1 // Copyright 2012 the V8 project authors. All rights reserved. 2 // Redistribution and use in source and binary forms, with or without 3 // modification, are permitted provided that the following conditions are 4 // met: 5 // 6 // * Redistributions of source code must retain the above copyright 7 // notice, this list of conditions and the following disclaimer. 8 // * Redistributions in binary form must reproduce the above 9 // copyright notice, this list of conditions and the following 10 // disclaimer in the documentation and/or other materials provided 11 // with the distribution. 12 // * Neither the name of Google Inc. nor the names of its 13 // contributors may be used to endorse or promote products derived 14 // from this software without specific prior written permission. 15 // 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28 #include "v8.h" 29 30 #include "accessors.h" 31 #include "api.h" 32 #include "arguments.h" 33 #include "codegen.h" 34 #include "execution.h" 35 #include "ic-inl.h" 36 #include "runtime.h" 37 #include "stub-cache.h" 38 39 namespace v8 { 40 namespace internal { 41 42 #ifdef DEBUG 43 char IC::TransitionMarkFromState(IC::State state) { 44 switch (state) { 45 case UNINITIALIZED: return '0'; 46 case PREMONOMORPHIC: return '.'; 47 case MONOMORPHIC: return '1'; 48 case MONOMORPHIC_PROTOTYPE_FAILURE: return '^'; 49 case POLYMORPHIC: return 'P'; 50 case MEGAMORPHIC: return 'N'; 51 case GENERIC: return 'G'; 52 53 // We never see the debugger states here, because the state is 54 // computed from the original code - not the patched code. Let 55 // these cases fall through to the unreachable code below. 56 case DEBUG_STUB: break; 57 } 58 UNREACHABLE(); 59 return 0; 60 } 61 62 63 const char* GetTransitionMarkModifier(KeyedAccessStoreMode mode) { 64 if (mode == STORE_NO_TRANSITION_HANDLE_COW) return ".COW"; 65 if (mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) { 66 return ".IGNORE_OOB"; 67 } 68 if (IsGrowStoreMode(mode)) return ".GROW"; 69 return ""; 70 } 71 72 73 void IC::TraceIC(const char* type, 74 Handle<Object> name) { 75 if (FLAG_trace_ic) { 76 Code* new_target = raw_target(); 77 State new_state = new_target->ic_state(); 78 PrintF("[%s%s in ", new_target->is_keyed_stub() ? "Keyed" : "", type); 79 StackFrameIterator it(isolate()); 80 while (it.frame()->fp() != this->fp()) it.Advance(); 81 StackFrame* raw_frame = it.frame(); 82 if (raw_frame->is_internal()) { 83 Code* apply_builtin = isolate()->builtins()->builtin( 84 Builtins::kFunctionApply); 85 if (raw_frame->unchecked_code() == apply_builtin) { 86 PrintF("apply from "); 87 it.Advance(); 88 raw_frame = it.frame(); 89 } 90 } 91 JavaScriptFrame::PrintTop(isolate(), stdout, false, true); 92 ExtraICState extra_state = new_target->extra_ic_state(); 93 const char* modifier = 94 GetTransitionMarkModifier( 95 KeyedStoreIC::GetKeyedAccessStoreMode(extra_state)); 96 PrintF(" (%c->%c%s)", 97 TransitionMarkFromState(state()), 98 TransitionMarkFromState(new_state), 99 modifier); 100 name->Print(); 101 PrintF("]\n"); 102 } 103 } 104 105 #define TRACE_GENERIC_IC(isolate, type, reason) \ 106 do { \ 107 if (FLAG_trace_ic) { \ 108 PrintF("[%s patching generic stub in ", type); \ 109 JavaScriptFrame::PrintTop(isolate, stdout, false, true); \ 110 PrintF(" (%s)]\n", reason); \ 111 } \ 112 } while (false) 113 114 #else 115 #define TRACE_GENERIC_IC(isolate, type, reason) 116 #endif // DEBUG 117 118 #define TRACE_IC(type, name) \ 119 ASSERT((TraceIC(type, name), true)) 120 121 IC::IC(FrameDepth depth, Isolate* isolate) 122 : isolate_(isolate), 123 target_set_(false) { 124 // To improve the performance of the (much used) IC code, we unfold a few 125 // levels of the stack frame iteration code. This yields a ~35% speedup when 126 // running DeltaBlue and a ~25% speedup of gbemu with the '--nouse-ic' flag. 127 const Address entry = 128 Isolate::c_entry_fp(isolate->thread_local_top()); 129 Address* pc_address = 130 reinterpret_cast<Address*>(entry + ExitFrameConstants::kCallerPCOffset); 131 Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset); 132 // If there's another JavaScript frame on the stack or a 133 // StubFailureTrampoline, we need to look one frame further down the stack to 134 // find the frame pointer and the return address stack slot. 135 if (depth == EXTRA_CALL_FRAME) { 136 const int kCallerPCOffset = StandardFrameConstants::kCallerPCOffset; 137 pc_address = reinterpret_cast<Address*>(fp + kCallerPCOffset); 138 fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset); 139 } 140 #ifdef DEBUG 141 StackFrameIterator it(isolate); 142 for (int i = 0; i < depth + 1; i++) it.Advance(); 143 StackFrame* frame = it.frame(); 144 ASSERT(fp == frame->fp() && pc_address == frame->pc_address()); 145 #endif 146 fp_ = fp; 147 pc_address_ = StackFrame::ResolveReturnAddressLocation(pc_address); 148 target_ = handle(raw_target(), isolate); 149 state_ = target_->ic_state(); 150 } 151 152 153 #ifdef ENABLE_DEBUGGER_SUPPORT 154 Address IC::OriginalCodeAddress() const { 155 HandleScope scope(isolate()); 156 // Compute the JavaScript frame for the frame pointer of this IC 157 // structure. We need this to be able to find the function 158 // corresponding to the frame. 159 StackFrameIterator it(isolate()); 160 while (it.frame()->fp() != this->fp()) it.Advance(); 161 JavaScriptFrame* frame = JavaScriptFrame::cast(it.frame()); 162 // Find the function on the stack and both the active code for the 163 // function and the original code. 164 JSFunction* function = frame->function(); 165 Handle<SharedFunctionInfo> shared(function->shared(), isolate()); 166 Code* code = shared->code(); 167 ASSERT(Debug::HasDebugInfo(shared)); 168 Code* original_code = Debug::GetDebugInfo(shared)->original_code(); 169 ASSERT(original_code->IsCode()); 170 // Get the address of the call site in the active code. This is the 171 // place where the call to DebugBreakXXX is and where the IC 172 // normally would be. 173 Address addr = Assembler::target_address_from_return_address(pc()); 174 // Return the address in the original code. This is the place where 175 // the call which has been overwritten by the DebugBreakXXX resides 176 // and the place where the inline cache system should look. 177 intptr_t delta = 178 original_code->instruction_start() - code->instruction_start(); 179 return addr + delta; 180 } 181 #endif 182 183 184 static bool HasInterceptorGetter(JSObject* object) { 185 return !object->GetNamedInterceptor()->getter()->IsUndefined(); 186 } 187 188 189 static bool HasInterceptorSetter(JSObject* object) { 190 return !object->GetNamedInterceptor()->setter()->IsUndefined(); 191 } 192 193 194 static void LookupForRead(Handle<Object> object, 195 Handle<String> name, 196 LookupResult* lookup) { 197 // Skip all the objects with named interceptors, but 198 // without actual getter. 199 while (true) { 200 object->Lookup(*name, lookup); 201 // Besides normal conditions (property not found or it's not 202 // an interceptor), bail out if lookup is not cacheable: we won't 203 // be able to IC it anyway and regular lookup should work fine. 204 if (!lookup->IsInterceptor() || !lookup->IsCacheable()) { 205 return; 206 } 207 208 Handle<JSObject> holder(lookup->holder(), lookup->isolate()); 209 if (HasInterceptorGetter(*holder)) { 210 return; 211 } 212 213 holder->LocalLookupRealNamedProperty(*name, lookup); 214 if (lookup->IsFound()) { 215 ASSERT(!lookup->IsInterceptor()); 216 return; 217 } 218 219 Handle<Object> proto(holder->GetPrototype(), lookup->isolate()); 220 if (proto->IsNull()) { 221 ASSERT(!lookup->IsFound()); 222 return; 223 } 224 225 object = proto; 226 } 227 } 228 229 230 bool CallIC::TryUpdateExtraICState(LookupResult* lookup, 231 Handle<Object> object) { 232 if (!lookup->IsConstantFunction()) return false; 233 JSFunction* function = lookup->GetConstantFunction(); 234 if (!function->shared()->HasBuiltinFunctionId()) return false; 235 236 // Fetch the arguments passed to the called function. 237 const int argc = target()->arguments_count(); 238 Address entry = isolate()->c_entry_fp(isolate()->thread_local_top()); 239 Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset); 240 Arguments args(argc + 1, 241 &Memory::Object_at(fp + 242 StandardFrameConstants::kCallerSPOffset + 243 argc * kPointerSize)); 244 switch (function->shared()->builtin_function_id()) { 245 case kStringCharCodeAt: 246 case kStringCharAt: 247 if (object->IsString()) { 248 String* string = String::cast(*object); 249 // Check there's the right string value or wrapper in the receiver slot. 250 ASSERT(string == args[0] || string == JSValue::cast(args[0])->value()); 251 // If we're in the default (fastest) state and the index is 252 // out of bounds, update the state to record this fact. 253 if (StringStubState::decode(extra_ic_state()) == DEFAULT_STRING_STUB && 254 argc >= 1 && args[1]->IsNumber()) { 255 double index = DoubleToInteger(args.number_at(1)); 256 if (index < 0 || index >= string->length()) { 257 extra_ic_state_ = 258 StringStubState::update(extra_ic_state(), 259 STRING_INDEX_OUT_OF_BOUNDS); 260 return true; 261 } 262 } 263 } 264 break; 265 default: 266 return false; 267 } 268 return false; 269 } 270 271 272 bool IC::TryRemoveInvalidPrototypeDependentStub(Handle<Object> receiver, 273 Handle<String> name) { 274 if (target()->is_call_stub()) { 275 LookupResult lookup(isolate()); 276 LookupForRead(receiver, name, &lookup); 277 if (static_cast<CallIC*>(this)->TryUpdateExtraICState(&lookup, receiver)) { 278 return true; 279 } 280 } 281 282 if (target()->is_keyed_stub()) { 283 // Determine whether the failure is due to a name failure. 284 if (!name->IsName()) return false; 285 Name* stub_name = target()->FindFirstName(); 286 if (*name != stub_name) return false; 287 } 288 289 InlineCacheHolderFlag cache_holder = 290 Code::ExtractCacheHolderFromFlags(target()->flags()); 291 292 switch (cache_holder) { 293 case OWN_MAP: 294 // The stub was generated for JSObject but called for non-JSObject. 295 // IC::GetCodeCacheHolder is not applicable. 296 if (!receiver->IsJSObject()) return false; 297 break; 298 case PROTOTYPE_MAP: 299 // IC::GetCodeCacheHolder is not applicable. 300 if (receiver->GetPrototype(isolate())->IsNull()) return false; 301 break; 302 } 303 304 Handle<Map> map( 305 IC::GetCodeCacheHolder(isolate(), *receiver, cache_holder)->map()); 306 307 // Decide whether the inline cache failed because of changes to the 308 // receiver itself or changes to one of its prototypes. 309 // 310 // If there are changes to the receiver itself, the map of the 311 // receiver will have changed and the current target will not be in 312 // the receiver map's code cache. Therefore, if the current target 313 // is in the receiver map's code cache, the inline cache failed due 314 // to prototype check failure. 315 int index = map->IndexInCodeCache(*name, *target()); 316 if (index >= 0) { 317 map->RemoveFromCodeCache(*name, *target(), index); 318 // Handlers are stored in addition to the ICs on the map. Remove those, too. 319 TryRemoveInvalidHandlers(map, name); 320 return true; 321 } 322 323 // The stub is not in the cache. We've ruled out all other kinds of failure 324 // except for proptotype chain changes, a deprecated map, a map that's 325 // different from the one that the stub expects, elements kind changes, or a 326 // constant global property that will become mutable. Threat all those 327 // situations as prototype failures (stay monomorphic if possible). 328 329 // If the IC is shared between multiple receivers (slow dictionary mode), then 330 // the map cannot be deprecated and the stub invalidated. 331 if (cache_holder == OWN_MAP) { 332 Map* old_map = target()->FindFirstMap(); 333 if (old_map == *map) return true; 334 if (old_map != NULL) { 335 if (old_map->is_deprecated()) return true; 336 if (IsMoreGeneralElementsKindTransition(old_map->elements_kind(), 337 map->elements_kind())) { 338 return true; 339 } 340 } 341 } 342 343 if (receiver->IsGlobalObject()) { 344 LookupResult lookup(isolate()); 345 GlobalObject* global = GlobalObject::cast(*receiver); 346 global->LocalLookupRealNamedProperty(*name, &lookup); 347 if (!lookup.IsFound()) return false; 348 PropertyCell* cell = global->GetPropertyCell(&lookup); 349 return cell->type()->IsConstant(); 350 } 351 352 return false; 353 } 354 355 356 void IC::TryRemoveInvalidHandlers(Handle<Map> map, Handle<String> name) { 357 CodeHandleList handlers; 358 target()->FindHandlers(&handlers); 359 for (int i = 0; i < handlers.length(); i++) { 360 Handle<Code> handler = handlers.at(i); 361 int index = map->IndexInCodeCache(*name, *handler); 362 if (index >= 0) { 363 map->RemoveFromCodeCache(*name, *handler, index); 364 return; 365 } 366 } 367 } 368 369 370 void IC::UpdateState(Handle<Object> receiver, Handle<Object> name) { 371 if (!name->IsString()) return; 372 if (state() != MONOMORPHIC) { 373 if (state() == POLYMORPHIC && receiver->IsHeapObject()) { 374 TryRemoveInvalidHandlers( 375 handle(Handle<HeapObject>::cast(receiver)->map()), 376 Handle<String>::cast(name)); 377 } 378 return; 379 } 380 if (receiver->IsUndefined() || receiver->IsNull()) return; 381 382 // Remove the target from the code cache if it became invalid 383 // because of changes in the prototype chain to avoid hitting it 384 // again. 385 if (TryRemoveInvalidPrototypeDependentStub( 386 receiver, Handle<String>::cast(name))) { 387 return MarkMonomorphicPrototypeFailure(); 388 } 389 390 // The builtins object is special. It only changes when JavaScript 391 // builtins are loaded lazily. It is important to keep inline 392 // caches for the builtins object monomorphic. Therefore, if we get 393 // an inline cache miss for the builtins object after lazily loading 394 // JavaScript builtins, we return uninitialized as the state to 395 // force the inline cache back to monomorphic state. 396 if (receiver->IsJSBuiltinsObject()) state_ = UNINITIALIZED; 397 } 398 399 400 RelocInfo::Mode IC::ComputeMode() { 401 Address addr = address(); 402 Code* code = Code::cast(isolate()->FindCodeObject(addr)); 403 for (RelocIterator it(code, RelocInfo::kCodeTargetMask); 404 !it.done(); it.next()) { 405 RelocInfo* info = it.rinfo(); 406 if (info->pc() == addr) return info->rmode(); 407 } 408 UNREACHABLE(); 409 return RelocInfo::NONE32; 410 } 411 412 413 Failure* IC::TypeError(const char* type, 414 Handle<Object> object, 415 Handle<Object> key) { 416 HandleScope scope(isolate()); 417 Handle<Object> args[2] = { key, object }; 418 Handle<Object> error = isolate()->factory()->NewTypeError( 419 type, HandleVector(args, 2)); 420 return isolate()->Throw(*error); 421 } 422 423 424 Failure* IC::ReferenceError(const char* type, Handle<String> name) { 425 HandleScope scope(isolate()); 426 Handle<Object> error = isolate()->factory()->NewReferenceError( 427 type, HandleVector(&name, 1)); 428 return isolate()->Throw(*error); 429 } 430 431 432 static int ComputeTypeInfoCountDelta(IC::State old_state, IC::State new_state) { 433 bool was_uninitialized = 434 old_state == UNINITIALIZED || old_state == PREMONOMORPHIC; 435 bool is_uninitialized = 436 new_state == UNINITIALIZED || new_state == PREMONOMORPHIC; 437 return (was_uninitialized && !is_uninitialized) ? 1 : 438 (!was_uninitialized && is_uninitialized) ? -1 : 0; 439 } 440 441 442 void IC::PostPatching(Address address, Code* target, Code* old_target) { 443 if (FLAG_type_info_threshold == 0 && !FLAG_watch_ic_patching) { 444 return; 445 } 446 Isolate* isolate = target->GetHeap()->isolate(); 447 Code* host = isolate-> 448 inner_pointer_to_code_cache()->GetCacheEntry(address)->code; 449 if (host->kind() != Code::FUNCTION) return; 450 451 if (FLAG_type_info_threshold > 0 && 452 old_target->is_inline_cache_stub() && 453 target->is_inline_cache_stub()) { 454 int delta = ComputeTypeInfoCountDelta(old_target->ic_state(), 455 target->ic_state()); 456 // Not all Code objects have TypeFeedbackInfo. 457 if (host->type_feedback_info()->IsTypeFeedbackInfo() && delta != 0) { 458 TypeFeedbackInfo* info = 459 TypeFeedbackInfo::cast(host->type_feedback_info()); 460 info->change_ic_with_type_info_count(delta); 461 } 462 } 463 if (host->type_feedback_info()->IsTypeFeedbackInfo()) { 464 TypeFeedbackInfo* info = 465 TypeFeedbackInfo::cast(host->type_feedback_info()); 466 info->change_own_type_change_checksum(); 467 } 468 if (FLAG_watch_ic_patching) { 469 host->set_profiler_ticks(0); 470 isolate->runtime_profiler()->NotifyICChanged(); 471 } 472 // TODO(2029): When an optimized function is patched, it would 473 // be nice to propagate the corresponding type information to its 474 // unoptimized version for the benefit of later inlining. 475 } 476 477 478 void IC::Clear(Isolate* isolate, Address address) { 479 Code* target = GetTargetAtAddress(address); 480 481 // Don't clear debug break inline cache as it will remove the break point. 482 if (target->is_debug_stub()) return; 483 484 switch (target->kind()) { 485 case Code::LOAD_IC: return LoadIC::Clear(isolate, address, target); 486 case Code::KEYED_LOAD_IC: 487 return KeyedLoadIC::Clear(isolate, address, target); 488 case Code::STORE_IC: return StoreIC::Clear(isolate, address, target); 489 case Code::KEYED_STORE_IC: 490 return KeyedStoreIC::Clear(isolate, address, target); 491 case Code::CALL_IC: return CallIC::Clear(address, target); 492 case Code::KEYED_CALL_IC: return KeyedCallIC::Clear(address, target); 493 case Code::COMPARE_IC: return CompareIC::Clear(isolate, address, target); 494 case Code::COMPARE_NIL_IC: return CompareNilIC::Clear(address, target); 495 case Code::BINARY_OP_IC: 496 case Code::TO_BOOLEAN_IC: 497 // Clearing these is tricky and does not 498 // make any performance difference. 499 return; 500 default: UNREACHABLE(); 501 } 502 } 503 504 505 void CallICBase::Clear(Address address, Code* target) { 506 if (IsCleared(target)) return; 507 bool contextual = CallICBase::Contextual::decode(target->extra_ic_state()); 508 Code* code = 509 target->GetIsolate()->stub_cache()->FindCallInitialize( 510 target->arguments_count(), 511 contextual ? RelocInfo::CODE_TARGET_CONTEXT : RelocInfo::CODE_TARGET, 512 target->kind()); 513 SetTargetAtAddress(address, code); 514 } 515 516 517 void KeyedLoadIC::Clear(Isolate* isolate, Address address, Code* target) { 518 if (IsCleared(target)) return; 519 // Make sure to also clear the map used in inline fast cases. If we 520 // do not clear these maps, cached code can keep objects alive 521 // through the embedded maps. 522 SetTargetAtAddress(address, *pre_monomorphic_stub(isolate)); 523 } 524 525 526 void LoadIC::Clear(Isolate* isolate, Address address, Code* target) { 527 if (IsCleared(target)) return; 528 SetTargetAtAddress(address, *pre_monomorphic_stub(isolate)); 529 } 530 531 532 void StoreIC::Clear(Isolate* isolate, Address address, Code* target) { 533 if (IsCleared(target)) return; 534 SetTargetAtAddress(address, 535 *pre_monomorphic_stub( 536 isolate, StoreIC::GetStrictMode(target->extra_ic_state()))); 537 } 538 539 540 void KeyedStoreIC::Clear(Isolate* isolate, Address address, Code* target) { 541 if (IsCleared(target)) return; 542 SetTargetAtAddress(address, 543 *pre_monomorphic_stub( 544 isolate, StoreIC::GetStrictMode(target->extra_ic_state()))); 545 } 546 547 548 void CompareIC::Clear(Isolate* isolate, Address address, Code* target) { 549 ASSERT(target->major_key() == CodeStub::CompareIC); 550 CompareIC::State handler_state; 551 Token::Value op; 552 ICCompareStub::DecodeMinorKey(target->stub_info(), NULL, NULL, 553 &handler_state, &op); 554 // Only clear CompareICs that can retain objects. 555 if (handler_state != KNOWN_OBJECT) return; 556 SetTargetAtAddress(address, GetRawUninitialized(isolate, op)); 557 PatchInlinedSmiCode(address, DISABLE_INLINED_SMI_CHECK); 558 } 559 560 561 Handle<Object> CallICBase::TryCallAsFunction(Handle<Object> object) { 562 Handle<Object> delegate = Execution::GetFunctionDelegate(isolate(), object); 563 564 if (delegate->IsJSFunction() && !object->IsJSFunctionProxy()) { 565 // Patch the receiver and use the delegate as the function to 566 // invoke. This is used for invoking objects as if they were functions. 567 const int argc = target()->arguments_count(); 568 StackFrameLocator locator(isolate()); 569 JavaScriptFrame* frame = locator.FindJavaScriptFrame(0); 570 int index = frame->ComputeExpressionsCount() - (argc + 1); 571 frame->SetExpression(index, *object); 572 } 573 574 return delegate; 575 } 576 577 578 void CallICBase::ReceiverToObjectIfRequired(Handle<Object> callee, 579 Handle<Object> object) { 580 while (callee->IsJSFunctionProxy()) { 581 callee = Handle<Object>(JSFunctionProxy::cast(*callee)->call_trap(), 582 isolate()); 583 } 584 585 if (callee->IsJSFunction()) { 586 Handle<JSFunction> function = Handle<JSFunction>::cast(callee); 587 if (!function->shared()->is_classic_mode() || function->IsBuiltin()) { 588 // Do not wrap receiver for strict mode functions or for builtins. 589 return; 590 } 591 } 592 593 // And only wrap string, number or boolean. 594 if (object->IsString() || object->IsNumber() || object->IsBoolean()) { 595 // Change the receiver to the result of calling ToObject on it. 596 const int argc = this->target()->arguments_count(); 597 StackFrameLocator locator(isolate()); 598 JavaScriptFrame* frame = locator.FindJavaScriptFrame(0); 599 int index = frame->ComputeExpressionsCount() - (argc + 1); 600 frame->SetExpression(index, *isolate()->factory()->ToObject(object)); 601 } 602 } 603 604 605 static bool MigrateDeprecated(Handle<Object> object) { 606 if (!object->IsJSObject()) return false; 607 Handle<JSObject> receiver = Handle<JSObject>::cast(object); 608 if (!receiver->map()->is_deprecated()) return false; 609 JSObject::MigrateInstance(Handle<JSObject>::cast(object)); 610 return true; 611 } 612 613 614 MaybeObject* CallICBase::LoadFunction(Handle<Object> object, 615 Handle<String> name) { 616 bool use_ic = MigrateDeprecated(object) ? false : FLAG_use_ic; 617 618 // If the object is undefined or null it's illegal to try to get any 619 // of its properties; throw a TypeError in that case. 620 if (object->IsUndefined() || object->IsNull()) { 621 return TypeError("non_object_property_call", object, name); 622 } 623 624 // Check if the name is trivially convertible to an index and get 625 // the element if so. 626 uint32_t index; 627 if (name->AsArrayIndex(&index)) { 628 Handle<Object> result = Object::GetElement(isolate(), object, index); 629 RETURN_IF_EMPTY_HANDLE(isolate(), result); 630 if (result->IsJSFunction()) return *result; 631 632 // Try to find a suitable function delegate for the object at hand. 633 result = TryCallAsFunction(result); 634 if (result->IsJSFunction()) return *result; 635 636 // Otherwise, it will fail in the lookup step. 637 } 638 639 // Lookup the property in the object. 640 LookupResult lookup(isolate()); 641 LookupForRead(object, name, &lookup); 642 643 if (!lookup.IsFound()) { 644 // If the object does not have the requested property, check which 645 // exception we need to throw. 646 return IsUndeclaredGlobal(object) 647 ? ReferenceError("not_defined", name) 648 : TypeError("undefined_method", object, name); 649 } 650 651 // Lookup is valid: Update inline cache and stub cache. 652 if (use_ic) UpdateCaches(&lookup, object, name); 653 654 // Get the property. 655 PropertyAttributes attr; 656 Handle<Object> result = 657 Object::GetProperty(object, object, &lookup, name, &attr); 658 RETURN_IF_EMPTY_HANDLE(isolate(), result); 659 660 if (lookup.IsInterceptor() && attr == ABSENT) { 661 // If the object does not have the requested property, check which 662 // exception we need to throw. 663 return IsUndeclaredGlobal(object) 664 ? ReferenceError("not_defined", name) 665 : TypeError("undefined_method", object, name); 666 } 667 668 ASSERT(!result->IsTheHole()); 669 670 // Make receiver an object if the callee requires it. Strict mode or builtin 671 // functions do not wrap the receiver, non-strict functions and objects 672 // called as functions do. 673 ReceiverToObjectIfRequired(result, object); 674 675 if (result->IsJSFunction()) { 676 Handle<JSFunction> function = Handle<JSFunction>::cast(result); 677 #ifdef ENABLE_DEBUGGER_SUPPORT 678 // Handle stepping into a function if step into is active. 679 Debug* debug = isolate()->debug(); 680 if (debug->StepInActive()) { 681 // Protect the result in a handle as the debugger can allocate and might 682 // cause GC. 683 debug->HandleStepIn(function, object, fp(), false); 684 } 685 #endif 686 return *function; 687 } 688 689 // Try to find a suitable function delegate for the object at hand. 690 result = TryCallAsFunction(result); 691 if (result->IsJSFunction()) return *result; 692 693 return TypeError("property_not_function", object, name); 694 } 695 696 697 Handle<Code> CallICBase::ComputeMonomorphicStub(LookupResult* lookup, 698 Handle<Object> object, 699 Handle<String> name) { 700 int argc = target()->arguments_count(); 701 Handle<JSObject> holder(lookup->holder(), isolate()); 702 switch (lookup->type()) { 703 case FIELD: { 704 PropertyIndex index = lookup->GetFieldIndex(); 705 return isolate()->stub_cache()->ComputeCallField( 706 argc, kind_, extra_ic_state(), name, object, holder, index); 707 } 708 case CONSTANT: { 709 if (!lookup->IsConstantFunction()) return Handle<Code>::null(); 710 // Get the constant function and compute the code stub for this 711 // call; used for rewriting to monomorphic state and making sure 712 // that the code stub is in the stub cache. 713 Handle<JSFunction> function(lookup->GetConstantFunction(), isolate()); 714 return isolate()->stub_cache()->ComputeCallConstant( 715 argc, kind_, extra_ic_state(), name, object, holder, function); 716 } 717 case NORMAL: { 718 // If we return a null handle, the IC will not be patched. 719 if (!object->IsJSObject()) return Handle<Code>::null(); 720 Handle<JSObject> receiver = Handle<JSObject>::cast(object); 721 722 if (holder->IsGlobalObject()) { 723 Handle<GlobalObject> global = Handle<GlobalObject>::cast(holder); 724 Handle<PropertyCell> cell( 725 global->GetPropertyCell(lookup), isolate()); 726 if (!cell->value()->IsJSFunction()) return Handle<Code>::null(); 727 Handle<JSFunction> function(JSFunction::cast(cell->value())); 728 return isolate()->stub_cache()->ComputeCallGlobal( 729 argc, kind_, extra_ic_state(), name, 730 receiver, global, cell, function); 731 } else { 732 // There is only one shared stub for calling normalized 733 // properties. It does not traverse the prototype chain, so the 734 // property must be found in the receiver for the stub to be 735 // applicable. 736 if (!holder.is_identical_to(receiver)) return Handle<Code>::null(); 737 return isolate()->stub_cache()->ComputeCallNormal( 738 argc, kind_, extra_ic_state()); 739 } 740 break; 741 } 742 case INTERCEPTOR: 743 ASSERT(HasInterceptorGetter(*holder)); 744 return isolate()->stub_cache()->ComputeCallInterceptor( 745 argc, kind_, extra_ic_state(), name, object, holder); 746 default: 747 return Handle<Code>::null(); 748 } 749 } 750 751 752 Handle<Code> CallICBase::megamorphic_stub() { 753 return isolate()->stub_cache()->ComputeCallMegamorphic( 754 target()->arguments_count(), kind_, extra_ic_state()); 755 } 756 757 758 Handle<Code> CallICBase::pre_monomorphic_stub() { 759 return isolate()->stub_cache()->ComputeCallPreMonomorphic( 760 target()->arguments_count(), kind_, extra_ic_state()); 761 } 762 763 764 void CallICBase::UpdateCaches(LookupResult* lookup, 765 Handle<Object> object, 766 Handle<String> name) { 767 // Bail out if we didn't find a result. 768 if (!lookup->IsProperty() || !lookup->IsCacheable()) return; 769 770 if (state() == UNINITIALIZED) { 771 set_target(*pre_monomorphic_stub()); 772 TRACE_IC("CallIC", name); 773 return; 774 } 775 776 Handle<Code> code = ComputeMonomorphicStub(lookup, object, name); 777 // If there's no appropriate stub we simply avoid updating the caches. 778 // TODO(verwaest): Install a slow fallback in this case to avoid not learning, 779 // and deopting Crankshaft code. 780 if (code.is_null()) return; 781 782 Handle<JSObject> cache_object = object->IsJSObject() 783 ? Handle<JSObject>::cast(object) 784 : Handle<JSObject>(JSObject::cast(object->GetPrototype(isolate())), 785 isolate()); 786 787 PatchCache(CurrentTypeOf(cache_object, isolate()), name, code); 788 TRACE_IC("CallIC", name); 789 } 790 791 792 MaybeObject* KeyedCallIC::LoadFunction(Handle<Object> object, 793 Handle<Object> key) { 794 if (key->IsInternalizedString()) { 795 return CallICBase::LoadFunction(object, Handle<String>::cast(key)); 796 } 797 798 if (object->IsUndefined() || object->IsNull()) { 799 return TypeError("non_object_property_call", object, key); 800 } 801 802 bool use_ic = MigrateDeprecated(object) 803 ? false : FLAG_use_ic && !object->IsAccessCheckNeeded(); 804 805 if (use_ic && state() != MEGAMORPHIC) { 806 ASSERT(!object->IsJSGlobalProxy()); 807 int argc = target()->arguments_count(); 808 Handle<Code> stub; 809 810 // Use the KeyedArrayCallStub if the call is of the form array[smi](...), 811 // where array is an instance of one of the initial array maps (without 812 // extra named properties). 813 // TODO(verwaest): Also support keyed calls on instances of other maps. 814 if (object->IsJSArray() && key->IsSmi()) { 815 Handle<JSArray> array = Handle<JSArray>::cast(object); 816 ElementsKind kind = array->map()->elements_kind(); 817 if (IsFastObjectElementsKind(kind) && 818 array->map() == isolate()->get_initial_js_array_map(kind)) { 819 KeyedArrayCallStub stub_gen(IsHoleyElementsKind(kind), argc); 820 stub = stub_gen.GetCode(isolate()); 821 } 822 } 823 824 if (stub.is_null()) { 825 stub = isolate()->stub_cache()->ComputeCallMegamorphic( 826 argc, Code::KEYED_CALL_IC, kNoExtraICState); 827 if (object->IsJSObject()) { 828 Handle<JSObject> receiver = Handle<JSObject>::cast(object); 829 if (receiver->elements()->map() == 830 isolate()->heap()->non_strict_arguments_elements_map()) { 831 stub = isolate()->stub_cache()->ComputeCallArguments(argc); 832 } 833 } 834 ASSERT(!stub.is_null()); 835 } 836 set_target(*stub); 837 TRACE_IC("CallIC", key); 838 } 839 840 Handle<Object> result = GetProperty(isolate(), object, key); 841 RETURN_IF_EMPTY_HANDLE(isolate(), result); 842 843 // Make receiver an object if the callee requires it. Strict mode or builtin 844 // functions do not wrap the receiver, non-strict functions and objects 845 // called as functions do. 846 ReceiverToObjectIfRequired(result, object); 847 if (result->IsJSFunction()) return *result; 848 849 result = TryCallAsFunction(result); 850 if (result->IsJSFunction()) return *result; 851 852 return TypeError("property_not_function", object, key); 853 } 854 855 856 MaybeObject* LoadIC::Load(Handle<Object> object, 857 Handle<String> name) { 858 // If the object is undefined or null it's illegal to try to get any 859 // of its properties; throw a TypeError in that case. 860 if (object->IsUndefined() || object->IsNull()) { 861 return TypeError("non_object_property_load", object, name); 862 } 863 864 if (FLAG_use_ic) { 865 // Use specialized code for getting the length of strings and 866 // string wrapper objects. The length property of string wrapper 867 // objects is read-only and therefore always returns the length of 868 // the underlying string value. See ECMA-262 15.5.5.1. 869 if (object->IsStringWrapper() && 870 name->Equals(isolate()->heap()->length_string())) { 871 Handle<Code> stub; 872 if (state() == UNINITIALIZED) { 873 stub = pre_monomorphic_stub(); 874 } else if (state() == PREMONOMORPHIC || state() == MONOMORPHIC) { 875 StringLengthStub string_length_stub(kind()); 876 stub = string_length_stub.GetCode(isolate()); 877 } else if (state() != MEGAMORPHIC) { 878 ASSERT(state() != GENERIC); 879 stub = megamorphic_stub(); 880 } 881 if (!stub.is_null()) { 882 set_target(*stub); 883 if (FLAG_trace_ic) PrintF("[LoadIC : +#length /stringwrapper]\n"); 884 } 885 // Get the string if we have a string wrapper object. 886 String* string = String::cast(JSValue::cast(*object)->value()); 887 return Smi::FromInt(string->length()); 888 } 889 890 // Use specialized code for getting prototype of functions. 891 if (object->IsJSFunction() && 892 name->Equals(isolate()->heap()->prototype_string()) && 893 Handle<JSFunction>::cast(object)->should_have_prototype()) { 894 Handle<Code> stub; 895 if (state() == UNINITIALIZED) { 896 stub = pre_monomorphic_stub(); 897 } else if (state() == PREMONOMORPHIC) { 898 FunctionPrototypeStub function_prototype_stub(kind()); 899 stub = function_prototype_stub.GetCode(isolate()); 900 } else if (state() != MEGAMORPHIC) { 901 ASSERT(state() != GENERIC); 902 stub = megamorphic_stub(); 903 } 904 if (!stub.is_null()) { 905 set_target(*stub); 906 if (FLAG_trace_ic) PrintF("[LoadIC : +#prototype /function]\n"); 907 } 908 return *Accessors::FunctionGetPrototype(Handle<JSFunction>::cast(object)); 909 } 910 } 911 912 // Check if the name is trivially convertible to an index and get 913 // the element or char if so. 914 uint32_t index; 915 if (kind() == Code::KEYED_LOAD_IC && name->AsArrayIndex(&index)) { 916 // Rewrite to the generic keyed load stub. 917 if (FLAG_use_ic) set_target(*generic_stub()); 918 return Runtime::GetElementOrCharAtOrFail(isolate(), object, index); 919 } 920 921 bool use_ic = MigrateDeprecated(object) ? false : FLAG_use_ic; 922 923 // Named lookup in the object. 924 LookupResult lookup(isolate()); 925 LookupForRead(object, name, &lookup); 926 927 // If we did not find a property, check if we need to throw an exception. 928 if (!lookup.IsFound()) { 929 if (IsUndeclaredGlobal(object)) { 930 return ReferenceError("not_defined", name); 931 } 932 LOG(isolate(), SuspectReadEvent(*name, *object)); 933 } 934 935 // Update inline cache and stub cache. 936 if (use_ic) UpdateCaches(&lookup, object, name); 937 938 PropertyAttributes attr; 939 // Get the property. 940 Handle<Object> result = 941 Object::GetProperty(object, object, &lookup, name, &attr); 942 RETURN_IF_EMPTY_HANDLE(isolate(), result); 943 // If the property is not present, check if we need to throw an 944 // exception. 945 if ((lookup.IsInterceptor() || lookup.IsHandler()) && 946 attr == ABSENT && IsUndeclaredGlobal(object)) { 947 return ReferenceError("not_defined", name); 948 } 949 return *result; 950 } 951 952 953 static bool AddOneReceiverMapIfMissing(MapHandleList* receiver_maps, 954 Handle<Map> new_receiver_map) { 955 ASSERT(!new_receiver_map.is_null()); 956 for (int current = 0; current < receiver_maps->length(); ++current) { 957 if (!receiver_maps->at(current).is_null() && 958 receiver_maps->at(current).is_identical_to(new_receiver_map)) { 959 return false; 960 } 961 } 962 receiver_maps->Add(new_receiver_map); 963 return true; 964 } 965 966 967 bool IC::UpdatePolymorphicIC(Handle<Type> type, 968 Handle<String> name, 969 Handle<Code> code) { 970 if (!code->is_handler()) return false; 971 TypeHandleList types; 972 CodeHandleList handlers; 973 974 int number_of_valid_types; 975 int handler_to_overwrite = -1; 976 977 target()->FindAllTypes(&types); 978 int number_of_types = types.length(); 979 number_of_valid_types = number_of_types; 980 981 for (int i = 0; i < number_of_types; i++) { 982 Handle<Type> current_type = types.at(i); 983 // Filter out deprecated maps to ensure their instances get migrated. 984 if (current_type->IsClass() && current_type->AsClass()->is_deprecated()) { 985 number_of_valid_types--; 986 // If the receiver type is already in the polymorphic IC, this indicates 987 // there was a prototoype chain failure. In that case, just overwrite the 988 // handler. 989 } else if (type->IsCurrently(current_type)) { 990 ASSERT(handler_to_overwrite == -1); 991 number_of_valid_types--; 992 handler_to_overwrite = i; 993 } 994 } 995 996 if (number_of_valid_types >= 4) return false; 997 if (number_of_types == 0) return false; 998 if (!target()->FindHandlers(&handlers, types.length())) return false; 999 1000 number_of_valid_types++; 1001 if (handler_to_overwrite >= 0) { 1002 handlers.Set(handler_to_overwrite, code); 1003 } else { 1004 types.Add(type); 1005 handlers.Add(code); 1006 } 1007 1008 Handle<Code> ic = isolate()->stub_cache()->ComputePolymorphicIC( 1009 &types, &handlers, number_of_valid_types, name, extra_ic_state()); 1010 set_target(*ic); 1011 return true; 1012 } 1013 1014 1015 Handle<Type> IC::CurrentTypeOf(Handle<Object> object, Isolate* isolate) { 1016 Type* type = object->IsJSGlobalObject() 1017 ? Type::Constant(Handle<JSGlobalObject>::cast(object)) 1018 : Type::OfCurrently(object); 1019 return handle(type, isolate); 1020 } 1021 1022 1023 Handle<Map> IC::TypeToMap(Type* type, Isolate* isolate) { 1024 if (type->Is(Type::Number())) return isolate->factory()->heap_number_map(); 1025 if (type->Is(Type::Boolean())) return isolate->factory()->oddball_map(); 1026 if (type->IsConstant()) { 1027 return handle(Handle<JSGlobalObject>::cast(type->AsConstant())->map()); 1028 } 1029 ASSERT(type->IsClass()); 1030 return type->AsClass(); 1031 } 1032 1033 1034 Type* IC::MapToType(Handle<Map> map) { 1035 if (map->instance_type() == HEAP_NUMBER_TYPE) return Type::Number(); 1036 // The only oddballs that can be recorded in ICs are booleans. 1037 if (map->instance_type() == ODDBALL_TYPE) return Type::Boolean(); 1038 return Type::Class(map); 1039 } 1040 1041 1042 void IC::UpdateMonomorphicIC(Handle<Type> type, 1043 Handle<Code> handler, 1044 Handle<String> name) { 1045 if (!handler->is_handler()) return set_target(*handler); 1046 Handle<Code> ic = isolate()->stub_cache()->ComputeMonomorphicIC( 1047 name, type, handler, extra_ic_state()); 1048 set_target(*ic); 1049 } 1050 1051 1052 void IC::CopyICToMegamorphicCache(Handle<String> name) { 1053 TypeHandleList types; 1054 CodeHandleList handlers; 1055 target()->FindAllTypes(&types); 1056 if (!target()->FindHandlers(&handlers, types.length())) return; 1057 for (int i = 0; i < types.length(); i++) { 1058 UpdateMegamorphicCache(*types.at(i), *name, *handlers.at(i)); 1059 } 1060 } 1061 1062 1063 bool IC::IsTransitionOfMonomorphicTarget(Type* type) { 1064 if (!type->IsClass()) return false; 1065 Map* receiver_map = *type->AsClass(); 1066 Map* current_map = target()->FindFirstMap(); 1067 ElementsKind receiver_elements_kind = receiver_map->elements_kind(); 1068 bool more_general_transition = 1069 IsMoreGeneralElementsKindTransition( 1070 current_map->elements_kind(), receiver_elements_kind); 1071 Map* transitioned_map = more_general_transition 1072 ? current_map->LookupElementsTransitionMap(receiver_elements_kind) 1073 : NULL; 1074 1075 return transitioned_map == receiver_map; 1076 } 1077 1078 1079 void IC::PatchCache(Handle<Type> type, 1080 Handle<String> name, 1081 Handle<Code> code) { 1082 switch (state()) { 1083 case UNINITIALIZED: 1084 case PREMONOMORPHIC: 1085 case MONOMORPHIC_PROTOTYPE_FAILURE: 1086 UpdateMonomorphicIC(type, code, name); 1087 break; 1088 case MONOMORPHIC: { 1089 // For now, call stubs are allowed to rewrite to the same stub. This 1090 // happens e.g., when the field does not contain a function. 1091 ASSERT(target()->is_call_stub() || 1092 target()->is_keyed_call_stub() || 1093 !target().is_identical_to(code)); 1094 Code* old_handler = target()->FindFirstHandler(); 1095 if (old_handler == *code && IsTransitionOfMonomorphicTarget(*type)) { 1096 UpdateMonomorphicIC(type, code, name); 1097 break; 1098 } 1099 // Fall through. 1100 } 1101 case POLYMORPHIC: 1102 if (!target()->is_keyed_stub()) { 1103 if (UpdatePolymorphicIC(type, name, code)) break; 1104 CopyICToMegamorphicCache(name); 1105 } 1106 set_target(*megamorphic_stub()); 1107 // Fall through. 1108 case MEGAMORPHIC: 1109 UpdateMegamorphicCache(*type, *name, *code); 1110 break; 1111 case DEBUG_STUB: 1112 break; 1113 case GENERIC: 1114 UNREACHABLE(); 1115 break; 1116 } 1117 } 1118 1119 1120 Handle<Code> LoadIC::SimpleFieldLoad(int offset, 1121 bool inobject, 1122 Representation representation) { 1123 if (kind() == Code::LOAD_IC) { 1124 LoadFieldStub stub(inobject, offset, representation); 1125 return stub.GetCode(isolate()); 1126 } else { 1127 KeyedLoadFieldStub stub(inobject, offset, representation); 1128 return stub.GetCode(isolate()); 1129 } 1130 } 1131 1132 1133 void LoadIC::UpdateCaches(LookupResult* lookup, 1134 Handle<Object> object, 1135 Handle<String> name) { 1136 if (state() == UNINITIALIZED) { 1137 // This is the first time we execute this inline cache. 1138 // Set the target to the pre monomorphic stub to delay 1139 // setting the monomorphic state. 1140 set_target(*pre_monomorphic_stub()); 1141 TRACE_IC("LoadIC", name); 1142 return; 1143 } 1144 1145 Handle<Type> type = CurrentTypeOf(object, isolate()); 1146 Handle<Code> code; 1147 if (!lookup->IsCacheable()) { 1148 // Bail out if the result is not cacheable. 1149 code = slow_stub(); 1150 } else if (!lookup->IsProperty()) { 1151 if (kind() == Code::LOAD_IC) { 1152 code = isolate()->stub_cache()->ComputeLoadNonexistent(name, type); 1153 } else { 1154 code = slow_stub(); 1155 } 1156 } else { 1157 code = ComputeHandler(lookup, object, name); 1158 } 1159 1160 PatchCache(type, name, code); 1161 TRACE_IC("LoadIC", name); 1162 } 1163 1164 1165 void IC::UpdateMegamorphicCache(Type* type, Name* name, Code* code) { 1166 // Cache code holding map should be consistent with 1167 // GenerateMonomorphicCacheProbe. 1168 Map* map = *TypeToMap(type, isolate()); 1169 isolate()->stub_cache()->Set(name, map, code); 1170 } 1171 1172 1173 Handle<Code> IC::ComputeHandler(LookupResult* lookup, 1174 Handle<Object> object, 1175 Handle<String> name, 1176 Handle<Object> value) { 1177 InlineCacheHolderFlag cache_holder = GetCodeCacheForObject(*object); 1178 Handle<HeapObject> stub_holder(GetCodeCacheHolder( 1179 isolate(), *object, cache_holder)); 1180 1181 Handle<Code> code = isolate()->stub_cache()->FindHandler( 1182 name, handle(stub_holder->map()), kind(), cache_holder); 1183 if (!code.is_null()) return code; 1184 1185 code = CompileHandler(lookup, object, name, value, cache_holder); 1186 ASSERT(code->is_handler()); 1187 1188 if (code->type() != Code::NORMAL) { 1189 HeapObject::UpdateMapCodeCache(stub_holder, name, code); 1190 } 1191 1192 return code; 1193 } 1194 1195 1196 Handle<Code> LoadIC::CompileHandler(LookupResult* lookup, 1197 Handle<Object> object, 1198 Handle<String> name, 1199 Handle<Object> unused, 1200 InlineCacheHolderFlag cache_holder) { 1201 if (object->IsString() && name->Equals(isolate()->heap()->length_string())) { 1202 int length_index = String::kLengthOffset / kPointerSize; 1203 return SimpleFieldLoad(length_index); 1204 } 1205 1206 Handle<Type> type = CurrentTypeOf(object, isolate()); 1207 Handle<JSObject> holder(lookup->holder()); 1208 LoadStubCompiler compiler(isolate(), kNoExtraICState, cache_holder, kind()); 1209 1210 switch (lookup->type()) { 1211 case FIELD: { 1212 PropertyIndex field = lookup->GetFieldIndex(); 1213 if (object.is_identical_to(holder)) { 1214 return SimpleFieldLoad(field.translate(holder), 1215 field.is_inobject(holder), 1216 lookup->representation()); 1217 } 1218 return compiler.CompileLoadField( 1219 type, holder, name, field, lookup->representation()); 1220 } 1221 case CONSTANT: { 1222 Handle<Object> constant(lookup->GetConstant(), isolate()); 1223 // TODO(2803): Don't compute a stub for cons strings because they cannot 1224 // be embedded into code. 1225 if (constant->IsConsString()) break; 1226 return compiler.CompileLoadConstant(type, holder, name, constant); 1227 } 1228 case NORMAL: 1229 if (kind() != Code::LOAD_IC) break; 1230 if (holder->IsGlobalObject()) { 1231 Handle<GlobalObject> global = Handle<GlobalObject>::cast(holder); 1232 Handle<PropertyCell> cell( 1233 global->GetPropertyCell(lookup), isolate()); 1234 Handle<Code> code = compiler.CompileLoadGlobal( 1235 type, global, cell, name, lookup->IsDontDelete()); 1236 // TODO(verwaest): Move caching of these NORMAL stubs outside as well. 1237 Handle<HeapObject> stub_holder(GetCodeCacheHolder( 1238 isolate(), *object, cache_holder)); 1239 HeapObject::UpdateMapCodeCache(stub_holder, name, code); 1240 return code; 1241 } 1242 // There is only one shared stub for loading normalized 1243 // properties. It does not traverse the prototype chain, so the 1244 // property must be found in the object for the stub to be 1245 // applicable. 1246 if (!object.is_identical_to(holder)) break; 1247 return isolate()->builtins()->LoadIC_Normal(); 1248 case CALLBACKS: { 1249 // Use simple field loads for some well-known callback properties. 1250 if (object->IsJSObject()) { 1251 Handle<JSObject> receiver = Handle<JSObject>::cast(object); 1252 Handle<Map> map(receiver->map()); 1253 int object_offset; 1254 if (Accessors::IsJSObjectFieldAccessor(map, name, &object_offset)) { 1255 return SimpleFieldLoad(object_offset / kPointerSize); 1256 } 1257 } 1258 1259 Handle<Object> callback(lookup->GetCallbackObject(), isolate()); 1260 if (callback->IsExecutableAccessorInfo()) { 1261 Handle<ExecutableAccessorInfo> info = 1262 Handle<ExecutableAccessorInfo>::cast(callback); 1263 if (v8::ToCData<Address>(info->getter()) == 0) break; 1264 if (!info->IsCompatibleReceiver(*object)) break; 1265 return compiler.CompileLoadCallback(type, holder, name, info); 1266 } else if (callback->IsAccessorPair()) { 1267 Handle<Object> getter(Handle<AccessorPair>::cast(callback)->getter(), 1268 isolate()); 1269 if (!getter->IsJSFunction()) break; 1270 if (holder->IsGlobalObject()) break; 1271 if (!holder->HasFastProperties()) break; 1272 Handle<JSFunction> function = Handle<JSFunction>::cast(getter); 1273 if (!object->IsJSObject() && 1274 !function->IsBuiltin() && 1275 function->shared()->is_classic_mode()) { 1276 // Calling non-strict non-builtins with a value as the receiver 1277 // requires boxing. 1278 break; 1279 } 1280 CallOptimization call_optimization(function); 1281 if (call_optimization.is_simple_api_call() && 1282 call_optimization.IsCompatibleReceiver(*object)) { 1283 return compiler.CompileLoadCallback( 1284 type, holder, name, call_optimization); 1285 } 1286 return compiler.CompileLoadViaGetter(type, holder, name, function); 1287 } 1288 // TODO(dcarney): Handle correctly. 1289 if (callback->IsDeclaredAccessorInfo()) break; 1290 ASSERT(callback->IsForeign()); 1291 // No IC support for old-style native accessors. 1292 break; 1293 } 1294 case INTERCEPTOR: 1295 ASSERT(HasInterceptorGetter(*holder)); 1296 return compiler.CompileLoadInterceptor(type, holder, name); 1297 default: 1298 break; 1299 } 1300 1301 return slow_stub(); 1302 } 1303 1304 1305 static Handle<Object> TryConvertKey(Handle<Object> key, Isolate* isolate) { 1306 // This helper implements a few common fast cases for converting 1307 // non-smi keys of keyed loads/stores to a smi or a string. 1308 if (key->IsHeapNumber()) { 1309 double value = Handle<HeapNumber>::cast(key)->value(); 1310 if (std::isnan(value)) { 1311 key = isolate->factory()->nan_string(); 1312 } else { 1313 int int_value = FastD2I(value); 1314 if (value == int_value && Smi::IsValid(int_value)) { 1315 key = Handle<Smi>(Smi::FromInt(int_value), isolate); 1316 } 1317 } 1318 } else if (key->IsUndefined()) { 1319 key = isolate->factory()->undefined_string(); 1320 } 1321 return key; 1322 } 1323 1324 1325 Handle<Code> KeyedLoadIC::LoadElementStub(Handle<JSObject> receiver) { 1326 // Don't handle megamorphic property accesses for INTERCEPTORS or CALLBACKS 1327 // via megamorphic stubs, since they don't have a map in their relocation info 1328 // and so the stubs can't be harvested for the object needed for a map check. 1329 if (target()->type() != Code::NORMAL) { 1330 TRACE_GENERIC_IC(isolate(), "KeyedIC", "non-NORMAL target type"); 1331 return generic_stub(); 1332 } 1333 1334 Handle<Map> receiver_map(receiver->map(), isolate()); 1335 MapHandleList target_receiver_maps; 1336 if (state() == UNINITIALIZED || state() == PREMONOMORPHIC) { 1337 // Optimistically assume that ICs that haven't reached the MONOMORPHIC state 1338 // yet will do so and stay there. 1339 return isolate()->stub_cache()->ComputeKeyedLoadElement(receiver_map); 1340 } 1341 1342 if (target().is_identical_to(string_stub())) { 1343 target_receiver_maps.Add(isolate()->factory()->string_map()); 1344 } else { 1345 target()->FindAllMaps(&target_receiver_maps); 1346 if (target_receiver_maps.length() == 0) { 1347 return isolate()->stub_cache()->ComputeKeyedLoadElement(receiver_map); 1348 } 1349 } 1350 1351 // The first time a receiver is seen that is a transitioned version of the 1352 // previous monomorphic receiver type, assume the new ElementsKind is the 1353 // monomorphic type. This benefits global arrays that only transition 1354 // once, and all call sites accessing them are faster if they remain 1355 // monomorphic. If this optimistic assumption is not true, the IC will 1356 // miss again and it will become polymorphic and support both the 1357 // untransitioned and transitioned maps. 1358 if (state() == MONOMORPHIC && 1359 IsMoreGeneralElementsKindTransition( 1360 target_receiver_maps.at(0)->elements_kind(), 1361 receiver->GetElementsKind())) { 1362 return isolate()->stub_cache()->ComputeKeyedLoadElement(receiver_map); 1363 } 1364 1365 ASSERT(state() != GENERIC); 1366 1367 // Determine the list of receiver maps that this call site has seen, 1368 // adding the map that was just encountered. 1369 if (!AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map)) { 1370 // If the miss wasn't due to an unseen map, a polymorphic stub 1371 // won't help, use the generic stub. 1372 TRACE_GENERIC_IC(isolate(), "KeyedIC", "same map added twice"); 1373 return generic_stub(); 1374 } 1375 1376 // If the maximum number of receiver maps has been exceeded, use the generic 1377 // version of the IC. 1378 if (target_receiver_maps.length() > kMaxKeyedPolymorphism) { 1379 TRACE_GENERIC_IC(isolate(), "KeyedIC", "max polymorph exceeded"); 1380 return generic_stub(); 1381 } 1382 1383 return isolate()->stub_cache()->ComputeLoadElementPolymorphic( 1384 &target_receiver_maps); 1385 } 1386 1387 1388 MaybeObject* KeyedLoadIC::Load(Handle<Object> object, Handle<Object> key) { 1389 if (MigrateDeprecated(object)) { 1390 return Runtime::GetObjectPropertyOrFail(isolate(), object, key); 1391 } 1392 1393 MaybeObject* maybe_object = NULL; 1394 Handle<Code> stub = generic_stub(); 1395 1396 // Check for values that can be converted into an internalized string directly 1397 // or is representable as a smi. 1398 key = TryConvertKey(key, isolate()); 1399 1400 if (key->IsInternalizedString()) { 1401 maybe_object = LoadIC::Load(object, Handle<String>::cast(key)); 1402 if (maybe_object->IsFailure()) return maybe_object; 1403 } else if (FLAG_use_ic && !object->IsAccessCheckNeeded()) { 1404 ASSERT(!object->IsJSGlobalProxy()); 1405 if (object->IsString() && key->IsNumber()) { 1406 if (state() == UNINITIALIZED) stub = string_stub(); 1407 } else if (object->IsJSObject()) { 1408 Handle<JSObject> receiver = Handle<JSObject>::cast(object); 1409 if (receiver->elements()->map() == 1410 isolate()->heap()->non_strict_arguments_elements_map()) { 1411 stub = non_strict_arguments_stub(); 1412 } else if (receiver->HasIndexedInterceptor()) { 1413 stub = indexed_interceptor_stub(); 1414 } else if (!key->ToSmi()->IsFailure() && 1415 (!target().is_identical_to(non_strict_arguments_stub()))) { 1416 stub = LoadElementStub(receiver); 1417 } 1418 } 1419 } 1420 1421 if (!is_target_set()) { 1422 if (*stub == *generic_stub()) { 1423 TRACE_GENERIC_IC(isolate(), "KeyedLoadIC", "set generic"); 1424 } 1425 ASSERT(!stub.is_null()); 1426 set_target(*stub); 1427 TRACE_IC("LoadIC", key); 1428 } 1429 1430 if (maybe_object != NULL) return maybe_object; 1431 return Runtime::GetObjectPropertyOrFail(isolate(), object, key); 1432 } 1433 1434 1435 static bool LookupForWrite(Handle<JSObject> receiver, 1436 Handle<String> name, 1437 Handle<Object> value, 1438 LookupResult* lookup, 1439 IC* ic) { 1440 Handle<JSObject> holder = receiver; 1441 receiver->Lookup(*name, lookup); 1442 if (lookup->IsFound()) { 1443 if (lookup->IsReadOnly() || !lookup->IsCacheable()) return false; 1444 1445 if (lookup->holder() == *receiver) { 1446 if (lookup->IsInterceptor() && !HasInterceptorSetter(*receiver)) { 1447 receiver->LocalLookupRealNamedProperty(*name, lookup); 1448 return lookup->IsFound() && 1449 !lookup->IsReadOnly() && 1450 lookup->CanHoldValue(value) && 1451 lookup->IsCacheable(); 1452 } 1453 return lookup->CanHoldValue(value); 1454 } 1455 1456 if (lookup->IsPropertyCallbacks()) return true; 1457 // JSGlobalProxy always goes via the runtime, so it's safe to cache. 1458 if (receiver->IsJSGlobalProxy()) return true; 1459 // Currently normal holders in the prototype chain are not supported. They 1460 // would require a runtime positive lookup and verification that the details 1461 // have not changed. 1462 if (lookup->IsInterceptor() || lookup->IsNormal()) return false; 1463 holder = Handle<JSObject>(lookup->holder(), lookup->isolate()); 1464 } 1465 1466 // While normally LookupTransition gets passed the receiver, in this case we 1467 // pass the holder of the property that we overwrite. This keeps the holder in 1468 // the LookupResult intact so we can later use it to generate a prototype 1469 // chain check. This avoids a double lookup, but requires us to pass in the 1470 // receiver when trying to fetch extra information from the transition. 1471 receiver->map()->LookupTransition(*holder, *name, lookup); 1472 if (!lookup->IsTransition()) return false; 1473 PropertyDetails target_details = lookup->GetTransitionDetails(); 1474 if (target_details.IsReadOnly()) return false; 1475 1476 // If the value that's being stored does not fit in the field that the 1477 // instance would transition to, create a new transition that fits the value. 1478 // This has to be done before generating the IC, since that IC will embed the 1479 // transition target. 1480 // Ensure the instance and its map were migrated before trying to update the 1481 // transition target. 1482 ASSERT(!receiver->map()->is_deprecated()); 1483 if (!value->FitsRepresentation(target_details.representation())) { 1484 Handle<Map> target(lookup->GetTransitionTarget()); 1485 Map::GeneralizeRepresentation( 1486 target, target->LastAdded(), 1487 value->OptimalRepresentation(), FORCE_FIELD); 1488 // Lookup the transition again since the transition tree may have changed 1489 // entirely by the migration above. 1490 receiver->map()->LookupTransition(*holder, *name, lookup); 1491 if (!lookup->IsTransition()) return false; 1492 ic->MarkMonomorphicPrototypeFailure(); 1493 } 1494 return true; 1495 } 1496 1497 1498 MaybeObject* StoreIC::Store(Handle<Object> object, 1499 Handle<String> name, 1500 Handle<Object> value, 1501 JSReceiver::StoreFromKeyed store_mode) { 1502 if (MigrateDeprecated(object) || object->IsJSProxy()) { 1503 Handle<Object> result = JSReceiver::SetProperty( 1504 Handle<JSReceiver>::cast(object), name, value, NONE, strict_mode()); 1505 RETURN_IF_EMPTY_HANDLE(isolate(), result); 1506 return *result; 1507 } 1508 1509 // If the object is undefined or null it's illegal to try to set any 1510 // properties on it; throw a TypeError in that case. 1511 if (object->IsUndefined() || object->IsNull()) { 1512 return TypeError("non_object_property_store", object, name); 1513 } 1514 1515 // The length property of string values is read-only. Throw in strict mode. 1516 if (strict_mode() == kStrictMode && object->IsString() && 1517 name->Equals(isolate()->heap()->length_string())) { 1518 return TypeError("strict_read_only_property", object, name); 1519 } 1520 1521 // Ignore other stores where the receiver is not a JSObject. 1522 // TODO(1475): Must check prototype chains of object wrappers. 1523 if (!object->IsJSObject()) return *value; 1524 1525 Handle<JSObject> receiver = Handle<JSObject>::cast(object); 1526 1527 // Check if the given name is an array index. 1528 uint32_t index; 1529 if (name->AsArrayIndex(&index)) { 1530 Handle<Object> result = 1531 JSObject::SetElement(receiver, index, value, NONE, strict_mode()); 1532 RETURN_IF_EMPTY_HANDLE(isolate(), result); 1533 return *value; 1534 } 1535 1536 // Observed objects are always modified through the runtime. 1537 if (FLAG_harmony_observation && receiver->map()->is_observed()) { 1538 Handle<Object> result = JSReceiver::SetProperty( 1539 receiver, name, value, NONE, strict_mode(), store_mode); 1540 RETURN_IF_EMPTY_HANDLE(isolate(), result); 1541 return *result; 1542 } 1543 1544 // Use specialized code for setting the length of arrays with fast 1545 // properties. Slow properties might indicate redefinition of the length 1546 // property. Note that when redefined using Object.freeze, it's possible 1547 // to have fast properties but a read-only length. 1548 if (FLAG_use_ic && 1549 receiver->IsJSArray() && 1550 name->Equals(isolate()->heap()->length_string()) && 1551 Handle<JSArray>::cast(receiver)->AllowsSetElementsLength() && 1552 receiver->HasFastProperties() && 1553 !receiver->map()->is_frozen()) { 1554 Handle<Code> stub = 1555 StoreArrayLengthStub(kind(), strict_mode()).GetCode(isolate()); 1556 set_target(*stub); 1557 TRACE_IC("StoreIC", name); 1558 Handle<Object> result = JSReceiver::SetProperty( 1559 receiver, name, value, NONE, strict_mode(), store_mode); 1560 RETURN_IF_EMPTY_HANDLE(isolate(), result); 1561 return *result; 1562 } 1563 1564 LookupResult lookup(isolate()); 1565 bool can_store = LookupForWrite(receiver, name, value, &lookup, this); 1566 if (!can_store && 1567 strict_mode() == kStrictMode && 1568 !(lookup.IsProperty() && lookup.IsReadOnly()) && 1569 IsUndeclaredGlobal(object)) { 1570 // Strict mode doesn't allow setting non-existent global property. 1571 return ReferenceError("not_defined", name); 1572 } 1573 if (FLAG_use_ic) { 1574 if (state() == UNINITIALIZED) { 1575 Handle<Code> stub = pre_monomorphic_stub(); 1576 set_target(*stub); 1577 TRACE_IC("StoreIC", name); 1578 } else if (can_store) { 1579 UpdateCaches(&lookup, receiver, name, value); 1580 } else if (!name->IsCacheable(isolate()) || 1581 lookup.IsNormal() || 1582 (lookup.IsField() && lookup.CanHoldValue(value))) { 1583 Handle<Code> stub = generic_stub(); 1584 set_target(*stub); 1585 } 1586 } 1587 1588 // Set the property. 1589 Handle<Object> result = JSReceiver::SetProperty( 1590 receiver, name, value, NONE, strict_mode(), store_mode); 1591 RETURN_IF_EMPTY_HANDLE(isolate(), result); 1592 return *result; 1593 } 1594 1595 1596 void StoreIC::UpdateCaches(LookupResult* lookup, 1597 Handle<JSObject> receiver, 1598 Handle<String> name, 1599 Handle<Object> value) { 1600 ASSERT(lookup->IsFound()); 1601 1602 // These are not cacheable, so we never see such LookupResults here. 1603 ASSERT(!lookup->IsHandler()); 1604 1605 Handle<Code> code = ComputeHandler(lookup, receiver, name, value); 1606 1607 PatchCache(CurrentTypeOf(receiver, isolate()), name, code); 1608 TRACE_IC("StoreIC", name); 1609 } 1610 1611 1612 Handle<Code> StoreIC::CompileHandler(LookupResult* lookup, 1613 Handle<Object> object, 1614 Handle<String> name, 1615 Handle<Object> value, 1616 InlineCacheHolderFlag cache_holder) { 1617 if (object->IsJSGlobalProxy()) return slow_stub(); 1618 ASSERT(cache_holder == OWN_MAP); 1619 // This is currently guaranteed by checks in StoreIC::Store. 1620 Handle<JSObject> receiver = Handle<JSObject>::cast(object); 1621 1622 Handle<JSObject> holder(lookup->holder()); 1623 // Handlers do not use strict mode. 1624 StoreStubCompiler compiler(isolate(), kNonStrictMode, kind()); 1625 switch (lookup->type()) { 1626 case FIELD: 1627 return compiler.CompileStoreField(receiver, lookup, name); 1628 case TRANSITION: { 1629 // Explicitly pass in the receiver map since LookupForWrite may have 1630 // stored something else than the receiver in the holder. 1631 Handle<Map> transition(lookup->GetTransitionTarget()); 1632 PropertyDetails details = transition->GetLastDescriptorDetails(); 1633 1634 if (details.type() == CALLBACKS || details.attributes() != NONE) break; 1635 1636 return compiler.CompileStoreTransition( 1637 receiver, lookup, transition, name); 1638 } 1639 case NORMAL: 1640 if (kind() == Code::KEYED_STORE_IC) break; 1641 if (receiver->IsGlobalObject()) { 1642 // The stub generated for the global object picks the value directly 1643 // from the property cell. So the property must be directly on the 1644 // global object. 1645 Handle<GlobalObject> global = Handle<GlobalObject>::cast(receiver); 1646 Handle<PropertyCell> cell(global->GetPropertyCell(lookup), isolate()); 1647 Handle<Type> union_type = PropertyCell::UpdatedType(cell, value); 1648 StoreGlobalStub stub(union_type->IsConstant()); 1649 1650 Handle<Code> code = stub.GetCodeCopyFromTemplate( 1651 isolate(), receiver->map(), *cell); 1652 // TODO(verwaest): Move caching of these NORMAL stubs outside as well. 1653 HeapObject::UpdateMapCodeCache(receiver, name, code); 1654 return code; 1655 } 1656 ASSERT(holder.is_identical_to(receiver)); 1657 return isolate()->builtins()->StoreIC_Normal(); 1658 case CALLBACKS: { 1659 if (kind() == Code::KEYED_STORE_IC) break; 1660 Handle<Object> callback(lookup->GetCallbackObject(), isolate()); 1661 if (callback->IsExecutableAccessorInfo()) { 1662 Handle<ExecutableAccessorInfo> info = 1663 Handle<ExecutableAccessorInfo>::cast(callback); 1664 if (v8::ToCData<Address>(info->setter()) == 0) break; 1665 if (!holder->HasFastProperties()) break; 1666 if (!info->IsCompatibleReceiver(*receiver)) break; 1667 return compiler.CompileStoreCallback(receiver, holder, name, info); 1668 } else if (callback->IsAccessorPair()) { 1669 Handle<Object> setter( 1670 Handle<AccessorPair>::cast(callback)->setter(), isolate()); 1671 if (!setter->IsJSFunction()) break; 1672 if (holder->IsGlobalObject()) break; 1673 if (!holder->HasFastProperties()) break; 1674 Handle<JSFunction> function = Handle<JSFunction>::cast(setter); 1675 CallOptimization call_optimization(function); 1676 if (call_optimization.is_simple_api_call() && 1677 call_optimization.IsCompatibleReceiver(*receiver)) { 1678 return compiler.CompileStoreCallback( 1679 receiver, holder, name, call_optimization); 1680 } 1681 return compiler.CompileStoreViaSetter( 1682 receiver, holder, name, Handle<JSFunction>::cast(setter)); 1683 } 1684 // TODO(dcarney): Handle correctly. 1685 if (callback->IsDeclaredAccessorInfo()) break; 1686 ASSERT(callback->IsForeign()); 1687 // No IC support for old-style native accessors. 1688 break; 1689 } 1690 case INTERCEPTOR: 1691 if (kind() == Code::KEYED_STORE_IC) break; 1692 ASSERT(HasInterceptorSetter(*receiver)); 1693 return compiler.CompileStoreInterceptor(receiver, name); 1694 case CONSTANT: 1695 break; 1696 case NONEXISTENT: 1697 case HANDLER: 1698 UNREACHABLE(); 1699 break; 1700 } 1701 return slow_stub(); 1702 } 1703 1704 1705 Handle<Code> KeyedStoreIC::StoreElementStub(Handle<JSObject> receiver, 1706 KeyedAccessStoreMode store_mode) { 1707 // Don't handle megamorphic property accesses for INTERCEPTORS or CALLBACKS 1708 // via megamorphic stubs, since they don't have a map in their relocation info 1709 // and so the stubs can't be harvested for the object needed for a map check. 1710 if (target()->type() != Code::NORMAL) { 1711 TRACE_GENERIC_IC(isolate(), "KeyedIC", "non-NORMAL target type"); 1712 return generic_stub(); 1713 } 1714 1715 Handle<Map> receiver_map(receiver->map(), isolate()); 1716 if (state() == UNINITIALIZED || state() == PREMONOMORPHIC) { 1717 // Optimistically assume that ICs that haven't reached the MONOMORPHIC state 1718 // yet will do so and stay there. 1719 Handle<Map> monomorphic_map = ComputeTransitionedMap(receiver, store_mode); 1720 store_mode = GetNonTransitioningStoreMode(store_mode); 1721 return isolate()->stub_cache()->ComputeKeyedStoreElement( 1722 monomorphic_map, strict_mode(), store_mode); 1723 } 1724 1725 MapHandleList target_receiver_maps; 1726 target()->FindAllMaps(&target_receiver_maps); 1727 if (target_receiver_maps.length() == 0) { 1728 // In the case that there is a non-map-specific IC is installed (e.g. keyed 1729 // stores into properties in dictionary mode), then there will be not 1730 // receiver maps in the target. 1731 return generic_stub(); 1732 } 1733 1734 // There are several special cases where an IC that is MONOMORPHIC can still 1735 // transition to a different GetNonTransitioningStoreMode IC that handles a 1736 // superset of the original IC. Handle those here if the receiver map hasn't 1737 // changed or it has transitioned to a more general kind. 1738 KeyedAccessStoreMode old_store_mode = 1739 KeyedStoreIC::GetKeyedAccessStoreMode(target()->extra_ic_state()); 1740 Handle<Map> previous_receiver_map = target_receiver_maps.at(0); 1741 if (state() == MONOMORPHIC) { 1742 // If the "old" and "new" maps are in the same elements map family, stay 1743 // MONOMORPHIC and use the map for the most generic ElementsKind. 1744 Handle<Map> transitioned_receiver_map = receiver_map; 1745 if (IsTransitionStoreMode(store_mode)) { 1746 transitioned_receiver_map = 1747 ComputeTransitionedMap(receiver, store_mode); 1748 } 1749 if (IsTransitionOfMonomorphicTarget(MapToType(transitioned_receiver_map))) { 1750 // Element family is the same, use the "worst" case map. 1751 store_mode = GetNonTransitioningStoreMode(store_mode); 1752 return isolate()->stub_cache()->ComputeKeyedStoreElement( 1753 transitioned_receiver_map, strict_mode(), store_mode); 1754 } else if (*previous_receiver_map == receiver->map() && 1755 old_store_mode == STANDARD_STORE && 1756 (IsGrowStoreMode(store_mode) || 1757 store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS || 1758 store_mode == STORE_NO_TRANSITION_HANDLE_COW)) { 1759 // A "normal" IC that handles stores can switch to a version that can 1760 // grow at the end of the array, handle OOB accesses or copy COW arrays 1761 // and still stay MONOMORPHIC. 1762 return isolate()->stub_cache()->ComputeKeyedStoreElement( 1763 receiver_map, strict_mode(), store_mode); 1764 } 1765 } 1766 1767 ASSERT(state() != GENERIC); 1768 1769 bool map_added = 1770 AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map); 1771 1772 if (IsTransitionStoreMode(store_mode)) { 1773 Handle<Map> transitioned_receiver_map = 1774 ComputeTransitionedMap(receiver, store_mode); 1775 map_added |= AddOneReceiverMapIfMissing(&target_receiver_maps, 1776 transitioned_receiver_map); 1777 } 1778 1779 if (!map_added) { 1780 // If the miss wasn't due to an unseen map, a polymorphic stub 1781 // won't help, use the generic stub. 1782 TRACE_GENERIC_IC(isolate(), "KeyedIC", "same map added twice"); 1783 return generic_stub(); 1784 } 1785 1786 // If the maximum number of receiver maps has been exceeded, use the generic 1787 // version of the IC. 1788 if (target_receiver_maps.length() > kMaxKeyedPolymorphism) { 1789 TRACE_GENERIC_IC(isolate(), "KeyedIC", "max polymorph exceeded"); 1790 return generic_stub(); 1791 } 1792 1793 // Make sure all polymorphic handlers have the same store mode, otherwise the 1794 // generic stub must be used. 1795 store_mode = GetNonTransitioningStoreMode(store_mode); 1796 if (old_store_mode != STANDARD_STORE) { 1797 if (store_mode == STANDARD_STORE) { 1798 store_mode = old_store_mode; 1799 } else if (store_mode != old_store_mode) { 1800 TRACE_GENERIC_IC(isolate(), "KeyedIC", "store mode mismatch"); 1801 return generic_stub(); 1802 } 1803 } 1804 1805 // If the store mode isn't the standard mode, make sure that all polymorphic 1806 // receivers are either external arrays, or all "normal" arrays. Otherwise, 1807 // use the generic stub. 1808 if (store_mode != STANDARD_STORE) { 1809 int external_arrays = 0; 1810 for (int i = 0; i < target_receiver_maps.length(); ++i) { 1811 if (target_receiver_maps[i]->has_external_array_elements()) { 1812 external_arrays++; 1813 } 1814 } 1815 if (external_arrays != 0 && 1816 external_arrays != target_receiver_maps.length()) { 1817 TRACE_GENERIC_IC(isolate(), "KeyedIC", 1818 "unsupported combination of external and normal arrays"); 1819 return generic_stub(); 1820 } 1821 } 1822 1823 return isolate()->stub_cache()->ComputeStoreElementPolymorphic( 1824 &target_receiver_maps, store_mode, strict_mode()); 1825 } 1826 1827 1828 Handle<Map> KeyedStoreIC::ComputeTransitionedMap( 1829 Handle<JSObject> receiver, 1830 KeyedAccessStoreMode store_mode) { 1831 switch (store_mode) { 1832 case STORE_TRANSITION_SMI_TO_OBJECT: 1833 case STORE_TRANSITION_DOUBLE_TO_OBJECT: 1834 case STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT: 1835 case STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT: 1836 return JSObject::GetElementsTransitionMap(receiver, FAST_ELEMENTS); 1837 case STORE_TRANSITION_SMI_TO_DOUBLE: 1838 case STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE: 1839 return JSObject::GetElementsTransitionMap(receiver, FAST_DOUBLE_ELEMENTS); 1840 case STORE_TRANSITION_HOLEY_SMI_TO_OBJECT: 1841 case STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT: 1842 case STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT: 1843 case STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT: 1844 return JSObject::GetElementsTransitionMap(receiver, 1845 FAST_HOLEY_ELEMENTS); 1846 case STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE: 1847 case STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE: 1848 return JSObject::GetElementsTransitionMap(receiver, 1849 FAST_HOLEY_DOUBLE_ELEMENTS); 1850 case STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS: 1851 ASSERT(receiver->map()->has_external_array_elements()); 1852 // Fall through 1853 case STORE_NO_TRANSITION_HANDLE_COW: 1854 case STANDARD_STORE: 1855 case STORE_AND_GROW_NO_TRANSITION: 1856 return Handle<Map>(receiver->map(), isolate()); 1857 } 1858 return Handle<Map>::null(); 1859 } 1860 1861 1862 bool IsOutOfBoundsAccess(Handle<JSObject> receiver, 1863 int index) { 1864 if (receiver->IsJSArray()) { 1865 return JSArray::cast(*receiver)->length()->IsSmi() && 1866 index >= Smi::cast(JSArray::cast(*receiver)->length())->value(); 1867 } 1868 return index >= receiver->elements()->length(); 1869 } 1870 1871 1872 KeyedAccessStoreMode KeyedStoreIC::GetStoreMode(Handle<JSObject> receiver, 1873 Handle<Object> key, 1874 Handle<Object> value) { 1875 ASSERT(!key->ToSmi()->IsFailure()); 1876 Smi* smi_key = NULL; 1877 key->ToSmi()->To(&smi_key); 1878 int index = smi_key->value(); 1879 bool oob_access = IsOutOfBoundsAccess(receiver, index); 1880 bool allow_growth = receiver->IsJSArray() && oob_access; 1881 if (allow_growth) { 1882 // Handle growing array in stub if necessary. 1883 if (receiver->HasFastSmiElements()) { 1884 if (value->IsHeapNumber()) { 1885 if (receiver->HasFastHoleyElements()) { 1886 return STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE; 1887 } else { 1888 return STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE; 1889 } 1890 } 1891 if (value->IsHeapObject()) { 1892 if (receiver->HasFastHoleyElements()) { 1893 return STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT; 1894 } else { 1895 return STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT; 1896 } 1897 } 1898 } else if (receiver->HasFastDoubleElements()) { 1899 if (!value->IsSmi() && !value->IsHeapNumber()) { 1900 if (receiver->HasFastHoleyElements()) { 1901 return STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT; 1902 } else { 1903 return STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT; 1904 } 1905 } 1906 } 1907 return STORE_AND_GROW_NO_TRANSITION; 1908 } else { 1909 // Handle only in-bounds elements accesses. 1910 if (receiver->HasFastSmiElements()) { 1911 if (value->IsHeapNumber()) { 1912 if (receiver->HasFastHoleyElements()) { 1913 return STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE; 1914 } else { 1915 return STORE_TRANSITION_SMI_TO_DOUBLE; 1916 } 1917 } else if (value->IsHeapObject()) { 1918 if (receiver->HasFastHoleyElements()) { 1919 return STORE_TRANSITION_HOLEY_SMI_TO_OBJECT; 1920 } else { 1921 return STORE_TRANSITION_SMI_TO_OBJECT; 1922 } 1923 } 1924 } else if (receiver->HasFastDoubleElements()) { 1925 if (!value->IsSmi() && !value->IsHeapNumber()) { 1926 if (receiver->HasFastHoleyElements()) { 1927 return STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT; 1928 } else { 1929 return STORE_TRANSITION_DOUBLE_TO_OBJECT; 1930 } 1931 } 1932 } 1933 if (!FLAG_trace_external_array_abuse && 1934 receiver->map()->has_external_array_elements() && oob_access) { 1935 return STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS; 1936 } 1937 Heap* heap = receiver->GetHeap(); 1938 if (receiver->elements()->map() == heap->fixed_cow_array_map()) { 1939 return STORE_NO_TRANSITION_HANDLE_COW; 1940 } else { 1941 return STANDARD_STORE; 1942 } 1943 } 1944 } 1945 1946 1947 MaybeObject* KeyedStoreIC::Store(Handle<Object> object, 1948 Handle<Object> key, 1949 Handle<Object> value) { 1950 if (MigrateDeprecated(object)) { 1951 Handle<Object> result = Runtime::SetObjectProperty(isolate(), object, 1952 key, 1953 value, 1954 NONE, 1955 strict_mode()); 1956 RETURN_IF_EMPTY_HANDLE(isolate(), result); 1957 return *result; 1958 } 1959 1960 // Check for values that can be converted into an internalized string directly 1961 // or is representable as a smi. 1962 key = TryConvertKey(key, isolate()); 1963 1964 MaybeObject* maybe_object = NULL; 1965 Handle<Code> stub = generic_stub(); 1966 1967 if (key->IsInternalizedString()) { 1968 maybe_object = StoreIC::Store(object, 1969 Handle<String>::cast(key), 1970 value, 1971 JSReceiver::MAY_BE_STORE_FROM_KEYED); 1972 if (maybe_object->IsFailure()) return maybe_object; 1973 } else { 1974 bool use_ic = FLAG_use_ic && !object->IsAccessCheckNeeded() && 1975 !(FLAG_harmony_observation && object->IsJSObject() && 1976 JSObject::cast(*object)->map()->is_observed()); 1977 if (use_ic && !object->IsSmi()) { 1978 // Don't use ICs for maps of the objects in Array's prototype chain. We 1979 // expect to be able to trap element sets to objects with those maps in 1980 // the runtime to enable optimization of element hole access. 1981 Handle<HeapObject> heap_object = Handle<HeapObject>::cast(object); 1982 if (heap_object->map()->IsMapInArrayPrototypeChain()) use_ic = false; 1983 } 1984 1985 if (use_ic) { 1986 ASSERT(!object->IsJSGlobalProxy()); 1987 1988 if (object->IsJSObject()) { 1989 Handle<JSObject> receiver = Handle<JSObject>::cast(object); 1990 bool key_is_smi_like = key->IsSmi() || !key->ToSmi()->IsFailure(); 1991 if (receiver->elements()->map() == 1992 isolate()->heap()->non_strict_arguments_elements_map()) { 1993 stub = non_strict_arguments_stub(); 1994 } else if (key_is_smi_like && 1995 !(target().is_identical_to(non_strict_arguments_stub()))) { 1996 // We should go generic if receiver isn't a dictionary, but our 1997 // prototype chain does have dictionary elements. This ensures that 1998 // other non-dictionary receivers in the polymorphic case benefit 1999 // from fast path keyed stores. 2000 if (!(receiver->map()->DictionaryElementsInPrototypeChainOnly())) { 2001 KeyedAccessStoreMode store_mode = 2002 GetStoreMode(receiver, key, value); 2003 stub = StoreElementStub(receiver, store_mode); 2004 } 2005 } 2006 } 2007 } 2008 } 2009 2010 if (!is_target_set()) { 2011 if (*stub == *generic_stub()) { 2012 TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "set generic"); 2013 } 2014 ASSERT(!stub.is_null()); 2015 set_target(*stub); 2016 TRACE_IC("StoreIC", key); 2017 } 2018 2019 if (maybe_object) return maybe_object; 2020 Handle<Object> result = Runtime::SetObjectProperty(isolate(), object, key, 2021 value, 2022 NONE, 2023 strict_mode()); 2024 RETURN_IF_EMPTY_HANDLE(isolate(), result); 2025 return *result; 2026 } 2027 2028 2029 #undef TRACE_IC 2030 2031 2032 // ---------------------------------------------------------------------------- 2033 // Static IC stub generators. 2034 // 2035 2036 // Used from ic-<arch>.cc. 2037 RUNTIME_FUNCTION(MaybeObject*, CallIC_Miss) { 2038 HandleScope scope(isolate); 2039 ASSERT(args.length() == 2); 2040 CallIC ic(isolate); 2041 Handle<Object> receiver = args.at<Object>(0); 2042 Handle<String> key = args.at<String>(1); 2043 ic.UpdateState(receiver, key); 2044 MaybeObject* maybe_result = ic.LoadFunction(receiver, key); 2045 JSFunction* raw_function; 2046 if (!maybe_result->To(&raw_function)) return maybe_result; 2047 2048 // The first time the inline cache is updated may be the first time the 2049 // function it references gets called. If the function is lazily compiled 2050 // then the first call will trigger a compilation. We check for this case 2051 // and we do the compilation immediately, instead of waiting for the stub 2052 // currently attached to the JSFunction object to trigger compilation. 2053 if (raw_function->is_compiled()) return raw_function; 2054 2055 Handle<JSFunction> function(raw_function); 2056 JSFunction::CompileLazy(function, CLEAR_EXCEPTION); 2057 return *function; 2058 } 2059 2060 2061 // Used from ic-<arch>.cc. 2062 RUNTIME_FUNCTION(MaybeObject*, KeyedCallIC_Miss) { 2063 HandleScope scope(isolate); 2064 ASSERT(args.length() == 2); 2065 KeyedCallIC ic(isolate); 2066 Handle<Object> receiver = args.at<Object>(0); 2067 Handle<Object> key = args.at<Object>(1); 2068 ic.UpdateState(receiver, key); 2069 MaybeObject* maybe_result = ic.LoadFunction(receiver, key); 2070 // Result could be a function or a failure. 2071 JSFunction* raw_function = NULL; 2072 if (!maybe_result->To(&raw_function)) return maybe_result; 2073 2074 if (raw_function->is_compiled()) return raw_function; 2075 2076 Handle<JSFunction> function(raw_function, isolate); 2077 JSFunction::CompileLazy(function, CLEAR_EXCEPTION); 2078 return *function; 2079 } 2080 2081 2082 // Used from ic-<arch>.cc. 2083 RUNTIME_FUNCTION(MaybeObject*, LoadIC_Miss) { 2084 HandleScope scope(isolate); 2085 ASSERT(args.length() == 2); 2086 LoadIC ic(IC::NO_EXTRA_FRAME, isolate); 2087 Handle<Object> receiver = args.at<Object>(0); 2088 Handle<String> key = args.at<String>(1); 2089 ic.UpdateState(receiver, key); 2090 return ic.Load(receiver, key); 2091 } 2092 2093 2094 // Used from ic-<arch>.cc 2095 RUNTIME_FUNCTION(MaybeObject*, KeyedLoadIC_Miss) { 2096 HandleScope scope(isolate); 2097 ASSERT(args.length() == 2); 2098 KeyedLoadIC ic(IC::NO_EXTRA_FRAME, isolate); 2099 Handle<Object> receiver = args.at<Object>(0); 2100 Handle<Object> key = args.at<Object>(1); 2101 ic.UpdateState(receiver, key); 2102 return ic.Load(receiver, key); 2103 } 2104 2105 2106 RUNTIME_FUNCTION(MaybeObject*, KeyedLoadIC_MissFromStubFailure) { 2107 HandleScope scope(isolate); 2108 ASSERT(args.length() == 2); 2109 KeyedLoadIC ic(IC::EXTRA_CALL_FRAME, isolate); 2110 Handle<Object> receiver = args.at<Object>(0); 2111 Handle<Object> key = args.at<Object>(1); 2112 ic.UpdateState(receiver, key); 2113 return ic.Load(receiver, key); 2114 } 2115 2116 2117 // Used from ic-<arch>.cc. 2118 RUNTIME_FUNCTION(MaybeObject*, StoreIC_Miss) { 2119 HandleScope scope(isolate); 2120 ASSERT(args.length() == 3); 2121 StoreIC ic(IC::NO_EXTRA_FRAME, isolate); 2122 Handle<Object> receiver = args.at<Object>(0); 2123 Handle<String> key = args.at<String>(1); 2124 ic.UpdateState(receiver, key); 2125 return ic.Store(receiver, key, args.at<Object>(2)); 2126 } 2127 2128 2129 RUNTIME_FUNCTION(MaybeObject*, StoreIC_MissFromStubFailure) { 2130 HandleScope scope(isolate); 2131 ASSERT(args.length() == 3); 2132 StoreIC ic(IC::EXTRA_CALL_FRAME, isolate); 2133 Handle<Object> receiver = args.at<Object>(0); 2134 Handle<String> key = args.at<String>(1); 2135 ic.UpdateState(receiver, key); 2136 return ic.Store(receiver, key, args.at<Object>(2)); 2137 } 2138 2139 2140 RUNTIME_FUNCTION(MaybeObject*, KeyedCallIC_MissFromStubFailure) { 2141 HandleScope scope(isolate); 2142 ASSERT(args.length() == 2); 2143 KeyedCallIC ic(isolate); 2144 Arguments* caller_args = reinterpret_cast<Arguments*>(args[0]); 2145 Handle<Object> key = args.at<Object>(1); 2146 Handle<Object> receiver((*caller_args)[0], isolate); 2147 2148 ic.UpdateState(receiver, key); 2149 MaybeObject* maybe_result = ic.LoadFunction(receiver, key); 2150 // Result could be a function or a failure. 2151 JSFunction* raw_function = NULL; 2152 if (!maybe_result->To(&raw_function)) return maybe_result; 2153 2154 if (raw_function->is_compiled()) return raw_function; 2155 2156 Handle<JSFunction> function(raw_function, isolate); 2157 JSFunction::CompileLazy(function, CLEAR_EXCEPTION); 2158 return *function; 2159 } 2160 2161 2162 RUNTIME_FUNCTION(MaybeObject*, StoreIC_ArrayLength) { 2163 SealHandleScope shs(isolate); 2164 2165 ASSERT(args.length() == 2); 2166 JSArray* receiver = JSArray::cast(args[0]); 2167 Object* len = args[1]; 2168 2169 // The generated code should filter out non-Smis before we get here. 2170 ASSERT(len->IsSmi()); 2171 2172 #ifdef DEBUG 2173 // The length property has to be a writable callback property. 2174 LookupResult debug_lookup(isolate); 2175 receiver->LocalLookup(isolate->heap()->length_string(), &debug_lookup); 2176 ASSERT(debug_lookup.IsPropertyCallbacks() && !debug_lookup.IsReadOnly()); 2177 #endif 2178 2179 Object* result; 2180 MaybeObject* maybe_result = receiver->SetElementsLength(len); 2181 if (!maybe_result->To(&result)) return maybe_result; 2182 2183 return len; 2184 } 2185 2186 2187 // Extend storage is called in a store inline cache when 2188 // it is necessary to extend the properties array of a 2189 // JSObject. 2190 RUNTIME_FUNCTION(MaybeObject*, SharedStoreIC_ExtendStorage) { 2191 SealHandleScope shs(isolate); 2192 ASSERT(args.length() == 3); 2193 2194 // Convert the parameters 2195 JSObject* object = JSObject::cast(args[0]); 2196 Map* transition = Map::cast(args[1]); 2197 Object* value = args[2]; 2198 2199 // Check the object has run out out property space. 2200 ASSERT(object->HasFastProperties()); 2201 ASSERT(object->map()->unused_property_fields() == 0); 2202 2203 // Expand the properties array. 2204 FixedArray* old_storage = object->properties(); 2205 int new_unused = transition->unused_property_fields(); 2206 int new_size = old_storage->length() + new_unused + 1; 2207 Object* result; 2208 MaybeObject* maybe_result = old_storage->CopySize(new_size); 2209 if (!maybe_result->ToObject(&result)) return maybe_result; 2210 2211 FixedArray* new_storage = FixedArray::cast(result); 2212 2213 Object* to_store = value; 2214 2215 if (FLAG_track_double_fields) { 2216 DescriptorArray* descriptors = transition->instance_descriptors(); 2217 PropertyDetails details = descriptors->GetDetails(transition->LastAdded()); 2218 if (details.representation().IsDouble()) { 2219 MaybeObject* maybe_storage = 2220 isolate->heap()->AllocateHeapNumber(value->Number()); 2221 if (!maybe_storage->To(&to_store)) return maybe_storage; 2222 } 2223 } 2224 2225 new_storage->set(old_storage->length(), to_store); 2226 2227 // Set the new property value and do the map transition. 2228 object->set_properties(new_storage); 2229 object->set_map(transition); 2230 2231 // Return the stored value. 2232 return value; 2233 } 2234 2235 2236 // Used from ic-<arch>.cc. 2237 RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_Miss) { 2238 HandleScope scope(isolate); 2239 ASSERT(args.length() == 3); 2240 KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate); 2241 Handle<Object> receiver = args.at<Object>(0); 2242 Handle<Object> key = args.at<Object>(1); 2243 ic.UpdateState(receiver, key); 2244 return ic.Store(receiver, key, args.at<Object>(2)); 2245 } 2246 2247 2248 RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_MissFromStubFailure) { 2249 HandleScope scope(isolate); 2250 ASSERT(args.length() == 3); 2251 KeyedStoreIC ic(IC::EXTRA_CALL_FRAME, isolate); 2252 Handle<Object> receiver = args.at<Object>(0); 2253 Handle<Object> key = args.at<Object>(1); 2254 ic.UpdateState(receiver, key); 2255 return ic.Store(receiver, key, args.at<Object>(2)); 2256 } 2257 2258 2259 RUNTIME_FUNCTION(MaybeObject*, StoreIC_Slow) { 2260 HandleScope scope(isolate); 2261 ASSERT(args.length() == 3); 2262 StoreIC ic(IC::NO_EXTRA_FRAME, isolate); 2263 Handle<Object> object = args.at<Object>(0); 2264 Handle<Object> key = args.at<Object>(1); 2265 Handle<Object> value = args.at<Object>(2); 2266 StrictModeFlag strict_mode = ic.strict_mode(); 2267 Handle<Object> result = Runtime::SetObjectProperty(isolate, object, key, 2268 value, 2269 NONE, 2270 strict_mode); 2271 RETURN_IF_EMPTY_HANDLE(isolate, result); 2272 return *result; 2273 } 2274 2275 2276 RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_Slow) { 2277 HandleScope scope(isolate); 2278 ASSERT(args.length() == 3); 2279 KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate); 2280 Handle<Object> object = args.at<Object>(0); 2281 Handle<Object> key = args.at<Object>(1); 2282 Handle<Object> value = args.at<Object>(2); 2283 StrictModeFlag strict_mode = ic.strict_mode(); 2284 Handle<Object> result = Runtime::SetObjectProperty(isolate, object, key, 2285 value, 2286 NONE, 2287 strict_mode); 2288 RETURN_IF_EMPTY_HANDLE(isolate, result); 2289 return *result; 2290 } 2291 2292 2293 RUNTIME_FUNCTION(MaybeObject*, ElementsTransitionAndStoreIC_Miss) { 2294 HandleScope scope(isolate); 2295 ASSERT(args.length() == 4); 2296 KeyedStoreIC ic(IC::EXTRA_CALL_FRAME, isolate); 2297 Handle<Object> value = args.at<Object>(0); 2298 Handle<Map> map = args.at<Map>(1); 2299 Handle<Object> key = args.at<Object>(2); 2300 Handle<Object> object = args.at<Object>(3); 2301 StrictModeFlag strict_mode = ic.strict_mode(); 2302 if (object->IsJSObject()) { 2303 JSObject::TransitionElementsKind(Handle<JSObject>::cast(object), 2304 map->elements_kind()); 2305 } 2306 Handle<Object> result = Runtime::SetObjectProperty(isolate, object, key, 2307 value, 2308 NONE, 2309 strict_mode); 2310 RETURN_IF_EMPTY_HANDLE(isolate, result); 2311 return *result; 2312 } 2313 2314 2315 BinaryOpIC::State::State(ExtraICState extra_ic_state) { 2316 // We don't deserialize the SSE2 Field, since this is only used to be able 2317 // to include SSE2 as well as non-SSE2 versions in the snapshot. For code 2318 // generation we always want it to reflect the current state. 2319 op_ = static_cast<Token::Value>( 2320 FIRST_TOKEN + OpField::decode(extra_ic_state)); 2321 mode_ = OverwriteModeField::decode(extra_ic_state); 2322 fixed_right_arg_ = Maybe<int>( 2323 HasFixedRightArgField::decode(extra_ic_state), 2324 1 << FixedRightArgValueField::decode(extra_ic_state)); 2325 left_kind_ = LeftKindField::decode(extra_ic_state); 2326 if (fixed_right_arg_.has_value) { 2327 right_kind_ = Smi::IsValid(fixed_right_arg_.value) ? SMI : INT32; 2328 } else { 2329 right_kind_ = RightKindField::decode(extra_ic_state); 2330 } 2331 result_kind_ = ResultKindField::decode(extra_ic_state); 2332 ASSERT_LE(FIRST_TOKEN, op_); 2333 ASSERT_LE(op_, LAST_TOKEN); 2334 } 2335 2336 2337 ExtraICState BinaryOpIC::State::GetExtraICState() const { 2338 bool sse2 = (Max(result_kind_, Max(left_kind_, right_kind_)) > SMI && 2339 CpuFeatures::IsSafeForSnapshot(SSE2)); 2340 ExtraICState extra_ic_state = 2341 SSE2Field::encode(sse2) | 2342 OpField::encode(op_ - FIRST_TOKEN) | 2343 OverwriteModeField::encode(mode_) | 2344 LeftKindField::encode(left_kind_) | 2345 ResultKindField::encode(result_kind_) | 2346 HasFixedRightArgField::encode(fixed_right_arg_.has_value); 2347 if (fixed_right_arg_.has_value) { 2348 extra_ic_state = FixedRightArgValueField::update( 2349 extra_ic_state, WhichPowerOf2(fixed_right_arg_.value)); 2350 } else { 2351 extra_ic_state = RightKindField::update(extra_ic_state, right_kind_); 2352 } 2353 return extra_ic_state; 2354 } 2355 2356 2357 // static 2358 void BinaryOpIC::State::GenerateAheadOfTime( 2359 Isolate* isolate, void (*Generate)(Isolate*, const State&)) { 2360 // TODO(olivf) We should investigate why adding stubs to the snapshot is so 2361 // expensive at runtime. When solved we should be able to add most binops to 2362 // the snapshot instead of hand-picking them. 2363 // Generated list of commonly used stubs 2364 #define GENERATE(op, left_kind, right_kind, result_kind, mode) \ 2365 do { \ 2366 State state(op, mode); \ 2367 state.left_kind_ = left_kind; \ 2368 state.fixed_right_arg_.has_value = false; \ 2369 state.right_kind_ = right_kind; \ 2370 state.result_kind_ = result_kind; \ 2371 Generate(isolate, state); \ 2372 } while (false) 2373 GENERATE(Token::ADD, INT32, INT32, INT32, NO_OVERWRITE); 2374 GENERATE(Token::ADD, INT32, INT32, INT32, OVERWRITE_LEFT); 2375 GENERATE(Token::ADD, INT32, INT32, NUMBER, NO_OVERWRITE); 2376 GENERATE(Token::ADD, INT32, INT32, NUMBER, OVERWRITE_LEFT); 2377 GENERATE(Token::ADD, INT32, NUMBER, NUMBER, NO_OVERWRITE); 2378 GENERATE(Token::ADD, INT32, NUMBER, NUMBER, OVERWRITE_LEFT); 2379 GENERATE(Token::ADD, INT32, NUMBER, NUMBER, OVERWRITE_RIGHT); 2380 GENERATE(Token::ADD, INT32, SMI, INT32, NO_OVERWRITE); 2381 GENERATE(Token::ADD, INT32, SMI, INT32, OVERWRITE_LEFT); 2382 GENERATE(Token::ADD, INT32, SMI, INT32, OVERWRITE_RIGHT); 2383 GENERATE(Token::ADD, NUMBER, INT32, NUMBER, NO_OVERWRITE); 2384 GENERATE(Token::ADD, NUMBER, INT32, NUMBER, OVERWRITE_LEFT); 2385 GENERATE(Token::ADD, NUMBER, INT32, NUMBER, OVERWRITE_RIGHT); 2386 GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, NO_OVERWRITE); 2387 GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT); 2388 GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT); 2389 GENERATE(Token::ADD, NUMBER, SMI, NUMBER, NO_OVERWRITE); 2390 GENERATE(Token::ADD, NUMBER, SMI, NUMBER, OVERWRITE_LEFT); 2391 GENERATE(Token::ADD, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT); 2392 GENERATE(Token::ADD, SMI, INT32, INT32, NO_OVERWRITE); 2393 GENERATE(Token::ADD, SMI, INT32, INT32, OVERWRITE_LEFT); 2394 GENERATE(Token::ADD, SMI, INT32, NUMBER, NO_OVERWRITE); 2395 GENERATE(Token::ADD, SMI, NUMBER, NUMBER, NO_OVERWRITE); 2396 GENERATE(Token::ADD, SMI, NUMBER, NUMBER, OVERWRITE_LEFT); 2397 GENERATE(Token::ADD, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT); 2398 GENERATE(Token::ADD, SMI, SMI, INT32, OVERWRITE_LEFT); 2399 GENERATE(Token::ADD, SMI, SMI, SMI, OVERWRITE_RIGHT); 2400 GENERATE(Token::BIT_AND, INT32, INT32, INT32, NO_OVERWRITE); 2401 GENERATE(Token::BIT_AND, INT32, INT32, INT32, OVERWRITE_LEFT); 2402 GENERATE(Token::BIT_AND, INT32, INT32, INT32, OVERWRITE_RIGHT); 2403 GENERATE(Token::BIT_AND, INT32, INT32, SMI, NO_OVERWRITE); 2404 GENERATE(Token::BIT_AND, INT32, INT32, SMI, OVERWRITE_RIGHT); 2405 GENERATE(Token::BIT_AND, INT32, SMI, INT32, NO_OVERWRITE); 2406 GENERATE(Token::BIT_AND, INT32, SMI, INT32, OVERWRITE_RIGHT); 2407 GENERATE(Token::BIT_AND, INT32, SMI, SMI, NO_OVERWRITE); 2408 GENERATE(Token::BIT_AND, INT32, SMI, SMI, OVERWRITE_LEFT); 2409 GENERATE(Token::BIT_AND, INT32, SMI, SMI, OVERWRITE_RIGHT); 2410 GENERATE(Token::BIT_AND, NUMBER, INT32, INT32, OVERWRITE_RIGHT); 2411 GENERATE(Token::BIT_AND, NUMBER, SMI, SMI, NO_OVERWRITE); 2412 GENERATE(Token::BIT_AND, NUMBER, SMI, SMI, OVERWRITE_RIGHT); 2413 GENERATE(Token::BIT_AND, SMI, INT32, INT32, NO_OVERWRITE); 2414 GENERATE(Token::BIT_AND, SMI, INT32, SMI, OVERWRITE_RIGHT); 2415 GENERATE(Token::BIT_AND, SMI, NUMBER, SMI, OVERWRITE_RIGHT); 2416 GENERATE(Token::BIT_AND, SMI, SMI, SMI, NO_OVERWRITE); 2417 GENERATE(Token::BIT_AND, SMI, SMI, SMI, OVERWRITE_LEFT); 2418 GENERATE(Token::BIT_AND, SMI, SMI, SMI, OVERWRITE_RIGHT); 2419 GENERATE(Token::BIT_OR, INT32, INT32, INT32, OVERWRITE_LEFT); 2420 GENERATE(Token::BIT_OR, INT32, INT32, INT32, OVERWRITE_RIGHT); 2421 GENERATE(Token::BIT_OR, INT32, INT32, SMI, OVERWRITE_LEFT); 2422 GENERATE(Token::BIT_OR, INT32, SMI, INT32, NO_OVERWRITE); 2423 GENERATE(Token::BIT_OR, INT32, SMI, INT32, OVERWRITE_LEFT); 2424 GENERATE(Token::BIT_OR, INT32, SMI, INT32, OVERWRITE_RIGHT); 2425 GENERATE(Token::BIT_OR, INT32, SMI, SMI, NO_OVERWRITE); 2426 GENERATE(Token::BIT_OR, INT32, SMI, SMI, OVERWRITE_RIGHT); 2427 GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, NO_OVERWRITE); 2428 GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, OVERWRITE_LEFT); 2429 GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, OVERWRITE_RIGHT); 2430 GENERATE(Token::BIT_OR, NUMBER, SMI, SMI, NO_OVERWRITE); 2431 GENERATE(Token::BIT_OR, NUMBER, SMI, SMI, OVERWRITE_LEFT); 2432 GENERATE(Token::BIT_OR, SMI, INT32, INT32, OVERWRITE_LEFT); 2433 GENERATE(Token::BIT_OR, SMI, INT32, INT32, OVERWRITE_RIGHT); 2434 GENERATE(Token::BIT_OR, SMI, INT32, SMI, OVERWRITE_RIGHT); 2435 GENERATE(Token::BIT_OR, SMI, SMI, SMI, OVERWRITE_LEFT); 2436 GENERATE(Token::BIT_OR, SMI, SMI, SMI, OVERWRITE_RIGHT); 2437 GENERATE(Token::BIT_XOR, INT32, INT32, INT32, NO_OVERWRITE); 2438 GENERATE(Token::BIT_XOR, INT32, INT32, INT32, OVERWRITE_LEFT); 2439 GENERATE(Token::BIT_XOR, INT32, INT32, INT32, OVERWRITE_RIGHT); 2440 GENERATE(Token::BIT_XOR, INT32, INT32, SMI, NO_OVERWRITE); 2441 GENERATE(Token::BIT_XOR, INT32, INT32, SMI, OVERWRITE_LEFT); 2442 GENERATE(Token::BIT_XOR, INT32, NUMBER, SMI, NO_OVERWRITE); 2443 GENERATE(Token::BIT_XOR, INT32, SMI, INT32, NO_OVERWRITE); 2444 GENERATE(Token::BIT_XOR, INT32, SMI, INT32, OVERWRITE_LEFT); 2445 GENERATE(Token::BIT_XOR, INT32, SMI, INT32, OVERWRITE_RIGHT); 2446 GENERATE(Token::BIT_XOR, NUMBER, INT32, INT32, NO_OVERWRITE); 2447 GENERATE(Token::BIT_XOR, NUMBER, SMI, INT32, NO_OVERWRITE); 2448 GENERATE(Token::BIT_XOR, NUMBER, SMI, SMI, NO_OVERWRITE); 2449 GENERATE(Token::BIT_XOR, SMI, INT32, INT32, NO_OVERWRITE); 2450 GENERATE(Token::BIT_XOR, SMI, INT32, INT32, OVERWRITE_LEFT); 2451 GENERATE(Token::BIT_XOR, SMI, INT32, SMI, OVERWRITE_LEFT); 2452 GENERATE(Token::BIT_XOR, SMI, SMI, SMI, NO_OVERWRITE); 2453 GENERATE(Token::BIT_XOR, SMI, SMI, SMI, OVERWRITE_LEFT); 2454 GENERATE(Token::BIT_XOR, SMI, SMI, SMI, OVERWRITE_RIGHT); 2455 GENERATE(Token::DIV, INT32, INT32, INT32, NO_OVERWRITE); 2456 GENERATE(Token::DIV, INT32, INT32, NUMBER, NO_OVERWRITE); 2457 GENERATE(Token::DIV, INT32, NUMBER, NUMBER, NO_OVERWRITE); 2458 GENERATE(Token::DIV, INT32, NUMBER, NUMBER, OVERWRITE_LEFT); 2459 GENERATE(Token::DIV, INT32, SMI, INT32, NO_OVERWRITE); 2460 GENERATE(Token::DIV, INT32, SMI, NUMBER, NO_OVERWRITE); 2461 GENERATE(Token::DIV, NUMBER, INT32, NUMBER, NO_OVERWRITE); 2462 GENERATE(Token::DIV, NUMBER, INT32, NUMBER, OVERWRITE_LEFT); 2463 GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, NO_OVERWRITE); 2464 GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT); 2465 GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT); 2466 GENERATE(Token::DIV, NUMBER, SMI, NUMBER, NO_OVERWRITE); 2467 GENERATE(Token::DIV, NUMBER, SMI, NUMBER, OVERWRITE_LEFT); 2468 GENERATE(Token::DIV, SMI, INT32, INT32, NO_OVERWRITE); 2469 GENERATE(Token::DIV, SMI, INT32, NUMBER, NO_OVERWRITE); 2470 GENERATE(Token::DIV, SMI, INT32, NUMBER, OVERWRITE_LEFT); 2471 GENERATE(Token::DIV, SMI, NUMBER, NUMBER, NO_OVERWRITE); 2472 GENERATE(Token::DIV, SMI, NUMBER, NUMBER, OVERWRITE_LEFT); 2473 GENERATE(Token::DIV, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT); 2474 GENERATE(Token::DIV, SMI, SMI, NUMBER, NO_OVERWRITE); 2475 GENERATE(Token::DIV, SMI, SMI, NUMBER, OVERWRITE_LEFT); 2476 GENERATE(Token::DIV, SMI, SMI, NUMBER, OVERWRITE_RIGHT); 2477 GENERATE(Token::DIV, SMI, SMI, SMI, NO_OVERWRITE); 2478 GENERATE(Token::DIV, SMI, SMI, SMI, OVERWRITE_LEFT); 2479 GENERATE(Token::DIV, SMI, SMI, SMI, OVERWRITE_RIGHT); 2480 GENERATE(Token::MOD, NUMBER, SMI, NUMBER, OVERWRITE_LEFT); 2481 GENERATE(Token::MOD, SMI, SMI, SMI, NO_OVERWRITE); 2482 GENERATE(Token::MOD, SMI, SMI, SMI, OVERWRITE_LEFT); 2483 GENERATE(Token::MUL, INT32, INT32, INT32, NO_OVERWRITE); 2484 GENERATE(Token::MUL, INT32, INT32, NUMBER, NO_OVERWRITE); 2485 GENERATE(Token::MUL, INT32, NUMBER, NUMBER, NO_OVERWRITE); 2486 GENERATE(Token::MUL, INT32, NUMBER, NUMBER, OVERWRITE_LEFT); 2487 GENERATE(Token::MUL, INT32, SMI, INT32, NO_OVERWRITE); 2488 GENERATE(Token::MUL, INT32, SMI, INT32, OVERWRITE_LEFT); 2489 GENERATE(Token::MUL, INT32, SMI, NUMBER, NO_OVERWRITE); 2490 GENERATE(Token::MUL, NUMBER, INT32, NUMBER, NO_OVERWRITE); 2491 GENERATE(Token::MUL, NUMBER, INT32, NUMBER, OVERWRITE_LEFT); 2492 GENERATE(Token::MUL, NUMBER, INT32, NUMBER, OVERWRITE_RIGHT); 2493 GENERATE(Token::MUL, NUMBER, NUMBER, NUMBER, NO_OVERWRITE); 2494 GENERATE(Token::MUL, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT); 2495 GENERATE(Token::MUL, NUMBER, SMI, NUMBER, NO_OVERWRITE); 2496 GENERATE(Token::MUL, NUMBER, SMI, NUMBER, OVERWRITE_LEFT); 2497 GENERATE(Token::MUL, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT); 2498 GENERATE(Token::MUL, SMI, INT32, INT32, NO_OVERWRITE); 2499 GENERATE(Token::MUL, SMI, INT32, INT32, OVERWRITE_LEFT); 2500 GENERATE(Token::MUL, SMI, INT32, NUMBER, NO_OVERWRITE); 2501 GENERATE(Token::MUL, SMI, NUMBER, NUMBER, NO_OVERWRITE); 2502 GENERATE(Token::MUL, SMI, NUMBER, NUMBER, OVERWRITE_LEFT); 2503 GENERATE(Token::MUL, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT); 2504 GENERATE(Token::MUL, SMI, SMI, INT32, NO_OVERWRITE); 2505 GENERATE(Token::MUL, SMI, SMI, NUMBER, NO_OVERWRITE); 2506 GENERATE(Token::MUL, SMI, SMI, NUMBER, OVERWRITE_LEFT); 2507 GENERATE(Token::MUL, SMI, SMI, SMI, NO_OVERWRITE); 2508 GENERATE(Token::MUL, SMI, SMI, SMI, OVERWRITE_LEFT); 2509 GENERATE(Token::MUL, SMI, SMI, SMI, OVERWRITE_RIGHT); 2510 GENERATE(Token::SAR, INT32, SMI, INT32, OVERWRITE_RIGHT); 2511 GENERATE(Token::SAR, INT32, SMI, SMI, NO_OVERWRITE); 2512 GENERATE(Token::SAR, INT32, SMI, SMI, OVERWRITE_RIGHT); 2513 GENERATE(Token::SAR, NUMBER, SMI, SMI, NO_OVERWRITE); 2514 GENERATE(Token::SAR, NUMBER, SMI, SMI, OVERWRITE_RIGHT); 2515 GENERATE(Token::SAR, SMI, SMI, SMI, OVERWRITE_LEFT); 2516 GENERATE(Token::SAR, SMI, SMI, SMI, OVERWRITE_RIGHT); 2517 GENERATE(Token::SHL, INT32, SMI, INT32, NO_OVERWRITE); 2518 GENERATE(Token::SHL, INT32, SMI, INT32, OVERWRITE_RIGHT); 2519 GENERATE(Token::SHL, INT32, SMI, SMI, NO_OVERWRITE); 2520 GENERATE(Token::SHL, INT32, SMI, SMI, OVERWRITE_RIGHT); 2521 GENERATE(Token::SHL, NUMBER, SMI, SMI, OVERWRITE_RIGHT); 2522 GENERATE(Token::SHL, SMI, SMI, INT32, NO_OVERWRITE); 2523 GENERATE(Token::SHL, SMI, SMI, INT32, OVERWRITE_LEFT); 2524 GENERATE(Token::SHL, SMI, SMI, INT32, OVERWRITE_RIGHT); 2525 GENERATE(Token::SHL, SMI, SMI, SMI, NO_OVERWRITE); 2526 GENERATE(Token::SHL, SMI, SMI, SMI, OVERWRITE_LEFT); 2527 GENERATE(Token::SHL, SMI, SMI, SMI, OVERWRITE_RIGHT); 2528 GENERATE(Token::SHR, INT32, SMI, SMI, NO_OVERWRITE); 2529 GENERATE(Token::SHR, INT32, SMI, SMI, OVERWRITE_LEFT); 2530 GENERATE(Token::SHR, INT32, SMI, SMI, OVERWRITE_RIGHT); 2531 GENERATE(Token::SHR, NUMBER, SMI, SMI, NO_OVERWRITE); 2532 GENERATE(Token::SHR, NUMBER, SMI, SMI, OVERWRITE_LEFT); 2533 GENERATE(Token::SHR, NUMBER, SMI, INT32, OVERWRITE_RIGHT); 2534 GENERATE(Token::SHR, SMI, SMI, SMI, NO_OVERWRITE); 2535 GENERATE(Token::SHR, SMI, SMI, SMI, OVERWRITE_LEFT); 2536 GENERATE(Token::SHR, SMI, SMI, SMI, OVERWRITE_RIGHT); 2537 GENERATE(Token::SUB, INT32, INT32, INT32, NO_OVERWRITE); 2538 GENERATE(Token::SUB, INT32, INT32, INT32, OVERWRITE_LEFT); 2539 GENERATE(Token::SUB, INT32, NUMBER, NUMBER, NO_OVERWRITE); 2540 GENERATE(Token::SUB, INT32, NUMBER, NUMBER, OVERWRITE_RIGHT); 2541 GENERATE(Token::SUB, INT32, SMI, INT32, OVERWRITE_LEFT); 2542 GENERATE(Token::SUB, INT32, SMI, INT32, OVERWRITE_RIGHT); 2543 GENERATE(Token::SUB, NUMBER, INT32, NUMBER, NO_OVERWRITE); 2544 GENERATE(Token::SUB, NUMBER, INT32, NUMBER, OVERWRITE_LEFT); 2545 GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, NO_OVERWRITE); 2546 GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT); 2547 GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT); 2548 GENERATE(Token::SUB, NUMBER, SMI, NUMBER, NO_OVERWRITE); 2549 GENERATE(Token::SUB, NUMBER, SMI, NUMBER, OVERWRITE_LEFT); 2550 GENERATE(Token::SUB, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT); 2551 GENERATE(Token::SUB, SMI, INT32, INT32, NO_OVERWRITE); 2552 GENERATE(Token::SUB, SMI, NUMBER, NUMBER, NO_OVERWRITE); 2553 GENERATE(Token::SUB, SMI, NUMBER, NUMBER, OVERWRITE_LEFT); 2554 GENERATE(Token::SUB, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT); 2555 GENERATE(Token::SUB, SMI, SMI, SMI, NO_OVERWRITE); 2556 GENERATE(Token::SUB, SMI, SMI, SMI, OVERWRITE_LEFT); 2557 GENERATE(Token::SUB, SMI, SMI, SMI, OVERWRITE_RIGHT); 2558 #undef GENERATE 2559 #define GENERATE(op, left_kind, fixed_right_arg_value, result_kind, mode) \ 2560 do { \ 2561 State state(op, mode); \ 2562 state.left_kind_ = left_kind; \ 2563 state.fixed_right_arg_.has_value = true; \ 2564 state.fixed_right_arg_.value = fixed_right_arg_value; \ 2565 state.right_kind_ = SMI; \ 2566 state.result_kind_ = result_kind; \ 2567 Generate(isolate, state); \ 2568 } while (false) 2569 GENERATE(Token::MOD, SMI, 2, SMI, NO_OVERWRITE); 2570 GENERATE(Token::MOD, SMI, 4, SMI, NO_OVERWRITE); 2571 GENERATE(Token::MOD, SMI, 4, SMI, OVERWRITE_LEFT); 2572 GENERATE(Token::MOD, SMI, 8, SMI, NO_OVERWRITE); 2573 GENERATE(Token::MOD, SMI, 16, SMI, OVERWRITE_LEFT); 2574 GENERATE(Token::MOD, SMI, 32, SMI, NO_OVERWRITE); 2575 GENERATE(Token::MOD, SMI, 2048, SMI, NO_OVERWRITE); 2576 #undef GENERATE 2577 } 2578 2579 2580 Handle<Type> BinaryOpIC::State::GetResultType(Isolate* isolate) const { 2581 Kind result_kind = result_kind_; 2582 if (HasSideEffects()) { 2583 result_kind = NONE; 2584 } else if (result_kind == GENERIC && op_ == Token::ADD) { 2585 return handle(Type::Union(handle(Type::Number(), isolate), 2586 handle(Type::String(), isolate)), isolate); 2587 } else if (result_kind == NUMBER && op_ == Token::SHR) { 2588 return handle(Type::Unsigned32(), isolate); 2589 } 2590 ASSERT_NE(GENERIC, result_kind); 2591 return KindToType(result_kind, isolate); 2592 } 2593 2594 2595 void BinaryOpIC::State::Print(StringStream* stream) const { 2596 stream->Add("(%s", Token::Name(op_)); 2597 if (mode_ == OVERWRITE_LEFT) stream->Add("_ReuseLeft"); 2598 else if (mode_ == OVERWRITE_RIGHT) stream->Add("_ReuseRight"); 2599 stream->Add(":%s*", KindToString(left_kind_)); 2600 if (fixed_right_arg_.has_value) { 2601 stream->Add("%d", fixed_right_arg_.value); 2602 } else { 2603 stream->Add("%s", KindToString(right_kind_)); 2604 } 2605 stream->Add("->%s)", KindToString(result_kind_)); 2606 } 2607 2608 2609 void BinaryOpIC::State::Update(Handle<Object> left, 2610 Handle<Object> right, 2611 Handle<Object> result) { 2612 ExtraICState old_extra_ic_state = GetExtraICState(); 2613 2614 left_kind_ = UpdateKind(left, left_kind_); 2615 right_kind_ = UpdateKind(right, right_kind_); 2616 2617 int32_t fixed_right_arg_value = 0; 2618 bool has_fixed_right_arg = 2619 op_ == Token::MOD && 2620 right->ToInt32(&fixed_right_arg_value) && 2621 fixed_right_arg_value > 0 && 2622 IsPowerOf2(fixed_right_arg_value) && 2623 FixedRightArgValueField::is_valid(WhichPowerOf2(fixed_right_arg_value)) && 2624 (left_kind_ == SMI || left_kind_ == INT32) && 2625 (result_kind_ == NONE || !fixed_right_arg_.has_value); 2626 fixed_right_arg_ = Maybe<int32_t>(has_fixed_right_arg, 2627 fixed_right_arg_value); 2628 2629 result_kind_ = UpdateKind(result, result_kind_); 2630 2631 if (!Token::IsTruncatingBinaryOp(op_)) { 2632 Kind input_kind = Max(left_kind_, right_kind_); 2633 if (result_kind_ < input_kind && input_kind <= NUMBER) { 2634 result_kind_ = input_kind; 2635 } 2636 } 2637 2638 // Reset overwrite mode unless we can actually make use of it, or may be able 2639 // to make use of it at some point in the future. 2640 if ((mode_ == OVERWRITE_LEFT && left_kind_ > NUMBER) || 2641 (mode_ == OVERWRITE_RIGHT && right_kind_ > NUMBER) || 2642 result_kind_ > NUMBER) { 2643 mode_ = NO_OVERWRITE; 2644 } 2645 2646 if (old_extra_ic_state == GetExtraICState()) { 2647 // Tagged operations can lead to non-truncating HChanges 2648 if (left->IsUndefined() || left->IsBoolean()) { 2649 left_kind_ = GENERIC; 2650 } else if (right->IsUndefined() || right->IsBoolean()) { 2651 right_kind_ = GENERIC; 2652 } else { 2653 // Since the X87 is too precise, we might bail out on numbers which 2654 // actually would truncate with 64 bit precision. 2655 ASSERT(!CpuFeatures::IsSupported(SSE2)); 2656 ASSERT(result_kind_ < NUMBER); 2657 result_kind_ = NUMBER; 2658 } 2659 } 2660 } 2661 2662 2663 BinaryOpIC::State::Kind BinaryOpIC::State::UpdateKind(Handle<Object> object, 2664 Kind kind) const { 2665 Kind new_kind = GENERIC; 2666 bool is_truncating = Token::IsTruncatingBinaryOp(op()); 2667 if (object->IsBoolean() && is_truncating) { 2668 // Booleans will be automatically truncated by HChange. 2669 new_kind = INT32; 2670 } else if (object->IsUndefined()) { 2671 // Undefined will be automatically truncated by HChange. 2672 new_kind = is_truncating ? INT32 : NUMBER; 2673 } else if (object->IsSmi()) { 2674 new_kind = SMI; 2675 } else if (object->IsHeapNumber()) { 2676 double value = Handle<HeapNumber>::cast(object)->value(); 2677 new_kind = TypeInfo::IsInt32Double(value) ? INT32 : NUMBER; 2678 } else if (object->IsString() && op() == Token::ADD) { 2679 new_kind = STRING; 2680 } 2681 if (new_kind == INT32 && SmiValuesAre32Bits()) { 2682 new_kind = NUMBER; 2683 } 2684 if (kind != NONE && 2685 ((new_kind <= NUMBER && kind > NUMBER) || 2686 (new_kind > NUMBER && kind <= NUMBER))) { 2687 new_kind = GENERIC; 2688 } 2689 return Max(kind, new_kind); 2690 } 2691 2692 2693 // static 2694 const char* BinaryOpIC::State::KindToString(Kind kind) { 2695 switch (kind) { 2696 case NONE: return "None"; 2697 case SMI: return "Smi"; 2698 case INT32: return "Int32"; 2699 case NUMBER: return "Number"; 2700 case STRING: return "String"; 2701 case GENERIC: return "Generic"; 2702 } 2703 UNREACHABLE(); 2704 return NULL; 2705 } 2706 2707 2708 // static 2709 Handle<Type> BinaryOpIC::State::KindToType(Kind kind, Isolate* isolate) { 2710 Type* type = NULL; 2711 switch (kind) { 2712 case NONE: type = Type::None(); break; 2713 case SMI: type = Type::Smi(); break; 2714 case INT32: type = Type::Signed32(); break; 2715 case NUMBER: type = Type::Number(); break; 2716 case STRING: type = Type::String(); break; 2717 case GENERIC: type = Type::Any(); break; 2718 } 2719 return handle(type, isolate); 2720 } 2721 2722 2723 MaybeObject* BinaryOpIC::Transition(Handle<Object> left, Handle<Object> right) { 2724 State state(target()->extended_extra_ic_state()); 2725 2726 // Compute the actual result using the builtin for the binary operation. 2727 Object* builtin = isolate()->js_builtins_object()->javascript_builtin( 2728 TokenToJSBuiltin(state.op())); 2729 Handle<JSFunction> function = handle(JSFunction::cast(builtin), isolate()); 2730 bool caught_exception; 2731 Handle<Object> result = Execution::Call( 2732 isolate(), function, left, 1, &right, &caught_exception); 2733 if (caught_exception) return Failure::Exception(); 2734 2735 // Compute the new state. 2736 State old_state = state; 2737 state.Update(left, right, result); 2738 2739 // Install the new stub. 2740 BinaryOpICStub stub(state); 2741 set_target(*stub.GetCode(isolate())); 2742 2743 if (FLAG_trace_ic) { 2744 char buffer[150]; 2745 NoAllocationStringAllocator allocator( 2746 buffer, static_cast<unsigned>(sizeof(buffer))); 2747 StringStream stream(&allocator); 2748 stream.Add("[BinaryOpIC"); 2749 old_state.Print(&stream); 2750 stream.Add(" => "); 2751 state.Print(&stream); 2752 stream.Add(" @ %p <- ", static_cast<void*>(*target())); 2753 stream.OutputToStdOut(); 2754 JavaScriptFrame::PrintTop(isolate(), stdout, false, true); 2755 PrintF("]\n"); 2756 } 2757 2758 // Patch the inlined smi code as necessary. 2759 if (!old_state.UseInlinedSmiCode() && state.UseInlinedSmiCode()) { 2760 PatchInlinedSmiCode(address(), ENABLE_INLINED_SMI_CHECK); 2761 } else if (old_state.UseInlinedSmiCode() && !state.UseInlinedSmiCode()) { 2762 PatchInlinedSmiCode(address(), DISABLE_INLINED_SMI_CHECK); 2763 } 2764 2765 return *result; 2766 } 2767 2768 2769 RUNTIME_FUNCTION(MaybeObject*, BinaryOpIC_Miss) { 2770 HandleScope scope(isolate); 2771 Handle<Object> left = args.at<Object>(BinaryOpICStub::kLeft); 2772 Handle<Object> right = args.at<Object>(BinaryOpICStub::kRight); 2773 BinaryOpIC ic(isolate); 2774 return ic.Transition(left, right); 2775 } 2776 2777 2778 Code* CompareIC::GetRawUninitialized(Isolate* isolate, Token::Value op) { 2779 ICCompareStub stub(op, UNINITIALIZED, UNINITIALIZED, UNINITIALIZED); 2780 Code* code = NULL; 2781 CHECK(stub.FindCodeInCache(&code, isolate)); 2782 return code; 2783 } 2784 2785 2786 Handle<Code> CompareIC::GetUninitialized(Isolate* isolate, Token::Value op) { 2787 ICCompareStub stub(op, UNINITIALIZED, UNINITIALIZED, UNINITIALIZED); 2788 return stub.GetCode(isolate); 2789 } 2790 2791 2792 const char* CompareIC::GetStateName(State state) { 2793 switch (state) { 2794 case UNINITIALIZED: return "UNINITIALIZED"; 2795 case SMI: return "SMI"; 2796 case NUMBER: return "NUMBER"; 2797 case INTERNALIZED_STRING: return "INTERNALIZED_STRING"; 2798 case STRING: return "STRING"; 2799 case UNIQUE_NAME: return "UNIQUE_NAME"; 2800 case OBJECT: return "OBJECT"; 2801 case KNOWN_OBJECT: return "KNOWN_OBJECT"; 2802 case GENERIC: return "GENERIC"; 2803 } 2804 UNREACHABLE(); 2805 return NULL; 2806 } 2807 2808 2809 Handle<Type> CompareIC::StateToType( 2810 Isolate* isolate, 2811 CompareIC::State state, 2812 Handle<Map> map) { 2813 switch (state) { 2814 case CompareIC::UNINITIALIZED: 2815 return handle(Type::None(), isolate); 2816 case CompareIC::SMI: 2817 return handle(Type::Smi(), isolate); 2818 case CompareIC::NUMBER: 2819 return handle(Type::Number(), isolate); 2820 case CompareIC::STRING: 2821 return handle(Type::String(), isolate); 2822 case CompareIC::INTERNALIZED_STRING: 2823 return handle(Type::InternalizedString(), isolate); 2824 case CompareIC::UNIQUE_NAME: 2825 return handle(Type::UniqueName(), isolate); 2826 case CompareIC::OBJECT: 2827 return handle(Type::Receiver(), isolate); 2828 case CompareIC::KNOWN_OBJECT: 2829 return handle( 2830 map.is_null() ? Type::Receiver() : Type::Class(map), isolate); 2831 case CompareIC::GENERIC: 2832 return handle(Type::Any(), isolate); 2833 } 2834 UNREACHABLE(); 2835 return Handle<Type>(); 2836 } 2837 2838 2839 void CompareIC::StubInfoToType(int stub_minor_key, 2840 Handle<Type>* left_type, 2841 Handle<Type>* right_type, 2842 Handle<Type>* overall_type, 2843 Handle<Map> map, 2844 Isolate* isolate) { 2845 State left_state, right_state, handler_state; 2846 ICCompareStub::DecodeMinorKey(stub_minor_key, &left_state, &right_state, 2847 &handler_state, NULL); 2848 *left_type = StateToType(isolate, left_state); 2849 *right_type = StateToType(isolate, right_state); 2850 *overall_type = StateToType(isolate, handler_state, map); 2851 } 2852 2853 2854 CompareIC::State CompareIC::NewInputState(State old_state, 2855 Handle<Object> value) { 2856 switch (old_state) { 2857 case UNINITIALIZED: 2858 if (value->IsSmi()) return SMI; 2859 if (value->IsHeapNumber()) return NUMBER; 2860 if (value->IsInternalizedString()) return INTERNALIZED_STRING; 2861 if (value->IsString()) return STRING; 2862 if (value->IsSymbol()) return UNIQUE_NAME; 2863 if (value->IsJSObject()) return OBJECT; 2864 break; 2865 case SMI: 2866 if (value->IsSmi()) return SMI; 2867 if (value->IsHeapNumber()) return NUMBER; 2868 break; 2869 case NUMBER: 2870 if (value->IsNumber()) return NUMBER; 2871 break; 2872 case INTERNALIZED_STRING: 2873 if (value->IsInternalizedString()) return INTERNALIZED_STRING; 2874 if (value->IsString()) return STRING; 2875 if (value->IsSymbol()) return UNIQUE_NAME; 2876 break; 2877 case STRING: 2878 if (value->IsString()) return STRING; 2879 break; 2880 case UNIQUE_NAME: 2881 if (value->IsUniqueName()) return UNIQUE_NAME; 2882 break; 2883 case OBJECT: 2884 if (value->IsJSObject()) return OBJECT; 2885 break; 2886 case GENERIC: 2887 break; 2888 case KNOWN_OBJECT: 2889 UNREACHABLE(); 2890 break; 2891 } 2892 return GENERIC; 2893 } 2894 2895 2896 CompareIC::State CompareIC::TargetState(State old_state, 2897 State old_left, 2898 State old_right, 2899 bool has_inlined_smi_code, 2900 Handle<Object> x, 2901 Handle<Object> y) { 2902 switch (old_state) { 2903 case UNINITIALIZED: 2904 if (x->IsSmi() && y->IsSmi()) return SMI; 2905 if (x->IsNumber() && y->IsNumber()) return NUMBER; 2906 if (Token::IsOrderedRelationalCompareOp(op_)) { 2907 // Ordered comparisons treat undefined as NaN, so the 2908 // NUMBER stub will do the right thing. 2909 if ((x->IsNumber() && y->IsUndefined()) || 2910 (y->IsNumber() && x->IsUndefined())) { 2911 return NUMBER; 2912 } 2913 } 2914 if (x->IsInternalizedString() && y->IsInternalizedString()) { 2915 // We compare internalized strings as plain ones if we need to determine 2916 // the order in a non-equality compare. 2917 return Token::IsEqualityOp(op_) ? INTERNALIZED_STRING : STRING; 2918 } 2919 if (x->IsString() && y->IsString()) return STRING; 2920 if (!Token::IsEqualityOp(op_)) return GENERIC; 2921 if (x->IsUniqueName() && y->IsUniqueName()) return UNIQUE_NAME; 2922 if (x->IsJSObject() && y->IsJSObject()) { 2923 if (Handle<JSObject>::cast(x)->map() == 2924 Handle<JSObject>::cast(y)->map()) { 2925 return KNOWN_OBJECT; 2926 } else { 2927 return OBJECT; 2928 } 2929 } 2930 return GENERIC; 2931 case SMI: 2932 return x->IsNumber() && y->IsNumber() ? NUMBER : GENERIC; 2933 case INTERNALIZED_STRING: 2934 ASSERT(Token::IsEqualityOp(op_)); 2935 if (x->IsString() && y->IsString()) return STRING; 2936 if (x->IsUniqueName() && y->IsUniqueName()) return UNIQUE_NAME; 2937 return GENERIC; 2938 case NUMBER: 2939 // If the failure was due to one side changing from smi to heap number, 2940 // then keep the state (if other changed at the same time, we will get 2941 // a second miss and then go to generic). 2942 if (old_left == SMI && x->IsHeapNumber()) return NUMBER; 2943 if (old_right == SMI && y->IsHeapNumber()) return NUMBER; 2944 return GENERIC; 2945 case KNOWN_OBJECT: 2946 ASSERT(Token::IsEqualityOp(op_)); 2947 if (x->IsJSObject() && y->IsJSObject()) return OBJECT; 2948 return GENERIC; 2949 case STRING: 2950 case UNIQUE_NAME: 2951 case OBJECT: 2952 case GENERIC: 2953 return GENERIC; 2954 } 2955 UNREACHABLE(); 2956 return GENERIC; // Make the compiler happy. 2957 } 2958 2959 2960 Code* CompareIC::UpdateCaches(Handle<Object> x, Handle<Object> y) { 2961 HandleScope scope(isolate()); 2962 State previous_left, previous_right, previous_state; 2963 ICCompareStub::DecodeMinorKey(target()->stub_info(), &previous_left, 2964 &previous_right, &previous_state, NULL); 2965 State new_left = NewInputState(previous_left, x); 2966 State new_right = NewInputState(previous_right, y); 2967 State state = TargetState(previous_state, previous_left, previous_right, 2968 HasInlinedSmiCode(address()), x, y); 2969 ICCompareStub stub(op_, new_left, new_right, state); 2970 if (state == KNOWN_OBJECT) { 2971 stub.set_known_map( 2972 Handle<Map>(Handle<JSObject>::cast(x)->map(), isolate())); 2973 } 2974 Handle<Code> new_target = stub.GetCode(isolate()); 2975 set_target(*new_target); 2976 2977 if (FLAG_trace_ic) { 2978 PrintF("[CompareIC in "); 2979 JavaScriptFrame::PrintTop(isolate(), stdout, false, true); 2980 PrintF(" ((%s+%s=%s)->(%s+%s=%s))#%s @ %p]\n", 2981 GetStateName(previous_left), 2982 GetStateName(previous_right), 2983 GetStateName(previous_state), 2984 GetStateName(new_left), 2985 GetStateName(new_right), 2986 GetStateName(state), 2987 Token::Name(op_), 2988 static_cast<void*>(*stub.GetCode(isolate()))); 2989 } 2990 2991 // Activate inlined smi code. 2992 if (previous_state == UNINITIALIZED) { 2993 PatchInlinedSmiCode(address(), ENABLE_INLINED_SMI_CHECK); 2994 } 2995 2996 return *new_target; 2997 } 2998 2999 3000 // Used from ICCompareStub::GenerateMiss in code-stubs-<arch>.cc. 3001 RUNTIME_FUNCTION(Code*, CompareIC_Miss) { 3002 HandleScope scope(isolate); 3003 ASSERT(args.length() == 3); 3004 CompareIC ic(isolate, static_cast<Token::Value>(args.smi_at(2))); 3005 return ic.UpdateCaches(args.at<Object>(0), args.at<Object>(1)); 3006 } 3007 3008 3009 void CompareNilIC::Clear(Address address, Code* target) { 3010 if (IsCleared(target)) return; 3011 ExtraICState state = target->extended_extra_ic_state(); 3012 3013 CompareNilICStub stub(state, HydrogenCodeStub::UNINITIALIZED); 3014 stub.ClearState(); 3015 3016 Code* code = NULL; 3017 CHECK(stub.FindCodeInCache(&code, target->GetIsolate())); 3018 3019 SetTargetAtAddress(address, code); 3020 } 3021 3022 3023 MaybeObject* CompareNilIC::DoCompareNilSlow(NilValue nil, 3024 Handle<Object> object) { 3025 if (object->IsNull() || object->IsUndefined()) { 3026 return Smi::FromInt(true); 3027 } 3028 return Smi::FromInt(object->IsUndetectableObject()); 3029 } 3030 3031 3032 MaybeObject* CompareNilIC::CompareNil(Handle<Object> object) { 3033 ExtraICState extra_ic_state = target()->extended_extra_ic_state(); 3034 3035 CompareNilICStub stub(extra_ic_state); 3036 3037 // Extract the current supported types from the patched IC and calculate what 3038 // types must be supported as a result of the miss. 3039 bool already_monomorphic = stub.IsMonomorphic(); 3040 3041 stub.UpdateStatus(object); 3042 3043 NilValue nil = stub.GetNilValue(); 3044 3045 // Find or create the specialized stub to support the new set of types. 3046 Handle<Code> code; 3047 if (stub.IsMonomorphic()) { 3048 Handle<Map> monomorphic_map(already_monomorphic 3049 ? target()->FindFirstMap() 3050 : HeapObject::cast(*object)->map()); 3051 code = isolate()->stub_cache()->ComputeCompareNil(monomorphic_map, stub); 3052 } else { 3053 code = stub.GetCode(isolate()); 3054 } 3055 set_target(*code); 3056 return DoCompareNilSlow(nil, object); 3057 } 3058 3059 3060 RUNTIME_FUNCTION(MaybeObject*, CompareNilIC_Miss) { 3061 HandleScope scope(isolate); 3062 Handle<Object> object = args.at<Object>(0); 3063 CompareNilIC ic(isolate); 3064 return ic.CompareNil(object); 3065 } 3066 3067 3068 RUNTIME_FUNCTION(MaybeObject*, Unreachable) { 3069 UNREACHABLE(); 3070 CHECK(false); 3071 return isolate->heap()->undefined_value(); 3072 } 3073 3074 3075 Builtins::JavaScript BinaryOpIC::TokenToJSBuiltin(Token::Value op) { 3076 switch (op) { 3077 default: 3078 UNREACHABLE(); 3079 case Token::ADD: 3080 return Builtins::ADD; 3081 break; 3082 case Token::SUB: 3083 return Builtins::SUB; 3084 break; 3085 case Token::MUL: 3086 return Builtins::MUL; 3087 break; 3088 case Token::DIV: 3089 return Builtins::DIV; 3090 break; 3091 case Token::MOD: 3092 return Builtins::MOD; 3093 break; 3094 case Token::BIT_OR: 3095 return Builtins::BIT_OR; 3096 break; 3097 case Token::BIT_AND: 3098 return Builtins::BIT_AND; 3099 break; 3100 case Token::BIT_XOR: 3101 return Builtins::BIT_XOR; 3102 break; 3103 case Token::SAR: 3104 return Builtins::SAR; 3105 break; 3106 case Token::SHR: 3107 return Builtins::SHR; 3108 break; 3109 case Token::SHL: 3110 return Builtins::SHL; 3111 break; 3112 } 3113 } 3114 3115 3116 MaybeObject* ToBooleanIC::ToBoolean(Handle<Object> object) { 3117 ToBooleanStub stub(target()->extended_extra_ic_state()); 3118 bool to_boolean_value = stub.UpdateStatus(object); 3119 Handle<Code> code = stub.GetCode(isolate()); 3120 set_target(*code); 3121 return Smi::FromInt(to_boolean_value ? 1 : 0); 3122 } 3123 3124 3125 RUNTIME_FUNCTION(MaybeObject*, ToBooleanIC_Miss) { 3126 ASSERT(args.length() == 1); 3127 HandleScope scope(isolate); 3128 Handle<Object> object = args.at<Object>(0); 3129 ToBooleanIC ic(isolate); 3130 return ic.ToBoolean(object); 3131 } 3132 3133 3134 static const Address IC_utilities[] = { 3135 #define ADDR(name) FUNCTION_ADDR(name), 3136 IC_UTIL_LIST(ADDR) 3137 NULL 3138 #undef ADDR 3139 }; 3140 3141 3142 Address IC::AddressFromUtilityId(IC::UtilityId id) { 3143 return IC_utilities[id]; 3144 } 3145 3146 3147 } } // namespace v8::internal 3148