Home | History | Annotate | Download | only in Core
      1 //== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defines RangeConstraintManager, a class that tracks simple
     11 //  equality and inequality constraints on symbolic values of ProgramState.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "SimpleConstraintManager.h"
     16 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
     17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
     18 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
     19 #include "llvm/ADT/FoldingSet.h"
     20 #include "llvm/ADT/ImmutableSet.h"
     21 #include "llvm/Support/Debug.h"
     22 #include "llvm/Support/raw_ostream.h"
     23 
     24 using namespace clang;
     25 using namespace ento;
     26 
     27 /// A Range represents the closed range [from, to].  The caller must
     28 /// guarantee that from <= to.  Note that Range is immutable, so as not
     29 /// to subvert RangeSet's immutability.
     30 namespace {
     31 class Range : public std::pair<const llvm::APSInt*,
     32                                                 const llvm::APSInt*> {
     33 public:
     34   Range(const llvm::APSInt &from, const llvm::APSInt &to)
     35     : std::pair<const llvm::APSInt*, const llvm::APSInt*>(&from, &to) {
     36     assert(from <= to);
     37   }
     38   bool Includes(const llvm::APSInt &v) const {
     39     return *first <= v && v <= *second;
     40   }
     41   const llvm::APSInt &From() const {
     42     return *first;
     43   }
     44   const llvm::APSInt &To() const {
     45     return *second;
     46   }
     47   const llvm::APSInt *getConcreteValue() const {
     48     return &From() == &To() ? &From() : NULL;
     49   }
     50 
     51   void Profile(llvm::FoldingSetNodeID &ID) const {
     52     ID.AddPointer(&From());
     53     ID.AddPointer(&To());
     54   }
     55 };
     56 
     57 
     58 class RangeTrait : public llvm::ImutContainerInfo<Range> {
     59 public:
     60   // When comparing if one Range is less than another, we should compare
     61   // the actual APSInt values instead of their pointers.  This keeps the order
     62   // consistent (instead of comparing by pointer values) and can potentially
     63   // be used to speed up some of the operations in RangeSet.
     64   static inline bool isLess(key_type_ref lhs, key_type_ref rhs) {
     65     return *lhs.first < *rhs.first || (!(*rhs.first < *lhs.first) &&
     66                                        *lhs.second < *rhs.second);
     67   }
     68 };
     69 
     70 /// RangeSet contains a set of ranges. If the set is empty, then
     71 ///  there the value of a symbol is overly constrained and there are no
     72 ///  possible values for that symbol.
     73 class RangeSet {
     74   typedef llvm::ImmutableSet<Range, RangeTrait> PrimRangeSet;
     75   PrimRangeSet ranges; // no need to make const, since it is an
     76                        // ImmutableSet - this allows default operator=
     77                        // to work.
     78 public:
     79   typedef PrimRangeSet::Factory Factory;
     80   typedef PrimRangeSet::iterator iterator;
     81 
     82   RangeSet(PrimRangeSet RS) : ranges(RS) {}
     83 
     84   iterator begin() const { return ranges.begin(); }
     85   iterator end() const { return ranges.end(); }
     86 
     87   bool isEmpty() const { return ranges.isEmpty(); }
     88 
     89   /// Construct a new RangeSet representing '{ [from, to] }'.
     90   RangeSet(Factory &F, const llvm::APSInt &from, const llvm::APSInt &to)
     91     : ranges(F.add(F.getEmptySet(), Range(from, to))) {}
     92 
     93   /// Profile - Generates a hash profile of this RangeSet for use
     94   ///  by FoldingSet.
     95   void Profile(llvm::FoldingSetNodeID &ID) const { ranges.Profile(ID); }
     96 
     97   /// getConcreteValue - If a symbol is contrained to equal a specific integer
     98   ///  constant then this method returns that value.  Otherwise, it returns
     99   ///  NULL.
    100   const llvm::APSInt* getConcreteValue() const {
    101     return ranges.isSingleton() ? ranges.begin()->getConcreteValue() : 0;
    102   }
    103 
    104 private:
    105   void IntersectInRange(BasicValueFactory &BV, Factory &F,
    106                         const llvm::APSInt &Lower,
    107                         const llvm::APSInt &Upper,
    108                         PrimRangeSet &newRanges,
    109                         PrimRangeSet::iterator &i,
    110                         PrimRangeSet::iterator &e) const {
    111     // There are six cases for each range R in the set:
    112     //   1. R is entirely before the intersection range.
    113     //   2. R is entirely after the intersection range.
    114     //   3. R contains the entire intersection range.
    115     //   4. R starts before the intersection range and ends in the middle.
    116     //   5. R starts in the middle of the intersection range and ends after it.
    117     //   6. R is entirely contained in the intersection range.
    118     // These correspond to each of the conditions below.
    119     for (/* i = begin(), e = end() */; i != e; ++i) {
    120       if (i->To() < Lower) {
    121         continue;
    122       }
    123       if (i->From() > Upper) {
    124         break;
    125       }
    126 
    127       if (i->Includes(Lower)) {
    128         if (i->Includes(Upper)) {
    129           newRanges = F.add(newRanges, Range(BV.getValue(Lower),
    130                                              BV.getValue(Upper)));
    131           break;
    132         } else
    133           newRanges = F.add(newRanges, Range(BV.getValue(Lower), i->To()));
    134       } else {
    135         if (i->Includes(Upper)) {
    136           newRanges = F.add(newRanges, Range(i->From(), BV.getValue(Upper)));
    137           break;
    138         } else
    139           newRanges = F.add(newRanges, *i);
    140       }
    141     }
    142   }
    143 
    144   const llvm::APSInt &getMinValue() const {
    145     assert(!isEmpty());
    146     return ranges.begin()->From();
    147   }
    148 
    149   bool pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const {
    150     // This function has nine cases, the cartesian product of range-testing
    151     // both the upper and lower bounds against the symbol's type.
    152     // Each case requires a different pinning operation.
    153     // The function returns false if the described range is entirely outside
    154     // the range of values for the associated symbol.
    155     APSIntType Type(getMinValue());
    156     APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower, true);
    157     APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper, true);
    158 
    159     switch (LowerTest) {
    160     case APSIntType::RTR_Below:
    161       switch (UpperTest) {
    162       case APSIntType::RTR_Below:
    163         // The entire range is outside the symbol's set of possible values.
    164         // If this is a conventionally-ordered range, the state is infeasible.
    165         if (Lower < Upper)
    166           return false;
    167 
    168         // However, if the range wraps around, it spans all possible values.
    169         Lower = Type.getMinValue();
    170         Upper = Type.getMaxValue();
    171         break;
    172       case APSIntType::RTR_Within:
    173         // The range starts below what's possible but ends within it. Pin.
    174         Lower = Type.getMinValue();
    175         Type.apply(Upper);
    176         break;
    177       case APSIntType::RTR_Above:
    178         // The range spans all possible values for the symbol. Pin.
    179         Lower = Type.getMinValue();
    180         Upper = Type.getMaxValue();
    181         break;
    182       }
    183       break;
    184     case APSIntType::RTR_Within:
    185       switch (UpperTest) {
    186       case APSIntType::RTR_Below:
    187         // The range wraps around, but all lower values are not possible.
    188         Type.apply(Lower);
    189         Upper = Type.getMaxValue();
    190         break;
    191       case APSIntType::RTR_Within:
    192         // The range may or may not wrap around, but both limits are valid.
    193         Type.apply(Lower);
    194         Type.apply(Upper);
    195         break;
    196       case APSIntType::RTR_Above:
    197         // The range starts within what's possible but ends above it. Pin.
    198         Type.apply(Lower);
    199         Upper = Type.getMaxValue();
    200         break;
    201       }
    202       break;
    203     case APSIntType::RTR_Above:
    204       switch (UpperTest) {
    205       case APSIntType::RTR_Below:
    206         // The range wraps but is outside the symbol's set of possible values.
    207         return false;
    208       case APSIntType::RTR_Within:
    209         // The range starts above what's possible but ends within it (wrap).
    210         Lower = Type.getMinValue();
    211         Type.apply(Upper);
    212         break;
    213       case APSIntType::RTR_Above:
    214         // The entire range is outside the symbol's set of possible values.
    215         // If this is a conventionally-ordered range, the state is infeasible.
    216         if (Lower < Upper)
    217           return false;
    218 
    219         // However, if the range wraps around, it spans all possible values.
    220         Lower = Type.getMinValue();
    221         Upper = Type.getMaxValue();
    222         break;
    223       }
    224       break;
    225     }
    226 
    227     return true;
    228   }
    229 
    230 public:
    231   // Returns a set containing the values in the receiving set, intersected with
    232   // the closed range [Lower, Upper]. Unlike the Range type, this range uses
    233   // modular arithmetic, corresponding to the common treatment of C integer
    234   // overflow. Thus, if the Lower bound is greater than the Upper bound, the
    235   // range is taken to wrap around. This is equivalent to taking the
    236   // intersection with the two ranges [Min, Upper] and [Lower, Max],
    237   // or, alternatively, /removing/ all integers between Upper and Lower.
    238   RangeSet Intersect(BasicValueFactory &BV, Factory &F,
    239                      llvm::APSInt Lower, llvm::APSInt Upper) const {
    240     if (!pin(Lower, Upper))
    241       return F.getEmptySet();
    242 
    243     PrimRangeSet newRanges = F.getEmptySet();
    244 
    245     PrimRangeSet::iterator i = begin(), e = end();
    246     if (Lower <= Upper)
    247       IntersectInRange(BV, F, Lower, Upper, newRanges, i, e);
    248     else {
    249       // The order of the next two statements is important!
    250       // IntersectInRange() does not reset the iteration state for i and e.
    251       // Therefore, the lower range most be handled first.
    252       IntersectInRange(BV, F, BV.getMinValue(Upper), Upper, newRanges, i, e);
    253       IntersectInRange(BV, F, Lower, BV.getMaxValue(Lower), newRanges, i, e);
    254     }
    255 
    256     return newRanges;
    257   }
    258 
    259   void print(raw_ostream &os) const {
    260     bool isFirst = true;
    261     os << "{ ";
    262     for (iterator i = begin(), e = end(); i != e; ++i) {
    263       if (isFirst)
    264         isFirst = false;
    265       else
    266         os << ", ";
    267 
    268       os << '[' << i->From().toString(10) << ", " << i->To().toString(10)
    269          << ']';
    270     }
    271     os << " }";
    272   }
    273 
    274   bool operator==(const RangeSet &other) const {
    275     return ranges == other.ranges;
    276   }
    277 };
    278 } // end anonymous namespace
    279 
    280 REGISTER_TRAIT_WITH_PROGRAMSTATE(ConstraintRange,
    281                                  CLANG_ENTO_PROGRAMSTATE_MAP(SymbolRef,
    282                                                              RangeSet))
    283 
    284 namespace {
    285 class RangeConstraintManager : public SimpleConstraintManager{
    286   RangeSet GetRange(ProgramStateRef state, SymbolRef sym);
    287 public:
    288   RangeConstraintManager(SubEngine *subengine, SValBuilder &SVB)
    289     : SimpleConstraintManager(subengine, SVB) {}
    290 
    291   ProgramStateRef assumeSymNE(ProgramStateRef state, SymbolRef sym,
    292                              const llvm::APSInt& Int,
    293                              const llvm::APSInt& Adjustment);
    294 
    295   ProgramStateRef assumeSymEQ(ProgramStateRef state, SymbolRef sym,
    296                              const llvm::APSInt& Int,
    297                              const llvm::APSInt& Adjustment);
    298 
    299   ProgramStateRef assumeSymLT(ProgramStateRef state, SymbolRef sym,
    300                              const llvm::APSInt& Int,
    301                              const llvm::APSInt& Adjustment);
    302 
    303   ProgramStateRef assumeSymGT(ProgramStateRef state, SymbolRef sym,
    304                              const llvm::APSInt& Int,
    305                              const llvm::APSInt& Adjustment);
    306 
    307   ProgramStateRef assumeSymGE(ProgramStateRef state, SymbolRef sym,
    308                              const llvm::APSInt& Int,
    309                              const llvm::APSInt& Adjustment);
    310 
    311   ProgramStateRef assumeSymLE(ProgramStateRef state, SymbolRef sym,
    312                              const llvm::APSInt& Int,
    313                              const llvm::APSInt& Adjustment);
    314 
    315   const llvm::APSInt* getSymVal(ProgramStateRef St, SymbolRef sym) const;
    316   ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym);
    317 
    318   ProgramStateRef removeDeadBindings(ProgramStateRef St, SymbolReaper& SymReaper);
    319 
    320   void print(ProgramStateRef St, raw_ostream &Out,
    321              const char* nl, const char *sep);
    322 
    323 private:
    324   RangeSet::Factory F;
    325 };
    326 
    327 } // end anonymous namespace
    328 
    329 ConstraintManager *
    330 ento::CreateRangeConstraintManager(ProgramStateManager &StMgr, SubEngine *Eng) {
    331   return new RangeConstraintManager(Eng, StMgr.getSValBuilder());
    332 }
    333 
    334 const llvm::APSInt* RangeConstraintManager::getSymVal(ProgramStateRef St,
    335                                                       SymbolRef sym) const {
    336   const ConstraintRangeTy::data_type *T = St->get<ConstraintRange>(sym);
    337   return T ? T->getConcreteValue() : NULL;
    338 }
    339 
    340 ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State,
    341                                                     SymbolRef Sym) {
    342   const RangeSet *Ranges = State->get<ConstraintRange>(Sym);
    343 
    344   // If we don't have any information about this symbol, it's underconstrained.
    345   if (!Ranges)
    346     return ConditionTruthVal();
    347 
    348   // If we have a concrete value, see if it's zero.
    349   if (const llvm::APSInt *Value = Ranges->getConcreteValue())
    350     return *Value == 0;
    351 
    352   BasicValueFactory &BV = getBasicVals();
    353   APSIntType IntType = BV.getAPSIntType(Sym->getType());
    354   llvm::APSInt Zero = IntType.getZeroValue();
    355 
    356   // Check if zero is in the set of possible values.
    357   if (Ranges->Intersect(BV, F, Zero, Zero).isEmpty())
    358     return false;
    359 
    360   // Zero is a possible value, but it is not the /only/ possible value.
    361   return ConditionTruthVal();
    362 }
    363 
    364 /// Scan all symbols referenced by the constraints. If the symbol is not alive
    365 /// as marked in LSymbols, mark it as dead in DSymbols.
    366 ProgramStateRef
    367 RangeConstraintManager::removeDeadBindings(ProgramStateRef state,
    368                                            SymbolReaper& SymReaper) {
    369 
    370   ConstraintRangeTy CR = state->get<ConstraintRange>();
    371   ConstraintRangeTy::Factory& CRFactory = state->get_context<ConstraintRange>();
    372 
    373   for (ConstraintRangeTy::iterator I = CR.begin(), E = CR.end(); I != E; ++I) {
    374     SymbolRef sym = I.getKey();
    375     if (SymReaper.maybeDead(sym))
    376       CR = CRFactory.remove(CR, sym);
    377   }
    378 
    379   return state->set<ConstraintRange>(CR);
    380 }
    381 
    382 RangeSet
    383 RangeConstraintManager::GetRange(ProgramStateRef state, SymbolRef sym) {
    384   if (ConstraintRangeTy::data_type* V = state->get<ConstraintRange>(sym))
    385     return *V;
    386 
    387   // Lazily generate a new RangeSet representing all possible values for the
    388   // given symbol type.
    389   BasicValueFactory &BV = getBasicVals();
    390   QualType T = sym->getType();
    391 
    392   RangeSet Result(F, BV.getMinValue(T), BV.getMaxValue(T));
    393 
    394   // Special case: references are known to be non-zero.
    395   if (T->isReferenceType()) {
    396     APSIntType IntType = BV.getAPSIntType(T);
    397     Result = Result.Intersect(BV, F, ++IntType.getZeroValue(),
    398                                      --IntType.getZeroValue());
    399   }
    400 
    401   return Result;
    402 }
    403 
    404 //===------------------------------------------------------------------------===
    405 // assumeSymX methods: public interface for RangeConstraintManager.
    406 //===------------------------------------------------------------------------===/
    407 
    408 // The syntax for ranges below is mathematical, using [x, y] for closed ranges
    409 // and (x, y) for open ranges. These ranges are modular, corresponding with
    410 // a common treatment of C integer overflow. This means that these methods
    411 // do not have to worry about overflow; RangeSet::Intersect can handle such a
    412 // "wraparound" range.
    413 // As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1,
    414 // UINT_MAX, 0, 1, and 2.
    415 
    416 ProgramStateRef
    417 RangeConstraintManager::assumeSymNE(ProgramStateRef St, SymbolRef Sym,
    418                                     const llvm::APSInt &Int,
    419                                     const llvm::APSInt &Adjustment) {
    420   // Before we do any real work, see if the value can even show up.
    421   APSIntType AdjustmentType(Adjustment);
    422   if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
    423     return St;
    424 
    425   llvm::APSInt Lower = AdjustmentType.convert(Int) - Adjustment;
    426   llvm::APSInt Upper = Lower;
    427   --Lower;
    428   ++Upper;
    429 
    430   // [Int-Adjustment+1, Int-Adjustment-1]
    431   // Notice that the lower bound is greater than the upper bound.
    432   RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Upper, Lower);
    433   return New.isEmpty() ? NULL : St->set<ConstraintRange>(Sym, New);
    434 }
    435 
    436 ProgramStateRef
    437 RangeConstraintManager::assumeSymEQ(ProgramStateRef St, SymbolRef Sym,
    438                                     const llvm::APSInt &Int,
    439                                     const llvm::APSInt &Adjustment) {
    440   // Before we do any real work, see if the value can even show up.
    441   APSIntType AdjustmentType(Adjustment);
    442   if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
    443     return NULL;
    444 
    445   // [Int-Adjustment, Int-Adjustment]
    446   llvm::APSInt AdjInt = AdjustmentType.convert(Int) - Adjustment;
    447   RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, AdjInt, AdjInt);
    448   return New.isEmpty() ? NULL : St->set<ConstraintRange>(Sym, New);
    449 }
    450 
    451 ProgramStateRef
    452 RangeConstraintManager::assumeSymLT(ProgramStateRef St, SymbolRef Sym,
    453                                     const llvm::APSInt &Int,
    454                                     const llvm::APSInt &Adjustment) {
    455   // Before we do any real work, see if the value can even show up.
    456   APSIntType AdjustmentType(Adjustment);
    457   switch (AdjustmentType.testInRange(Int, true)) {
    458   case APSIntType::RTR_Below:
    459     return NULL;
    460   case APSIntType::RTR_Within:
    461     break;
    462   case APSIntType::RTR_Above:
    463     return St;
    464   }
    465 
    466   // Special case for Int == Min. This is always false.
    467   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
    468   llvm::APSInt Min = AdjustmentType.getMinValue();
    469   if (ComparisonVal == Min)
    470     return NULL;
    471 
    472   llvm::APSInt Lower = Min-Adjustment;
    473   llvm::APSInt Upper = ComparisonVal-Adjustment;
    474   --Upper;
    475 
    476   RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
    477   return New.isEmpty() ? NULL : St->set<ConstraintRange>(Sym, New);
    478 }
    479 
    480 ProgramStateRef
    481 RangeConstraintManager::assumeSymGT(ProgramStateRef St, SymbolRef Sym,
    482                                     const llvm::APSInt &Int,
    483                                     const llvm::APSInt &Adjustment) {
    484   // Before we do any real work, see if the value can even show up.
    485   APSIntType AdjustmentType(Adjustment);
    486   switch (AdjustmentType.testInRange(Int, true)) {
    487   case APSIntType::RTR_Below:
    488     return St;
    489   case APSIntType::RTR_Within:
    490     break;
    491   case APSIntType::RTR_Above:
    492     return NULL;
    493   }
    494 
    495   // Special case for Int == Max. This is always false.
    496   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
    497   llvm::APSInt Max = AdjustmentType.getMaxValue();
    498   if (ComparisonVal == Max)
    499     return NULL;
    500 
    501   llvm::APSInt Lower = ComparisonVal-Adjustment;
    502   llvm::APSInt Upper = Max-Adjustment;
    503   ++Lower;
    504 
    505   RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
    506   return New.isEmpty() ? NULL : St->set<ConstraintRange>(Sym, New);
    507 }
    508 
    509 ProgramStateRef
    510 RangeConstraintManager::assumeSymGE(ProgramStateRef St, SymbolRef Sym,
    511                                     const llvm::APSInt &Int,
    512                                     const llvm::APSInt &Adjustment) {
    513   // Before we do any real work, see if the value can even show up.
    514   APSIntType AdjustmentType(Adjustment);
    515   switch (AdjustmentType.testInRange(Int, true)) {
    516   case APSIntType::RTR_Below:
    517     return St;
    518   case APSIntType::RTR_Within:
    519     break;
    520   case APSIntType::RTR_Above:
    521     return NULL;
    522   }
    523 
    524   // Special case for Int == Min. This is always feasible.
    525   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
    526   llvm::APSInt Min = AdjustmentType.getMinValue();
    527   if (ComparisonVal == Min)
    528     return St;
    529 
    530   llvm::APSInt Max = AdjustmentType.getMaxValue();
    531   llvm::APSInt Lower = ComparisonVal-Adjustment;
    532   llvm::APSInt Upper = Max-Adjustment;
    533 
    534   RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
    535   return New.isEmpty() ? NULL : St->set<ConstraintRange>(Sym, New);
    536 }
    537 
    538 ProgramStateRef
    539 RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym,
    540                                     const llvm::APSInt &Int,
    541                                     const llvm::APSInt &Adjustment) {
    542   // Before we do any real work, see if the value can even show up.
    543   APSIntType AdjustmentType(Adjustment);
    544   switch (AdjustmentType.testInRange(Int, true)) {
    545   case APSIntType::RTR_Below:
    546     return NULL;
    547   case APSIntType::RTR_Within:
    548     break;
    549   case APSIntType::RTR_Above:
    550     return St;
    551   }
    552 
    553   // Special case for Int == Max. This is always feasible.
    554   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
    555   llvm::APSInt Max = AdjustmentType.getMaxValue();
    556   if (ComparisonVal == Max)
    557     return St;
    558 
    559   llvm::APSInt Min = AdjustmentType.getMinValue();
    560   llvm::APSInt Lower = Min-Adjustment;
    561   llvm::APSInt Upper = ComparisonVal-Adjustment;
    562 
    563   RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
    564   return New.isEmpty() ? NULL : St->set<ConstraintRange>(Sym, New);
    565 }
    566 
    567 //===------------------------------------------------------------------------===
    568 // Pretty-printing.
    569 //===------------------------------------------------------------------------===/
    570 
    571 void RangeConstraintManager::print(ProgramStateRef St, raw_ostream &Out,
    572                                    const char* nl, const char *sep) {
    573 
    574   ConstraintRangeTy Ranges = St->get<ConstraintRange>();
    575 
    576   if (Ranges.isEmpty()) {
    577     Out << nl << sep << "Ranges are empty." << nl;
    578     return;
    579   }
    580 
    581   Out << nl << sep << "Ranges of symbol values:";
    582   for (ConstraintRangeTy::iterator I=Ranges.begin(), E=Ranges.end(); I!=E; ++I){
    583     Out << nl << ' ' << I.getKey() << " : ";
    584     I.getData().print(Out);
    585   }
    586   Out << nl;
    587 }
    588