1 //===--- llvm/ADT/SparseMultiSet.h - Sparse multiset ------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the SparseMultiSet class, which adds multiset behavior to 11 // the SparseSet. 12 // 13 // A sparse multiset holds a small number of objects identified by integer keys 14 // from a moderately sized universe. The sparse multiset uses more memory than 15 // other containers in order to provide faster operations. Any key can map to 16 // multiple values. A SparseMultiSetNode class is provided, which serves as a 17 // convenient base class for the contents of a SparseMultiSet. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #ifndef LLVM_ADT_SPARSEMULTISET_H 22 #define LLVM_ADT_SPARSEMULTISET_H 23 24 #include "llvm/ADT/SparseSet.h" 25 26 namespace llvm { 27 28 /// Fast multiset implementation for objects that can be identified by small 29 /// unsigned keys. 30 /// 31 /// SparseMultiSet allocates memory proportional to the size of the key 32 /// universe, so it is not recommended for building composite data structures. 33 /// It is useful for algorithms that require a single set with fast operations. 34 /// 35 /// Compared to DenseSet and DenseMap, SparseMultiSet provides constant-time 36 /// fast clear() as fast as a vector. The find(), insert(), and erase() 37 /// operations are all constant time, and typically faster than a hash table. 38 /// The iteration order doesn't depend on numerical key values, it only depends 39 /// on the order of insert() and erase() operations. Iteration order is the 40 /// insertion order. Iteration is only provided over elements of equivalent 41 /// keys, but iterators are bidirectional. 42 /// 43 /// Compared to BitVector, SparseMultiSet<unsigned> uses 8x-40x more memory, but 44 /// offers constant-time clear() and size() operations as well as fast iteration 45 /// independent on the size of the universe. 46 /// 47 /// SparseMultiSet contains a dense vector holding all the objects and a sparse 48 /// array holding indexes into the dense vector. Most of the memory is used by 49 /// the sparse array which is the size of the key universe. The SparseT template 50 /// parameter provides a space/speed tradeoff for sets holding many elements. 51 /// 52 /// When SparseT is uint32_t, find() only touches up to 3 cache lines, but the 53 /// sparse array uses 4 x Universe bytes. 54 /// 55 /// When SparseT is uint8_t (the default), find() touches up to 3+[N/256] cache 56 /// lines, but the sparse array is 4x smaller. N is the number of elements in 57 /// the set. 58 /// 59 /// For sets that may grow to thousands of elements, SparseT should be set to 60 /// uint16_t or uint32_t. 61 /// 62 /// Multiset behavior is provided by providing doubly linked lists for values 63 /// that are inlined in the dense vector. SparseMultiSet is a good choice when 64 /// one desires a growable number of entries per key, as it will retain the 65 /// SparseSet algorithmic properties despite being growable. Thus, it is often a 66 /// better choice than a SparseSet of growable containers or a vector of 67 /// vectors. SparseMultiSet also keeps iterators valid after erasure (provided 68 /// the iterators don't point to the element erased), allowing for more 69 /// intuitive and fast removal. 70 /// 71 /// @tparam ValueT The type of objects in the set. 72 /// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT. 73 /// @tparam SparseT An unsigned integer type. See above. 74 /// 75 template<typename ValueT, 76 typename KeyFunctorT = llvm::identity<unsigned>, 77 typename SparseT = uint8_t> 78 class SparseMultiSet { 79 /// The actual data that's stored, as a doubly-linked list implemented via 80 /// indices into the DenseVector. The doubly linked list is implemented 81 /// circular in Prev indices, and INVALID-terminated in Next indices. This 82 /// provides efficient access to list tails. These nodes can also be 83 /// tombstones, in which case they are actually nodes in a single-linked 84 /// freelist of recyclable slots. 85 struct SMSNode { 86 static const unsigned INVALID = ~0U; 87 88 ValueT Data; 89 unsigned Prev; 90 unsigned Next; 91 92 SMSNode(ValueT D, unsigned P, unsigned N) : Data(D), Prev(P), Next(N) { } 93 94 /// List tails have invalid Nexts. 95 bool isTail() const { 96 return Next == INVALID; 97 } 98 99 /// Whether this node is a tombstone node, and thus is in our freelist. 100 bool isTombstone() const { 101 return Prev == INVALID; 102 } 103 104 /// Since the list is circular in Prev, all non-tombstone nodes have a valid 105 /// Prev. 106 bool isValid() const { return Prev != INVALID; } 107 }; 108 109 typedef typename KeyFunctorT::argument_type KeyT; 110 typedef SmallVector<SMSNode, 8> DenseT; 111 DenseT Dense; 112 SparseT *Sparse; 113 unsigned Universe; 114 KeyFunctorT KeyIndexOf; 115 SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf; 116 117 /// We have a built-in recycler for reusing tombstone slots. This recycler 118 /// puts a singly-linked free list into tombstone slots, allowing us quick 119 /// erasure, iterator preservation, and dense size. 120 unsigned FreelistIdx; 121 unsigned NumFree; 122 123 unsigned sparseIndex(const ValueT &Val) const { 124 assert(ValIndexOf(Val) < Universe && 125 "Invalid key in set. Did object mutate?"); 126 return ValIndexOf(Val); 127 } 128 unsigned sparseIndex(const SMSNode &N) const { return sparseIndex(N.Data); } 129 130 // Disable copy construction and assignment. 131 // This data structure is not meant to be used that way. 132 SparseMultiSet(const SparseMultiSet&) LLVM_DELETED_FUNCTION; 133 SparseMultiSet &operator=(const SparseMultiSet&) LLVM_DELETED_FUNCTION; 134 135 /// Whether the given entry is the head of the list. List heads's previous 136 /// pointers are to the tail of the list, allowing for efficient access to the 137 /// list tail. D must be a valid entry node. 138 bool isHead(const SMSNode &D) const { 139 assert(D.isValid() && "Invalid node for head"); 140 return Dense[D.Prev].isTail(); 141 } 142 143 /// Whether the given entry is a singleton entry, i.e. the only entry with 144 /// that key. 145 bool isSingleton(const SMSNode &N) const { 146 assert(N.isValid() && "Invalid node for singleton"); 147 // Is N its own predecessor? 148 return &Dense[N.Prev] == &N; 149 } 150 151 /// Add in the given SMSNode. Uses a free entry in our freelist if 152 /// available. Returns the index of the added node. 153 unsigned addValue(const ValueT& V, unsigned Prev, unsigned Next) { 154 if (NumFree == 0) { 155 Dense.push_back(SMSNode(V, Prev, Next)); 156 return Dense.size() - 1; 157 } 158 159 // Peel off a free slot 160 unsigned Idx = FreelistIdx; 161 unsigned NextFree = Dense[Idx].Next; 162 assert(Dense[Idx].isTombstone() && "Non-tombstone free?"); 163 164 Dense[Idx] = SMSNode(V, Prev, Next); 165 FreelistIdx = NextFree; 166 --NumFree; 167 return Idx; 168 } 169 170 /// Make the current index a new tombstone. Pushes it onto the freelist. 171 void makeTombstone(unsigned Idx) { 172 Dense[Idx].Prev = SMSNode::INVALID; 173 Dense[Idx].Next = FreelistIdx; 174 FreelistIdx = Idx; 175 ++NumFree; 176 } 177 178 public: 179 typedef ValueT value_type; 180 typedef ValueT &reference; 181 typedef const ValueT &const_reference; 182 typedef ValueT *pointer; 183 typedef const ValueT *const_pointer; 184 185 SparseMultiSet() 186 : Sparse(0), Universe(0), FreelistIdx(SMSNode::INVALID), NumFree(0) { } 187 188 ~SparseMultiSet() { free(Sparse); } 189 190 /// Set the universe size which determines the largest key the set can hold. 191 /// The universe must be sized before any elements can be added. 192 /// 193 /// @param U Universe size. All object keys must be less than U. 194 /// 195 void setUniverse(unsigned U) { 196 // It's not hard to resize the universe on a non-empty set, but it doesn't 197 // seem like a likely use case, so we can add that code when we need it. 198 assert(empty() && "Can only resize universe on an empty map"); 199 // Hysteresis prevents needless reallocations. 200 if (U >= Universe/4 && U <= Universe) 201 return; 202 free(Sparse); 203 // The Sparse array doesn't actually need to be initialized, so malloc 204 // would be enough here, but that will cause tools like valgrind to 205 // complain about branching on uninitialized data. 206 Sparse = reinterpret_cast<SparseT*>(calloc(U, sizeof(SparseT))); 207 Universe = U; 208 } 209 210 /// Our iterators are iterators over the collection of objects that share a 211 /// key. 212 template<typename SMSPtrTy> 213 class iterator_base : public std::iterator<std::bidirectional_iterator_tag, 214 ValueT> { 215 friend class SparseMultiSet; 216 SMSPtrTy SMS; 217 unsigned Idx; 218 unsigned SparseIdx; 219 220 iterator_base(SMSPtrTy P, unsigned I, unsigned SI) 221 : SMS(P), Idx(I), SparseIdx(SI) { } 222 223 /// Whether our iterator has fallen outside our dense vector. 224 bool isEnd() const { 225 if (Idx == SMSNode::INVALID) 226 return true; 227 228 assert(Idx < SMS->Dense.size() && "Out of range, non-INVALID Idx?"); 229 return false; 230 } 231 232 /// Whether our iterator is properly keyed, i.e. the SparseIdx is valid 233 bool isKeyed() const { return SparseIdx < SMS->Universe; } 234 235 unsigned Prev() const { return SMS->Dense[Idx].Prev; } 236 unsigned Next() const { return SMS->Dense[Idx].Next; } 237 238 void setPrev(unsigned P) { SMS->Dense[Idx].Prev = P; } 239 void setNext(unsigned N) { SMS->Dense[Idx].Next = N; } 240 241 public: 242 typedef std::iterator<std::bidirectional_iterator_tag, ValueT> super; 243 typedef typename super::value_type value_type; 244 typedef typename super::difference_type difference_type; 245 typedef typename super::pointer pointer; 246 typedef typename super::reference reference; 247 248 iterator_base(const iterator_base &RHS) 249 : SMS(RHS.SMS), Idx(RHS.Idx), SparseIdx(RHS.SparseIdx) { } 250 251 const iterator_base &operator=(const iterator_base &RHS) { 252 SMS = RHS.SMS; 253 Idx = RHS.Idx; 254 SparseIdx = RHS.SparseIdx; 255 return *this; 256 } 257 258 reference operator*() const { 259 assert(isKeyed() && SMS->sparseIndex(SMS->Dense[Idx].Data) == SparseIdx && 260 "Dereferencing iterator of invalid key or index"); 261 262 return SMS->Dense[Idx].Data; 263 } 264 pointer operator->() const { return &operator*(); } 265 266 /// Comparison operators 267 bool operator==(const iterator_base &RHS) const { 268 // end compares equal 269 if (SMS == RHS.SMS && Idx == RHS.Idx) { 270 assert((isEnd() || SparseIdx == RHS.SparseIdx) && 271 "Same dense entry, but different keys?"); 272 return true; 273 } 274 275 return false; 276 } 277 278 bool operator!=(const iterator_base &RHS) const { 279 return !operator==(RHS); 280 } 281 282 /// Increment and decrement operators 283 iterator_base &operator--() { // predecrement - Back up 284 assert(isKeyed() && "Decrementing an invalid iterator"); 285 assert((isEnd() || !SMS->isHead(SMS->Dense[Idx])) && 286 "Decrementing head of list"); 287 288 // If we're at the end, then issue a new find() 289 if (isEnd()) 290 Idx = SMS->findIndex(SparseIdx).Prev(); 291 else 292 Idx = Prev(); 293 294 return *this; 295 } 296 iterator_base &operator++() { // preincrement - Advance 297 assert(!isEnd() && isKeyed() && "Incrementing an invalid/end iterator"); 298 Idx = Next(); 299 return *this; 300 } 301 iterator_base operator--(int) { // postdecrement 302 iterator_base I(*this); 303 --*this; 304 return I; 305 } 306 iterator_base operator++(int) { // postincrement 307 iterator_base I(*this); 308 ++*this; 309 return I; 310 } 311 }; 312 typedef iterator_base<SparseMultiSet *> iterator; 313 typedef iterator_base<const SparseMultiSet *> const_iterator; 314 315 // Convenience types 316 typedef std::pair<iterator, iterator> RangePair; 317 318 /// Returns an iterator past this container. Note that such an iterator cannot 319 /// be decremented, but will compare equal to other end iterators. 320 iterator end() { return iterator(this, SMSNode::INVALID, SMSNode::INVALID); } 321 const_iterator end() const { 322 return const_iterator(this, SMSNode::INVALID, SMSNode::INVALID); 323 } 324 325 /// Returns true if the set is empty. 326 /// 327 /// This is not the same as BitVector::empty(). 328 /// 329 bool empty() const { return size() == 0; } 330 331 /// Returns the number of elements in the set. 332 /// 333 /// This is not the same as BitVector::size() which returns the size of the 334 /// universe. 335 /// 336 unsigned size() const { 337 assert(NumFree <= Dense.size() && "Out-of-bounds free entries"); 338 return Dense.size() - NumFree; 339 } 340 341 /// Clears the set. This is a very fast constant time operation. 342 /// 343 void clear() { 344 // Sparse does not need to be cleared, see find(). 345 Dense.clear(); 346 NumFree = 0; 347 FreelistIdx = SMSNode::INVALID; 348 } 349 350 /// Find an element by its index. 351 /// 352 /// @param Idx A valid index to find. 353 /// @returns An iterator to the element identified by key, or end(). 354 /// 355 iterator findIndex(unsigned Idx) { 356 assert(Idx < Universe && "Key out of range"); 357 assert(std::numeric_limits<SparseT>::is_integer && 358 !std::numeric_limits<SparseT>::is_signed && 359 "SparseT must be an unsigned integer type"); 360 const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u; 361 for (unsigned i = Sparse[Idx], e = Dense.size(); i < e; i += Stride) { 362 const unsigned FoundIdx = sparseIndex(Dense[i]); 363 // Check that we're pointing at the correct entry and that it is the head 364 // of a valid list. 365 if (Idx == FoundIdx && Dense[i].isValid() && isHead(Dense[i])) 366 return iterator(this, i, Idx); 367 // Stride is 0 when SparseT >= unsigned. We don't need to loop. 368 if (!Stride) 369 break; 370 } 371 return end(); 372 } 373 374 /// Find an element by its key. 375 /// 376 /// @param Key A valid key to find. 377 /// @returns An iterator to the element identified by key, or end(). 378 /// 379 iterator find(const KeyT &Key) { 380 return findIndex(KeyIndexOf(Key)); 381 } 382 383 const_iterator find(const KeyT &Key) const { 384 iterator I = const_cast<SparseMultiSet*>(this)->findIndex(KeyIndexOf(Key)); 385 return const_iterator(I.SMS, I.Idx, KeyIndexOf(Key)); 386 } 387 388 /// Returns the number of elements identified by Key. This will be linear in 389 /// the number of elements of that key. 390 unsigned count(const KeyT &Key) const { 391 unsigned Ret = 0; 392 for (const_iterator It = find(Key); It != end(); ++It) 393 ++Ret; 394 395 return Ret; 396 } 397 398 /// Returns true if this set contains an element identified by Key. 399 bool contains(const KeyT &Key) const { 400 return find(Key) != end(); 401 } 402 403 /// Return the head and tail of the subset's list, otherwise returns end(). 404 iterator getHead(const KeyT &Key) { return find(Key); } 405 iterator getTail(const KeyT &Key) { 406 iterator I = find(Key); 407 if (I != end()) 408 I = iterator(this, I.Prev(), KeyIndexOf(Key)); 409 return I; 410 } 411 412 /// The bounds of the range of items sharing Key K. First member is the head 413 /// of the list, and the second member is a decrementable end iterator for 414 /// that key. 415 RangePair equal_range(const KeyT &K) { 416 iterator B = find(K); 417 iterator E = iterator(this, SMSNode::INVALID, B.SparseIdx); 418 return make_pair(B, E); 419 } 420 421 /// Insert a new element at the tail of the subset list. Returns an iterator 422 /// to the newly added entry. 423 iterator insert(const ValueT &Val) { 424 unsigned Idx = sparseIndex(Val); 425 iterator I = findIndex(Idx); 426 427 unsigned NodeIdx = addValue(Val, SMSNode::INVALID, SMSNode::INVALID); 428 429 if (I == end()) { 430 // Make a singleton list 431 Sparse[Idx] = NodeIdx; 432 Dense[NodeIdx].Prev = NodeIdx; 433 return iterator(this, NodeIdx, Idx); 434 } 435 436 // Stick it at the end. 437 unsigned HeadIdx = I.Idx; 438 unsigned TailIdx = I.Prev(); 439 Dense[TailIdx].Next = NodeIdx; 440 Dense[HeadIdx].Prev = NodeIdx; 441 Dense[NodeIdx].Prev = TailIdx; 442 443 return iterator(this, NodeIdx, Idx); 444 } 445 446 /// Erases an existing element identified by a valid iterator. 447 /// 448 /// This invalidates iterators pointing at the same entry, but erase() returns 449 /// an iterator pointing to the next element in the subset's list. This makes 450 /// it possible to erase selected elements while iterating over the subset: 451 /// 452 /// tie(I, E) = Set.equal_range(Key); 453 /// while (I != E) 454 /// if (test(*I)) 455 /// I = Set.erase(I); 456 /// else 457 /// ++I; 458 /// 459 /// Note that if the last element in the subset list is erased, this will 460 /// return an end iterator which can be decremented to get the new tail (if it 461 /// exists): 462 /// 463 /// tie(B, I) = Set.equal_range(Key); 464 /// for (bool isBegin = B == I; !isBegin; /* empty */) { 465 /// isBegin = (--I) == B; 466 /// if (test(I)) 467 /// break; 468 /// I = erase(I); 469 /// } 470 iterator erase(iterator I) { 471 assert(I.isKeyed() && !I.isEnd() && !Dense[I.Idx].isTombstone() && 472 "erasing invalid/end/tombstone iterator"); 473 474 // First, unlink the node from its list. Then swap the node out with the 475 // dense vector's last entry 476 iterator NextI = unlink(Dense[I.Idx]); 477 478 // Put in a tombstone. 479 makeTombstone(I.Idx); 480 481 return NextI; 482 } 483 484 /// Erase all elements with the given key. This invalidates all 485 /// iterators of that key. 486 void eraseAll(const KeyT &K) { 487 for (iterator I = find(K); I != end(); /* empty */) 488 I = erase(I); 489 } 490 491 private: 492 /// Unlink the node from its list. Returns the next node in the list. 493 iterator unlink(const SMSNode &N) { 494 if (isSingleton(N)) { 495 // Singleton is already unlinked 496 assert(N.Next == SMSNode::INVALID && "Singleton has next?"); 497 return iterator(this, SMSNode::INVALID, ValIndexOf(N.Data)); 498 } 499 500 if (isHead(N)) { 501 // If we're the head, then update the sparse array and our next. 502 Sparse[sparseIndex(N)] = N.Next; 503 Dense[N.Next].Prev = N.Prev; 504 return iterator(this, N.Next, ValIndexOf(N.Data)); 505 } 506 507 if (N.isTail()) { 508 // If we're the tail, then update our head and our previous. 509 findIndex(sparseIndex(N)).setPrev(N.Prev); 510 Dense[N.Prev].Next = N.Next; 511 512 // Give back an end iterator that can be decremented 513 iterator I(this, N.Prev, ValIndexOf(N.Data)); 514 return ++I; 515 } 516 517 // Otherwise, just drop us 518 Dense[N.Next].Prev = N.Prev; 519 Dense[N.Prev].Next = N.Next; 520 return iterator(this, N.Next, ValIndexOf(N.Data)); 521 } 522 }; 523 524 } // end namespace llvm 525 526 #endif 527