Home | History | Annotate | Download | only in ADT
      1 //===--- llvm/ADT/SparseMultiSet.h - Sparse multiset ------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the SparseMultiSet class, which adds multiset behavior to
     11 // the SparseSet.
     12 //
     13 // A sparse multiset holds a small number of objects identified by integer keys
     14 // from a moderately sized universe. The sparse multiset uses more memory than
     15 // other containers in order to provide faster operations. Any key can map to
     16 // multiple values. A SparseMultiSetNode class is provided, which serves as a
     17 // convenient base class for the contents of a SparseMultiSet.
     18 //
     19 //===----------------------------------------------------------------------===//
     20 
     21 #ifndef LLVM_ADT_SPARSEMULTISET_H
     22 #define LLVM_ADT_SPARSEMULTISET_H
     23 
     24 #include "llvm/ADT/SparseSet.h"
     25 
     26 namespace llvm {
     27 
     28 /// Fast multiset implementation for objects that can be identified by small
     29 /// unsigned keys.
     30 ///
     31 /// SparseMultiSet allocates memory proportional to the size of the key
     32 /// universe, so it is not recommended for building composite data structures.
     33 /// It is useful for algorithms that require a single set with fast operations.
     34 ///
     35 /// Compared to DenseSet and DenseMap, SparseMultiSet provides constant-time
     36 /// fast clear() as fast as a vector.  The find(), insert(), and erase()
     37 /// operations are all constant time, and typically faster than a hash table.
     38 /// The iteration order doesn't depend on numerical key values, it only depends
     39 /// on the order of insert() and erase() operations.  Iteration order is the
     40 /// insertion order. Iteration is only provided over elements of equivalent
     41 /// keys, but iterators are bidirectional.
     42 ///
     43 /// Compared to BitVector, SparseMultiSet<unsigned> uses 8x-40x more memory, but
     44 /// offers constant-time clear() and size() operations as well as fast iteration
     45 /// independent on the size of the universe.
     46 ///
     47 /// SparseMultiSet contains a dense vector holding all the objects and a sparse
     48 /// array holding indexes into the dense vector.  Most of the memory is used by
     49 /// the sparse array which is the size of the key universe. The SparseT template
     50 /// parameter provides a space/speed tradeoff for sets holding many elements.
     51 ///
     52 /// When SparseT is uint32_t, find() only touches up to 3 cache lines, but the
     53 /// sparse array uses 4 x Universe bytes.
     54 ///
     55 /// When SparseT is uint8_t (the default), find() touches up to 3+[N/256] cache
     56 /// lines, but the sparse array is 4x smaller.  N is the number of elements in
     57 /// the set.
     58 ///
     59 /// For sets that may grow to thousands of elements, SparseT should be set to
     60 /// uint16_t or uint32_t.
     61 ///
     62 /// Multiset behavior is provided by providing doubly linked lists for values
     63 /// that are inlined in the dense vector. SparseMultiSet is a good choice when
     64 /// one desires a growable number of entries per key, as it will retain the
     65 /// SparseSet algorithmic properties despite being growable. Thus, it is often a
     66 /// better choice than a SparseSet of growable containers or a vector of
     67 /// vectors. SparseMultiSet also keeps iterators valid after erasure (provided
     68 /// the iterators don't point to the element erased), allowing for more
     69 /// intuitive and fast removal.
     70 ///
     71 /// @tparam ValueT      The type of objects in the set.
     72 /// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT.
     73 /// @tparam SparseT     An unsigned integer type. See above.
     74 ///
     75 template<typename ValueT,
     76          typename KeyFunctorT = llvm::identity<unsigned>,
     77          typename SparseT = uint8_t>
     78 class SparseMultiSet {
     79   /// The actual data that's stored, as a doubly-linked list implemented via
     80   /// indices into the DenseVector.  The doubly linked list is implemented
     81   /// circular in Prev indices, and INVALID-terminated in Next indices. This
     82   /// provides efficient access to list tails. These nodes can also be
     83   /// tombstones, in which case they are actually nodes in a single-linked
     84   /// freelist of recyclable slots.
     85   struct SMSNode {
     86     static const unsigned INVALID = ~0U;
     87 
     88     ValueT Data;
     89     unsigned Prev;
     90     unsigned Next;
     91 
     92     SMSNode(ValueT D, unsigned P, unsigned N) : Data(D), Prev(P), Next(N) { }
     93 
     94     /// List tails have invalid Nexts.
     95     bool isTail() const {
     96       return Next == INVALID;
     97     }
     98 
     99     /// Whether this node is a tombstone node, and thus is in our freelist.
    100     bool isTombstone() const {
    101       return Prev == INVALID;
    102     }
    103 
    104     /// Since the list is circular in Prev, all non-tombstone nodes have a valid
    105     /// Prev.
    106     bool isValid() const { return Prev != INVALID; }
    107   };
    108 
    109   typedef typename KeyFunctorT::argument_type KeyT;
    110   typedef SmallVector<SMSNode, 8> DenseT;
    111   DenseT Dense;
    112   SparseT *Sparse;
    113   unsigned Universe;
    114   KeyFunctorT KeyIndexOf;
    115   SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf;
    116 
    117   /// We have a built-in recycler for reusing tombstone slots. This recycler
    118   /// puts a singly-linked free list into tombstone slots, allowing us quick
    119   /// erasure, iterator preservation, and dense size.
    120   unsigned FreelistIdx;
    121   unsigned NumFree;
    122 
    123   unsigned sparseIndex(const ValueT &Val) const {
    124     assert(ValIndexOf(Val) < Universe &&
    125            "Invalid key in set. Did object mutate?");
    126     return ValIndexOf(Val);
    127   }
    128   unsigned sparseIndex(const SMSNode &N) const { return sparseIndex(N.Data); }
    129 
    130   // Disable copy construction and assignment.
    131   // This data structure is not meant to be used that way.
    132   SparseMultiSet(const SparseMultiSet&) LLVM_DELETED_FUNCTION;
    133   SparseMultiSet &operator=(const SparseMultiSet&) LLVM_DELETED_FUNCTION;
    134 
    135   /// Whether the given entry is the head of the list. List heads's previous
    136   /// pointers are to the tail of the list, allowing for efficient access to the
    137   /// list tail. D must be a valid entry node.
    138   bool isHead(const SMSNode &D) const {
    139     assert(D.isValid() && "Invalid node for head");
    140     return Dense[D.Prev].isTail();
    141   }
    142 
    143   /// Whether the given entry is a singleton entry, i.e. the only entry with
    144   /// that key.
    145   bool isSingleton(const SMSNode &N) const {
    146     assert(N.isValid() && "Invalid node for singleton");
    147     // Is N its own predecessor?
    148     return &Dense[N.Prev] == &N;
    149   }
    150 
    151   /// Add in the given SMSNode. Uses a free entry in our freelist if
    152   /// available. Returns the index of the added node.
    153   unsigned addValue(const ValueT& V, unsigned Prev, unsigned Next) {
    154     if (NumFree == 0) {
    155       Dense.push_back(SMSNode(V, Prev, Next));
    156       return Dense.size() - 1;
    157     }
    158 
    159     // Peel off a free slot
    160     unsigned Idx = FreelistIdx;
    161     unsigned NextFree = Dense[Idx].Next;
    162     assert(Dense[Idx].isTombstone() && "Non-tombstone free?");
    163 
    164     Dense[Idx] = SMSNode(V, Prev, Next);
    165     FreelistIdx = NextFree;
    166     --NumFree;
    167     return Idx;
    168   }
    169 
    170   /// Make the current index a new tombstone. Pushes it onto the freelist.
    171   void makeTombstone(unsigned Idx) {
    172     Dense[Idx].Prev = SMSNode::INVALID;
    173     Dense[Idx].Next = FreelistIdx;
    174     FreelistIdx = Idx;
    175     ++NumFree;
    176   }
    177 
    178 public:
    179   typedef ValueT value_type;
    180   typedef ValueT &reference;
    181   typedef const ValueT &const_reference;
    182   typedef ValueT *pointer;
    183   typedef const ValueT *const_pointer;
    184 
    185   SparseMultiSet()
    186     : Sparse(0), Universe(0), FreelistIdx(SMSNode::INVALID), NumFree(0) { }
    187 
    188   ~SparseMultiSet() { free(Sparse); }
    189 
    190   /// Set the universe size which determines the largest key the set can hold.
    191   /// The universe must be sized before any elements can be added.
    192   ///
    193   /// @param U Universe size. All object keys must be less than U.
    194   ///
    195   void setUniverse(unsigned U) {
    196     // It's not hard to resize the universe on a non-empty set, but it doesn't
    197     // seem like a likely use case, so we can add that code when we need it.
    198     assert(empty() && "Can only resize universe on an empty map");
    199     // Hysteresis prevents needless reallocations.
    200     if (U >= Universe/4 && U <= Universe)
    201       return;
    202     free(Sparse);
    203     // The Sparse array doesn't actually need to be initialized, so malloc
    204     // would be enough here, but that will cause tools like valgrind to
    205     // complain about branching on uninitialized data.
    206     Sparse = reinterpret_cast<SparseT*>(calloc(U, sizeof(SparseT)));
    207     Universe = U;
    208   }
    209 
    210   /// Our iterators are iterators over the collection of objects that share a
    211   /// key.
    212   template<typename SMSPtrTy>
    213   class iterator_base : public std::iterator<std::bidirectional_iterator_tag,
    214                                              ValueT> {
    215     friend class SparseMultiSet;
    216     SMSPtrTy SMS;
    217     unsigned Idx;
    218     unsigned SparseIdx;
    219 
    220     iterator_base(SMSPtrTy P, unsigned I, unsigned SI)
    221       : SMS(P), Idx(I), SparseIdx(SI) { }
    222 
    223     /// Whether our iterator has fallen outside our dense vector.
    224     bool isEnd() const {
    225       if (Idx == SMSNode::INVALID)
    226         return true;
    227 
    228       assert(Idx < SMS->Dense.size() && "Out of range, non-INVALID Idx?");
    229       return false;
    230     }
    231 
    232     /// Whether our iterator is properly keyed, i.e. the SparseIdx is valid
    233     bool isKeyed() const { return SparseIdx < SMS->Universe; }
    234 
    235     unsigned Prev() const { return SMS->Dense[Idx].Prev; }
    236     unsigned Next() const { return SMS->Dense[Idx].Next; }
    237 
    238     void setPrev(unsigned P) { SMS->Dense[Idx].Prev = P; }
    239     void setNext(unsigned N) { SMS->Dense[Idx].Next = N; }
    240 
    241   public:
    242     typedef std::iterator<std::bidirectional_iterator_tag, ValueT> super;
    243     typedef typename super::value_type value_type;
    244     typedef typename super::difference_type difference_type;
    245     typedef typename super::pointer pointer;
    246     typedef typename super::reference reference;
    247 
    248     iterator_base(const iterator_base &RHS)
    249       : SMS(RHS.SMS), Idx(RHS.Idx), SparseIdx(RHS.SparseIdx) { }
    250 
    251     const iterator_base &operator=(const iterator_base &RHS) {
    252       SMS = RHS.SMS;
    253       Idx = RHS.Idx;
    254       SparseIdx = RHS.SparseIdx;
    255       return *this;
    256     }
    257 
    258     reference operator*() const {
    259       assert(isKeyed() && SMS->sparseIndex(SMS->Dense[Idx].Data) == SparseIdx &&
    260              "Dereferencing iterator of invalid key or index");
    261 
    262       return SMS->Dense[Idx].Data;
    263     }
    264     pointer operator->() const { return &operator*(); }
    265 
    266     /// Comparison operators
    267     bool operator==(const iterator_base &RHS) const {
    268       // end compares equal
    269       if (SMS == RHS.SMS && Idx == RHS.Idx) {
    270         assert((isEnd() || SparseIdx == RHS.SparseIdx) &&
    271                "Same dense entry, but different keys?");
    272         return true;
    273       }
    274 
    275       return false;
    276     }
    277 
    278     bool operator!=(const iterator_base &RHS) const {
    279       return !operator==(RHS);
    280     }
    281 
    282     /// Increment and decrement operators
    283     iterator_base &operator--() { // predecrement - Back up
    284       assert(isKeyed() && "Decrementing an invalid iterator");
    285       assert((isEnd() || !SMS->isHead(SMS->Dense[Idx])) &&
    286              "Decrementing head of list");
    287 
    288       // If we're at the end, then issue a new find()
    289       if (isEnd())
    290         Idx = SMS->findIndex(SparseIdx).Prev();
    291       else
    292         Idx = Prev();
    293 
    294       return *this;
    295     }
    296     iterator_base &operator++() { // preincrement - Advance
    297       assert(!isEnd() && isKeyed() && "Incrementing an invalid/end iterator");
    298       Idx = Next();
    299       return *this;
    300     }
    301     iterator_base operator--(int) { // postdecrement
    302       iterator_base I(*this);
    303       --*this;
    304       return I;
    305     }
    306     iterator_base operator++(int) { // postincrement
    307       iterator_base I(*this);
    308       ++*this;
    309       return I;
    310     }
    311   };
    312   typedef iterator_base<SparseMultiSet *> iterator;
    313   typedef iterator_base<const SparseMultiSet *> const_iterator;
    314 
    315   // Convenience types
    316   typedef std::pair<iterator, iterator> RangePair;
    317 
    318   /// Returns an iterator past this container. Note that such an iterator cannot
    319   /// be decremented, but will compare equal to other end iterators.
    320   iterator end() { return iterator(this, SMSNode::INVALID, SMSNode::INVALID); }
    321   const_iterator end() const {
    322     return const_iterator(this, SMSNode::INVALID, SMSNode::INVALID);
    323   }
    324 
    325   /// Returns true if the set is empty.
    326   ///
    327   /// This is not the same as BitVector::empty().
    328   ///
    329   bool empty() const { return size() == 0; }
    330 
    331   /// Returns the number of elements in the set.
    332   ///
    333   /// This is not the same as BitVector::size() which returns the size of the
    334   /// universe.
    335   ///
    336   unsigned size() const {
    337     assert(NumFree <= Dense.size() && "Out-of-bounds free entries");
    338     return Dense.size() - NumFree;
    339   }
    340 
    341   /// Clears the set.  This is a very fast constant time operation.
    342   ///
    343   void clear() {
    344     // Sparse does not need to be cleared, see find().
    345     Dense.clear();
    346     NumFree = 0;
    347     FreelistIdx = SMSNode::INVALID;
    348   }
    349 
    350   /// Find an element by its index.
    351   ///
    352   /// @param   Idx A valid index to find.
    353   /// @returns An iterator to the element identified by key, or end().
    354   ///
    355   iterator findIndex(unsigned Idx) {
    356     assert(Idx < Universe && "Key out of range");
    357     assert(std::numeric_limits<SparseT>::is_integer &&
    358            !std::numeric_limits<SparseT>::is_signed &&
    359            "SparseT must be an unsigned integer type");
    360     const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u;
    361     for (unsigned i = Sparse[Idx], e = Dense.size(); i < e; i += Stride) {
    362       const unsigned FoundIdx = sparseIndex(Dense[i]);
    363       // Check that we're pointing at the correct entry and that it is the head
    364       // of a valid list.
    365       if (Idx == FoundIdx && Dense[i].isValid() && isHead(Dense[i]))
    366         return iterator(this, i, Idx);
    367       // Stride is 0 when SparseT >= unsigned.  We don't need to loop.
    368       if (!Stride)
    369         break;
    370     }
    371     return end();
    372   }
    373 
    374   /// Find an element by its key.
    375   ///
    376   /// @param   Key A valid key to find.
    377   /// @returns An iterator to the element identified by key, or end().
    378   ///
    379   iterator find(const KeyT &Key) {
    380     return findIndex(KeyIndexOf(Key));
    381   }
    382 
    383   const_iterator find(const KeyT &Key) const {
    384     iterator I = const_cast<SparseMultiSet*>(this)->findIndex(KeyIndexOf(Key));
    385     return const_iterator(I.SMS, I.Idx, KeyIndexOf(Key));
    386   }
    387 
    388   /// Returns the number of elements identified by Key. This will be linear in
    389   /// the number of elements of that key.
    390   unsigned count(const KeyT &Key) const {
    391     unsigned Ret = 0;
    392     for (const_iterator It = find(Key); It != end(); ++It)
    393       ++Ret;
    394 
    395     return Ret;
    396   }
    397 
    398   /// Returns true if this set contains an element identified by Key.
    399   bool contains(const KeyT &Key) const {
    400     return find(Key) != end();
    401   }
    402 
    403   /// Return the head and tail of the subset's list, otherwise returns end().
    404   iterator getHead(const KeyT &Key) { return find(Key); }
    405   iterator getTail(const KeyT &Key) {
    406     iterator I = find(Key);
    407     if (I != end())
    408       I = iterator(this, I.Prev(), KeyIndexOf(Key));
    409     return I;
    410   }
    411 
    412   /// The bounds of the range of items sharing Key K. First member is the head
    413   /// of the list, and the second member is a decrementable end iterator for
    414   /// that key.
    415   RangePair equal_range(const KeyT &K) {
    416     iterator B = find(K);
    417     iterator E = iterator(this, SMSNode::INVALID, B.SparseIdx);
    418     return make_pair(B, E);
    419   }
    420 
    421   /// Insert a new element at the tail of the subset list. Returns an iterator
    422   /// to the newly added entry.
    423   iterator insert(const ValueT &Val) {
    424     unsigned Idx = sparseIndex(Val);
    425     iterator I = findIndex(Idx);
    426 
    427     unsigned NodeIdx = addValue(Val, SMSNode::INVALID, SMSNode::INVALID);
    428 
    429     if (I == end()) {
    430       // Make a singleton list
    431       Sparse[Idx] = NodeIdx;
    432       Dense[NodeIdx].Prev = NodeIdx;
    433       return iterator(this, NodeIdx, Idx);
    434     }
    435 
    436     // Stick it at the end.
    437     unsigned HeadIdx = I.Idx;
    438     unsigned TailIdx = I.Prev();
    439     Dense[TailIdx].Next = NodeIdx;
    440     Dense[HeadIdx].Prev = NodeIdx;
    441     Dense[NodeIdx].Prev = TailIdx;
    442 
    443     return iterator(this, NodeIdx, Idx);
    444   }
    445 
    446   /// Erases an existing element identified by a valid iterator.
    447   ///
    448   /// This invalidates iterators pointing at the same entry, but erase() returns
    449   /// an iterator pointing to the next element in the subset's list. This makes
    450   /// it possible to erase selected elements while iterating over the subset:
    451   ///
    452   ///   tie(I, E) = Set.equal_range(Key);
    453   ///   while (I != E)
    454   ///     if (test(*I))
    455   ///       I = Set.erase(I);
    456   ///     else
    457   ///       ++I;
    458   ///
    459   /// Note that if the last element in the subset list is erased, this will
    460   /// return an end iterator which can be decremented to get the new tail (if it
    461   /// exists):
    462   ///
    463   ///  tie(B, I) = Set.equal_range(Key);
    464   ///  for (bool isBegin = B == I; !isBegin; /* empty */) {
    465   ///    isBegin = (--I) == B;
    466   ///    if (test(I))
    467   ///      break;
    468   ///    I = erase(I);
    469   ///  }
    470   iterator erase(iterator I) {
    471     assert(I.isKeyed() && !I.isEnd() && !Dense[I.Idx].isTombstone() &&
    472            "erasing invalid/end/tombstone iterator");
    473 
    474     // First, unlink the node from its list. Then swap the node out with the
    475     // dense vector's last entry
    476     iterator NextI = unlink(Dense[I.Idx]);
    477 
    478     // Put in a tombstone.
    479     makeTombstone(I.Idx);
    480 
    481     return NextI;
    482   }
    483 
    484   /// Erase all elements with the given key. This invalidates all
    485   /// iterators of that key.
    486   void eraseAll(const KeyT &K) {
    487     for (iterator I = find(K); I != end(); /* empty */)
    488       I = erase(I);
    489   }
    490 
    491 private:
    492   /// Unlink the node from its list. Returns the next node in the list.
    493   iterator unlink(const SMSNode &N) {
    494     if (isSingleton(N)) {
    495       // Singleton is already unlinked
    496       assert(N.Next == SMSNode::INVALID && "Singleton has next?");
    497       return iterator(this, SMSNode::INVALID, ValIndexOf(N.Data));
    498     }
    499 
    500     if (isHead(N)) {
    501       // If we're the head, then update the sparse array and our next.
    502       Sparse[sparseIndex(N)] = N.Next;
    503       Dense[N.Next].Prev = N.Prev;
    504       return iterator(this, N.Next, ValIndexOf(N.Data));
    505     }
    506 
    507     if (N.isTail()) {
    508       // If we're the tail, then update our head and our previous.
    509       findIndex(sparseIndex(N)).setPrev(N.Prev);
    510       Dense[N.Prev].Next = N.Next;
    511 
    512       // Give back an end iterator that can be decremented
    513       iterator I(this, N.Prev, ValIndexOf(N.Data));
    514       return ++I;
    515     }
    516 
    517     // Otherwise, just drop us
    518     Dense[N.Next].Prev = N.Prev;
    519     Dense[N.Prev].Next = N.Next;
    520     return iterator(this, N.Next, ValIndexOf(N.Data));
    521   }
    522 };
    523 
    524 } // end namespace llvm
    525 
    526 #endif
    527