += h5;    h6 ^= h3;    h5 = Rot64(h5,38);
    178 	h4 += h6;    h7 ^= h4;    h6 = Rot64(h6,33);
    179 	h5 += h7;    h8 ^= h5;    h7 = Rot64(h7,10);
    180 	h6 += h8;    h9 ^= h6;    h8 = Rot64(h8,13);
    181 	h7 += h9;    h10^= h7;    h9 = Rot64(h9,38);
    182 	h8 += h10;   h11^= h8;    h10= Rot64(h10,53);
    183 	h9 += h11;   h0 ^= h9;    h11= Rot64(h11,42);
    184 	h10+= h0;    h1 ^= h10;   h0 = Rot64(h0,54);
    185     }
    186 
    187     static INLINE void End(
    188         uint64 &h0, uint64 &h1, uint64 &h2, uint64 &h3,
    189         uint64 &h4, uint64 &h5, uint64 &h6, uint64 &h7,
    190         uint64 &h8, uint64 &h9, uint64 &h10,uint64 &h11)
    191     {
    192         EndPartial(h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
    193         EndPartial(h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
    194         EndPartial(h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
    195     }
    196 
    197     //
    198     // The goal is for each bit of the input to expand into 128 bits of
    199     //   apparent entropy before it is fully overwritten.
    200     // n trials both set and cleared at least m bits of h0 h1 h2 h3
    201     //   n: 2   m: 29
    202     //   n: 3   m: 46
    203     //   n: 4   m: 57
    204     //   n: 5   m: 107
    205     //   n: 6   m: 146
    206     //   n: 7   m: 152
    207     // when run forwards or backwards
    208     // for all 1-bit and 2-bit diffs
    209     // with diffs defined by either xor or subtraction
    210     // with a base of all zeros plus a counter, or plus another bit, or random
    211     //
    212     static INLINE void ShortMix(uint64 &h0, uint64 &h1, uint64 &h2, uint64 &h3)
    213     {
    214         h2 = Rot64(h2,50);  h2 += h3;  h0 ^= h2;
    215         h3 = Rot64(h3,52);  h3 += h0;  h1 ^= h3;
    216         h0 = Rot64(h0,30);  h0 += h1;  h2 ^= h0;
    217         h1 = Rot64(h1,41);  h1 += h2;  h3 ^= h1;
    218         h2 = Rot64(h2,54);  h2 += h3;  h0 ^= h2;
    219         h3 = Rot64(h3,48);  h3 += h0;  h1 ^= h3;
    220         h0 = Rot64(h0,38);  h0 += h1;  h2 ^= h0;
    221         h1 = Rot64(h1,37);  h1 += h2;  h3 ^= h1;
    222         h2 = Rot64(h2,62);  h2 += h3;  h0 ^= h2;
    223         h3 = Rot64(h3,34);  h3 += h0;  h1 ^= h3;
    224         h0 = Rot64(h0,5);   h0 += h1;  h2 ^= h0;
    225         h1 = Rot64(h1,36);  h1 += h2;  h3 ^= h1;
    226     }
    227 
    228     //
    229     // Mix all 4 inputs together so that h0, h1 are a hash of them all.
    230     //
    231     // For two inputs differing in just the input bits
    232     // Where "differ" means xor or subtraction
    233     // And the base value is random, or a counting value starting at that bit
    234     // The final result will have each bit of h0, h1 flip
    235     // For every input bit,
    236     // with probability 50 +- .3% (it is probably better than that)
    237     // For every pair of input bits,
    238     // with probability 50 +- .75% (the worst case is approximately that)
    239     //
    240     static INLINE void ShortEnd(uint64 &h0, uint64 &h1, uint64 &h2, uint64 &h3)
    241     {
    242         h3 ^= h2;  h2 = Rot64(h2,15);  h3 += h2;
    243         h0 ^= h3;  h3 = Rot64(h3,52);  h0 += h3;
    244         h1 ^= h0;  h0 = Rot64(h0,26);  h1 += h0;
    245         h2 ^= h1;  h1 = Rot64(h1,51);  h2 += h1;
    246         h3 ^= h2;  h2 = Rot64(h2,28);  h3 += h2;
    247         h0 ^= h3;  h3 = Rot64(h3,9);   h0 += h3;
    248         h1 ^= h0;  h0 = Rot64(h0,47);  h1 += h0;
    249         h2 ^= h1;  h1 = Rot64(h1,54);  h2 += h1;
    250         h3 ^= h2;  h2 = Rot64(h2,32);  h3 += h2;
    251         h0 ^= h3;  h3 = Rot64(h3,25);  h0 += h3;
    252         h1 ^= h0;  h0 = Rot64(h0,63);  h1 += h0;
    253     }
    254 
    255 private:
    256 
    257     //
    258     // Short is used for messages under 192 bytes in length
    259     // Short has a low startup cost, the normal mode is good for long
    260     // keys, the cost crossover is at about 192 bytes.  The two modes were
    261     // held to the same quality bar.
    262     //
    263     static void Short(
    264         const void *message,
    265         size_t length,
    266         uint64 *hash1,
    267         uint64 *hash2);
    268 
    269     // number of uint64's in internal state
    270     static const size_t sc_numVars = 12;
    271 
    272     // size of the internal state
    273     static const size_t sc_blockSize = sc_numVars*8;
    274 
    275     // size of buffer of unhashed data, in bytes
    276     static const size_t sc_bufSize = 2*sc_blockSize;
    277 
    278     //
    279     // sc_const: a constant which:
    280     //  * is not zero
    281     //  * is odd
    282     //  * is a not-very-regular mix of 1's and 0's
    283     //  * does not need any other special mathematical properties
    284     //
    285     static const uint64 sc_const = 0xdeadbeefdeadbeefULL;
    286 
    287     uint64 m_data[2*sc_numVars];   // unhashed data, for partial messages
    288     uint64 m_state[sc_numVars];  // internal state of the hash
    289     size_t m_length;             // total length of the input so far
    290     uint8  m_remainder;          // length of unhashed data stashed in m_data
    291 };
    292 
    293 
    294 
    295