1 //===- RegionInfo.h - SESE region analysis ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Calculate a program structure tree built out of single entry single exit 11 // regions. 12 // The basic ideas are taken from "The Program Structure Tree - Richard Johnson, 13 // David Pearson, Keshav Pingali - 1994", however enriched with ideas from "The 14 // Refined Process Structure Tree - Jussi Vanhatalo, Hagen Voelyer, Jana 15 // Koehler - 2009". 16 // The algorithm to calculate these data structures however is completely 17 // different, as it takes advantage of existing information already available 18 // in (Post)dominace tree and dominance frontier passes. This leads to a simpler 19 // and in practice hopefully better performing algorithm. The runtime of the 20 // algorithms described in the papers above are both linear in graph size, 21 // O(V+E), whereas this algorithm is not, as the dominance frontier information 22 // itself is not, but in practice runtime seems to be in the order of magnitude 23 // of dominance tree calculation. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #ifndef LLVM_ANALYSIS_REGIONINFO_H 28 #define LLVM_ANALYSIS_REGIONINFO_H 29 30 #include "llvm/ADT/PointerIntPair.h" 31 #include "llvm/Analysis/DominanceFrontier.h" 32 #include "llvm/Analysis/PostDominators.h" 33 #include "llvm/Support/Allocator.h" 34 #include <map> 35 36 namespace llvm { 37 38 class Region; 39 class RegionInfo; 40 class raw_ostream; 41 class Loop; 42 class LoopInfo; 43 44 /// @brief Marker class to iterate over the elements of a Region in flat mode. 45 /// 46 /// The class is used to either iterate in Flat mode or by not using it to not 47 /// iterate in Flat mode. During a Flat mode iteration all Regions are entered 48 /// and the iteration returns every BasicBlock. If the Flat mode is not 49 /// selected for SubRegions just one RegionNode containing the subregion is 50 /// returned. 51 template <class GraphType> 52 class FlatIt {}; 53 54 /// @brief A RegionNode represents a subregion or a BasicBlock that is part of a 55 /// Region. 56 class RegionNode { 57 RegionNode(const RegionNode &) LLVM_DELETED_FUNCTION; 58 const RegionNode &operator=(const RegionNode &) LLVM_DELETED_FUNCTION; 59 60 protected: 61 /// This is the entry basic block that starts this region node. If this is a 62 /// BasicBlock RegionNode, then entry is just the basic block, that this 63 /// RegionNode represents. Otherwise it is the entry of this (Sub)RegionNode. 64 /// 65 /// In the BBtoRegionNode map of the parent of this node, BB will always map 66 /// to this node no matter which kind of node this one is. 67 /// 68 /// The node can hold either a Region or a BasicBlock. 69 /// Use one bit to save, if this RegionNode is a subregion or BasicBlock 70 /// RegionNode. 71 PointerIntPair<BasicBlock*, 1, bool> entry; 72 73 /// @brief The parent Region of this RegionNode. 74 /// @see getParent() 75 Region* parent; 76 77 public: 78 /// @brief Create a RegionNode. 79 /// 80 /// @param Parent The parent of this RegionNode. 81 /// @param Entry The entry BasicBlock of the RegionNode. If this 82 /// RegionNode represents a BasicBlock, this is the 83 /// BasicBlock itself. If it represents a subregion, this 84 /// is the entry BasicBlock of the subregion. 85 /// @param isSubRegion If this RegionNode represents a SubRegion. 86 inline RegionNode(Region* Parent, BasicBlock* Entry, bool isSubRegion = 0) 87 : entry(Entry, isSubRegion), parent(Parent) {} 88 89 /// @brief Get the parent Region of this RegionNode. 90 /// 91 /// The parent Region is the Region this RegionNode belongs to. If for 92 /// example a BasicBlock is element of two Regions, there exist two 93 /// RegionNodes for this BasicBlock. Each with the getParent() function 94 /// pointing to the Region this RegionNode belongs to. 95 /// 96 /// @return Get the parent Region of this RegionNode. 97 inline Region* getParent() const { return parent; } 98 99 /// @brief Get the entry BasicBlock of this RegionNode. 100 /// 101 /// If this RegionNode represents a BasicBlock this is just the BasicBlock 102 /// itself, otherwise we return the entry BasicBlock of the Subregion 103 /// 104 /// @return The entry BasicBlock of this RegionNode. 105 inline BasicBlock* getEntry() const { return entry.getPointer(); } 106 107 /// @brief Get the content of this RegionNode. 108 /// 109 /// This can be either a BasicBlock or a subregion. Before calling getNodeAs() 110 /// check the type of the content with the isSubRegion() function call. 111 /// 112 /// @return The content of this RegionNode. 113 template<class T> 114 inline T* getNodeAs() const; 115 116 /// @brief Is this RegionNode a subregion? 117 /// 118 /// @return True if it contains a subregion. False if it contains a 119 /// BasicBlock. 120 inline bool isSubRegion() const { 121 return entry.getInt(); 122 } 123 }; 124 125 /// Print a RegionNode. 126 inline raw_ostream &operator<<(raw_ostream &OS, const RegionNode &Node); 127 128 template<> 129 inline BasicBlock* RegionNode::getNodeAs<BasicBlock>() const { 130 assert(!isSubRegion() && "This is not a BasicBlock RegionNode!"); 131 return getEntry(); 132 } 133 134 template<> 135 inline Region* RegionNode::getNodeAs<Region>() const { 136 assert(isSubRegion() && "This is not a subregion RegionNode!"); 137 return reinterpret_cast<Region*>(const_cast<RegionNode*>(this)); 138 } 139 140 //===----------------------------------------------------------------------===// 141 /// @brief A single entry single exit Region. 142 /// 143 /// A Region is a connected subgraph of a control flow graph that has exactly 144 /// two connections to the remaining graph. It can be used to analyze or 145 /// optimize parts of the control flow graph. 146 /// 147 /// A <em> simple Region </em> is connected to the remaining graph by just two 148 /// edges. One edge entering the Region and another one leaving the Region. 149 /// 150 /// An <em> extended Region </em> (or just Region) is a subgraph that can be 151 /// transform into a simple Region. The transformation is done by adding 152 /// BasicBlocks that merge several entry or exit edges so that after the merge 153 /// just one entry and one exit edge exists. 154 /// 155 /// The \e Entry of a Region is the first BasicBlock that is passed after 156 /// entering the Region. It is an element of the Region. The entry BasicBlock 157 /// dominates all BasicBlocks in the Region. 158 /// 159 /// The \e Exit of a Region is the first BasicBlock that is passed after 160 /// leaving the Region. It is not an element of the Region. The exit BasicBlock, 161 /// postdominates all BasicBlocks in the Region. 162 /// 163 /// A <em> canonical Region </em> cannot be constructed by combining smaller 164 /// Regions. 165 /// 166 /// Region A is the \e parent of Region B, if B is completely contained in A. 167 /// 168 /// Two canonical Regions either do not intersect at all or one is 169 /// the parent of the other. 170 /// 171 /// The <em> Program Structure Tree</em> is a graph (V, E) where V is the set of 172 /// Regions in the control flow graph and E is the \e parent relation of these 173 /// Regions. 174 /// 175 /// Example: 176 /// 177 /// \verbatim 178 /// A simple control flow graph, that contains two regions. 179 /// 180 /// 1 181 /// / | 182 /// 2 | 183 /// / \ 3 184 /// 4 5 | 185 /// | | | 186 /// 6 7 8 187 /// \ | / 188 /// \ |/ Region A: 1 -> 9 {1,2,3,4,5,6,7,8} 189 /// 9 Region B: 2 -> 9 {2,4,5,6,7} 190 /// \endverbatim 191 /// 192 /// You can obtain more examples by either calling 193 /// 194 /// <tt> "opt -regions -analyze anyprogram.ll" </tt> 195 /// or 196 /// <tt> "opt -view-regions-only anyprogram.ll" </tt> 197 /// 198 /// on any LLVM file you are interested in. 199 /// 200 /// The first call returns a textual representation of the program structure 201 /// tree, the second one creates a graphical representation using graphviz. 202 class Region : public RegionNode { 203 friend class RegionInfo; 204 Region(const Region &) LLVM_DELETED_FUNCTION; 205 const Region &operator=(const Region &) LLVM_DELETED_FUNCTION; 206 207 // Information necessary to manage this Region. 208 RegionInfo* RI; 209 DominatorTree *DT; 210 211 // The exit BasicBlock of this region. 212 // (The entry BasicBlock is part of RegionNode) 213 BasicBlock *exit; 214 215 typedef std::vector<Region*> RegionSet; 216 217 // The subregions of this region. 218 RegionSet children; 219 220 typedef std::map<BasicBlock*, RegionNode*> BBNodeMapT; 221 222 // Save the BasicBlock RegionNodes that are element of this Region. 223 mutable BBNodeMapT BBNodeMap; 224 225 /// verifyBBInRegion - Check if a BB is in this Region. This check also works 226 /// if the region is incorrectly built. (EXPENSIVE!) 227 void verifyBBInRegion(BasicBlock* BB) const; 228 229 /// verifyWalk - Walk over all the BBs of the region starting from BB and 230 /// verify that all reachable basic blocks are elements of the region. 231 /// (EXPENSIVE!) 232 void verifyWalk(BasicBlock* BB, std::set<BasicBlock*>* visitedBB) const; 233 234 /// verifyRegionNest - Verify if the region and its children are valid 235 /// regions (EXPENSIVE!) 236 void verifyRegionNest() const; 237 238 public: 239 /// @brief Create a new region. 240 /// 241 /// @param Entry The entry basic block of the region. 242 /// @param Exit The exit basic block of the region. 243 /// @param RI The region info object that is managing this region. 244 /// @param DT The dominator tree of the current function. 245 /// @param Parent The surrounding region or NULL if this is a top level 246 /// region. 247 Region(BasicBlock *Entry, BasicBlock *Exit, RegionInfo* RI, 248 DominatorTree *DT, Region *Parent = 0); 249 250 /// Delete the Region and all its subregions. 251 ~Region(); 252 253 /// @brief Get the entry BasicBlock of the Region. 254 /// @return The entry BasicBlock of the region. 255 BasicBlock *getEntry() const { return RegionNode::getEntry(); } 256 257 /// @brief Replace the entry basic block of the region with the new basic 258 /// block. 259 /// 260 /// @param BB The new entry basic block of the region. 261 void replaceEntry(BasicBlock *BB); 262 263 /// @brief Replace the exit basic block of the region with the new basic 264 /// block. 265 /// 266 /// @param BB The new exit basic block of the region. 267 void replaceExit(BasicBlock *BB); 268 269 /// @brief Recursively replace the entry basic block of the region. 270 /// 271 /// This function replaces the entry basic block with a new basic block. It 272 /// also updates all child regions that have the same entry basic block as 273 /// this region. 274 /// 275 /// @param NewEntry The new entry basic block. 276 void replaceEntryRecursive(BasicBlock *NewEntry); 277 278 /// @brief Recursively replace the exit basic block of the region. 279 /// 280 /// This function replaces the exit basic block with a new basic block. It 281 /// also updates all child regions that have the same exit basic block as 282 /// this region. 283 /// 284 /// @param NewExit The new exit basic block. 285 void replaceExitRecursive(BasicBlock *NewExit); 286 287 /// @brief Get the exit BasicBlock of the Region. 288 /// @return The exit BasicBlock of the Region, NULL if this is the TopLevel 289 /// Region. 290 BasicBlock *getExit() const { return exit; } 291 292 /// @brief Get the parent of the Region. 293 /// @return The parent of the Region or NULL if this is a top level 294 /// Region. 295 Region *getParent() const { return RegionNode::getParent(); } 296 297 /// @brief Get the RegionNode representing the current Region. 298 /// @return The RegionNode representing the current Region. 299 RegionNode* getNode() const { 300 return const_cast<RegionNode*>(reinterpret_cast<const RegionNode*>(this)); 301 } 302 303 /// @brief Get the nesting level of this Region. 304 /// 305 /// An toplevel Region has depth 0. 306 /// 307 /// @return The depth of the region. 308 unsigned getDepth() const; 309 310 /// @brief Check if a Region is the TopLevel region. 311 /// 312 /// The toplevel region represents the whole function. 313 bool isTopLevelRegion() const { return exit == NULL; } 314 315 /// @brief Return a new (non canonical) region, that is obtained by joining 316 /// this region with its predecessors. 317 /// 318 /// @return A region also starting at getEntry(), but reaching to the next 319 /// basic block that forms with getEntry() a (non canonical) region. 320 /// NULL if such a basic block does not exist. 321 Region *getExpandedRegion() const; 322 323 /// @brief Return the first block of this region's single entry edge, 324 /// if existing. 325 /// 326 /// @return The BasicBlock starting this region's single entry edge, 327 /// else NULL. 328 BasicBlock *getEnteringBlock() const; 329 330 /// @brief Return the first block of this region's single exit edge, 331 /// if existing. 332 /// 333 /// @return The BasicBlock starting this region's single exit edge, 334 /// else NULL. 335 BasicBlock *getExitingBlock() const; 336 337 /// @brief Is this a simple region? 338 /// 339 /// A region is simple if it has exactly one exit and one entry edge. 340 /// 341 /// @return True if the Region is simple. 342 bool isSimple() const; 343 344 /// @brief Returns the name of the Region. 345 /// @return The Name of the Region. 346 std::string getNameStr() const; 347 348 /// @brief Return the RegionInfo object, that belongs to this Region. 349 RegionInfo *getRegionInfo() const { 350 return RI; 351 } 352 353 /// PrintStyle - Print region in difference ways. 354 enum PrintStyle { PrintNone, PrintBB, PrintRN }; 355 356 /// @brief Print the region. 357 /// 358 /// @param OS The output stream the Region is printed to. 359 /// @param printTree Print also the tree of subregions. 360 /// @param level The indentation level used for printing. 361 void print(raw_ostream& OS, bool printTree = true, unsigned level = 0, 362 enum PrintStyle Style = PrintNone) const; 363 364 /// @brief Print the region to stderr. 365 void dump() const; 366 367 /// @brief Check if the region contains a BasicBlock. 368 /// 369 /// @param BB The BasicBlock that might be contained in this Region. 370 /// @return True if the block is contained in the region otherwise false. 371 bool contains(const BasicBlock *BB) const; 372 373 /// @brief Check if the region contains another region. 374 /// 375 /// @param SubRegion The region that might be contained in this Region. 376 /// @return True if SubRegion is contained in the region otherwise false. 377 bool contains(const Region *SubRegion) const { 378 // Toplevel Region. 379 if (!getExit()) 380 return true; 381 382 return contains(SubRegion->getEntry()) 383 && (contains(SubRegion->getExit()) || SubRegion->getExit() == getExit()); 384 } 385 386 /// @brief Check if the region contains an Instruction. 387 /// 388 /// @param Inst The Instruction that might be contained in this region. 389 /// @return True if the Instruction is contained in the region otherwise false. 390 bool contains(const Instruction *Inst) const { 391 return contains(Inst->getParent()); 392 } 393 394 /// @brief Check if the region contains a loop. 395 /// 396 /// @param L The loop that might be contained in this region. 397 /// @return True if the loop is contained in the region otherwise false. 398 /// In case a NULL pointer is passed to this function the result 399 /// is false, except for the region that describes the whole function. 400 /// In that case true is returned. 401 bool contains(const Loop *L) const; 402 403 /// @brief Get the outermost loop in the region that contains a loop. 404 /// 405 /// Find for a Loop L the outermost loop OuterL that is a parent loop of L 406 /// and is itself contained in the region. 407 /// 408 /// @param L The loop the lookup is started. 409 /// @return The outermost loop in the region, NULL if such a loop does not 410 /// exist or if the region describes the whole function. 411 Loop *outermostLoopInRegion(Loop *L) const; 412 413 /// @brief Get the outermost loop in the region that contains a basic block. 414 /// 415 /// Find for a basic block BB the outermost loop L that contains BB and is 416 /// itself contained in the region. 417 /// 418 /// @param LI A pointer to a LoopInfo analysis. 419 /// @param BB The basic block surrounded by the loop. 420 /// @return The outermost loop in the region, NULL if such a loop does not 421 /// exist or if the region describes the whole function. 422 Loop *outermostLoopInRegion(LoopInfo *LI, BasicBlock* BB) const; 423 424 /// @brief Get the subregion that starts at a BasicBlock 425 /// 426 /// @param BB The BasicBlock the subregion should start. 427 /// @return The Subregion if available, otherwise NULL. 428 Region* getSubRegionNode(BasicBlock *BB) const; 429 430 /// @brief Get the RegionNode for a BasicBlock 431 /// 432 /// @param BB The BasicBlock at which the RegionNode should start. 433 /// @return If available, the RegionNode that represents the subregion 434 /// starting at BB. If no subregion starts at BB, the RegionNode 435 /// representing BB. 436 RegionNode* getNode(BasicBlock *BB) const; 437 438 /// @brief Get the BasicBlock RegionNode for a BasicBlock 439 /// 440 /// @param BB The BasicBlock for which the RegionNode is requested. 441 /// @return The RegionNode representing the BB. 442 RegionNode* getBBNode(BasicBlock *BB) const; 443 444 /// @brief Add a new subregion to this Region. 445 /// 446 /// @param SubRegion The new subregion that will be added. 447 /// @param moveChildren Move the children of this region, that are also 448 /// contained in SubRegion into SubRegion. 449 void addSubRegion(Region *SubRegion, bool moveChildren = false); 450 451 /// @brief Remove a subregion from this Region. 452 /// 453 /// The subregion is not deleted, as it will probably be inserted into another 454 /// region. 455 /// @param SubRegion The SubRegion that will be removed. 456 Region *removeSubRegion(Region *SubRegion); 457 458 /// @brief Move all direct child nodes of this Region to another Region. 459 /// 460 /// @param To The Region the child nodes will be transferred to. 461 void transferChildrenTo(Region *To); 462 463 /// @brief Verify if the region is a correct region. 464 /// 465 /// Check if this is a correctly build Region. This is an expensive check, as 466 /// the complete CFG of the Region will be walked. 467 void verifyRegion() const; 468 469 /// @brief Clear the cache for BB RegionNodes. 470 /// 471 /// After calling this function the BasicBlock RegionNodes will be stored at 472 /// different memory locations. RegionNodes obtained before this function is 473 /// called are therefore not comparable to RegionNodes abtained afterwords. 474 void clearNodeCache(); 475 476 /// @name Subregion Iterators 477 /// 478 /// These iterators iterator over all subregions of this Region. 479 //@{ 480 typedef RegionSet::iterator iterator; 481 typedef RegionSet::const_iterator const_iterator; 482 483 iterator begin() { return children.begin(); } 484 iterator end() { return children.end(); } 485 486 const_iterator begin() const { return children.begin(); } 487 const_iterator end() const { return children.end(); } 488 //@} 489 490 /// @name BasicBlock Iterators 491 /// 492 /// These iterators iterate over all BasicBlocks that are contained in this 493 /// Region. The iterator also iterates over BasicBlocks that are elements of 494 /// a subregion of this Region. It is therefore called a flat iterator. 495 //@{ 496 template <bool IsConst> 497 class block_iterator_wrapper 498 : public df_iterator<typename conditional<IsConst, 499 const BasicBlock, 500 BasicBlock>::type*> { 501 typedef df_iterator<typename conditional<IsConst, 502 const BasicBlock, 503 BasicBlock>::type*> 504 super; 505 public: 506 typedef block_iterator_wrapper<IsConst> Self; 507 typedef typename super::pointer pointer; 508 509 // Construct the begin iterator. 510 block_iterator_wrapper(pointer Entry, pointer Exit) : super(df_begin(Entry)) 511 { 512 // Mark the exit of the region as visited, so that the children of the 513 // exit and the exit itself, i.e. the block outside the region will never 514 // be visited. 515 super::Visited.insert(Exit); 516 } 517 518 // Construct the end iterator. 519 block_iterator_wrapper() : super(df_end<pointer>((BasicBlock *)0)) {} 520 521 /*implicit*/ block_iterator_wrapper(super I) : super(I) {} 522 523 // FIXME: Even a const_iterator returns a non-const BasicBlock pointer. 524 // This was introduced for backwards compatibility, but should 525 // be removed as soon as all users are fixed. 526 BasicBlock *operator*() const { 527 return const_cast<BasicBlock*>(super::operator*()); 528 } 529 }; 530 531 typedef block_iterator_wrapper<false> block_iterator; 532 typedef block_iterator_wrapper<true> const_block_iterator; 533 534 block_iterator block_begin() { 535 return block_iterator(getEntry(), getExit()); 536 } 537 538 block_iterator block_end() { 539 return block_iterator(); 540 } 541 542 const_block_iterator block_begin() const { 543 return const_block_iterator(getEntry(), getExit()); 544 } 545 const_block_iterator block_end() const { 546 return const_block_iterator(); 547 } 548 //@} 549 550 /// @name Element Iterators 551 /// 552 /// These iterators iterate over all BasicBlock and subregion RegionNodes that 553 /// are direct children of this Region. It does not iterate over any 554 /// RegionNodes that are also element of a subregion of this Region. 555 //@{ 556 typedef df_iterator<RegionNode*, SmallPtrSet<RegionNode*, 8>, false, 557 GraphTraits<RegionNode*> > element_iterator; 558 559 typedef df_iterator<const RegionNode*, SmallPtrSet<const RegionNode*, 8>, 560 false, GraphTraits<const RegionNode*> > 561 const_element_iterator; 562 563 element_iterator element_begin(); 564 element_iterator element_end(); 565 566 const_element_iterator element_begin() const; 567 const_element_iterator element_end() const; 568 //@} 569 }; 570 571 //===----------------------------------------------------------------------===// 572 /// @brief Analysis that detects all canonical Regions. 573 /// 574 /// The RegionInfo pass detects all canonical regions in a function. The Regions 575 /// are connected using the parent relation. This builds a Program Structure 576 /// Tree. 577 class RegionInfo : public FunctionPass { 578 typedef DenseMap<BasicBlock*,BasicBlock*> BBtoBBMap; 579 typedef DenseMap<BasicBlock*, Region*> BBtoRegionMap; 580 typedef SmallPtrSet<Region*, 4> RegionSet; 581 582 RegionInfo(const RegionInfo &) LLVM_DELETED_FUNCTION; 583 const RegionInfo &operator=(const RegionInfo &) LLVM_DELETED_FUNCTION; 584 585 DominatorTree *DT; 586 PostDominatorTree *PDT; 587 DominanceFrontier *DF; 588 589 /// The top level region. 590 Region *TopLevelRegion; 591 592 /// Map every BB to the smallest region, that contains BB. 593 BBtoRegionMap BBtoRegion; 594 595 // isCommonDomFrontier - Returns true if BB is in the dominance frontier of 596 // entry, because it was inherited from exit. In the other case there is an 597 // edge going from entry to BB without passing exit. 598 bool isCommonDomFrontier(BasicBlock* BB, BasicBlock* entry, 599 BasicBlock* exit) const; 600 601 // isRegion - Check if entry and exit surround a valid region, based on 602 // dominance tree and dominance frontier. 603 bool isRegion(BasicBlock* entry, BasicBlock* exit) const; 604 605 // insertShortCut - Saves a shortcut pointing from entry to exit. 606 // This function may extend this shortcut if possible. 607 void insertShortCut(BasicBlock* entry, BasicBlock* exit, 608 BBtoBBMap* ShortCut) const; 609 610 // getNextPostDom - Returns the next BB that postdominates N, while skipping 611 // all post dominators that cannot finish a canonical region. 612 DomTreeNode *getNextPostDom(DomTreeNode* N, BBtoBBMap *ShortCut) const; 613 614 // isTrivialRegion - A region is trivial, if it contains only one BB. 615 bool isTrivialRegion(BasicBlock *entry, BasicBlock *exit) const; 616 617 // createRegion - Creates a single entry single exit region. 618 Region *createRegion(BasicBlock *entry, BasicBlock *exit); 619 620 // findRegionsWithEntry - Detect all regions starting with bb 'entry'. 621 void findRegionsWithEntry(BasicBlock *entry, BBtoBBMap *ShortCut); 622 623 // scanForRegions - Detects regions in F. 624 void scanForRegions(Function &F, BBtoBBMap *ShortCut); 625 626 // getTopMostParent - Get the top most parent with the same entry block. 627 Region *getTopMostParent(Region *region); 628 629 // buildRegionsTree - build the region hierarchy after all region detected. 630 void buildRegionsTree(DomTreeNode *N, Region *region); 631 632 // Calculate - detecte all regions in function and build the region tree. 633 void Calculate(Function& F); 634 635 void releaseMemory(); 636 637 // updateStatistics - Update statistic about created regions. 638 void updateStatistics(Region *R); 639 640 // isSimple - Check if a region is a simple region with exactly one entry 641 // edge and exactly one exit edge. 642 bool isSimple(Region* R) const; 643 644 public: 645 static char ID; 646 explicit RegionInfo(); 647 648 ~RegionInfo(); 649 650 /// @name FunctionPass interface 651 //@{ 652 virtual bool runOnFunction(Function &F); 653 virtual void getAnalysisUsage(AnalysisUsage &AU) const; 654 virtual void print(raw_ostream &OS, const Module *) const; 655 virtual void verifyAnalysis() const; 656 //@} 657 658 /// @brief Get the smallest region that contains a BasicBlock. 659 /// 660 /// @param BB The basic block. 661 /// @return The smallest region, that contains BB or NULL, if there is no 662 /// region containing BB. 663 Region *getRegionFor(BasicBlock *BB) const; 664 665 /// @brief Set the smallest region that surrounds a basic block. 666 /// 667 /// @param BB The basic block surrounded by a region. 668 /// @param R The smallest region that surrounds BB. 669 void setRegionFor(BasicBlock *BB, Region *R); 670 671 /// @brief A shortcut for getRegionFor(). 672 /// 673 /// @param BB The basic block. 674 /// @return The smallest region, that contains BB or NULL, if there is no 675 /// region containing BB. 676 Region *operator[](BasicBlock *BB) const; 677 678 /// @brief Return the exit of the maximal refined region, that starts at a 679 /// BasicBlock. 680 /// 681 /// @param BB The BasicBlock the refined region starts. 682 BasicBlock *getMaxRegionExit(BasicBlock *BB) const; 683 684 /// @brief Find the smallest region that contains two regions. 685 /// 686 /// @param A The first region. 687 /// @param B The second region. 688 /// @return The smallest region containing A and B. 689 Region *getCommonRegion(Region* A, Region *B) const; 690 691 /// @brief Find the smallest region that contains two basic blocks. 692 /// 693 /// @param A The first basic block. 694 /// @param B The second basic block. 695 /// @return The smallest region that contains A and B. 696 Region* getCommonRegion(BasicBlock* A, BasicBlock *B) const { 697 return getCommonRegion(getRegionFor(A), getRegionFor(B)); 698 } 699 700 /// @brief Find the smallest region that contains a set of regions. 701 /// 702 /// @param Regions A vector of regions. 703 /// @return The smallest region that contains all regions in Regions. 704 Region* getCommonRegion(SmallVectorImpl<Region*> &Regions) const; 705 706 /// @brief Find the smallest region that contains a set of basic blocks. 707 /// 708 /// @param BBs A vector of basic blocks. 709 /// @return The smallest region that contains all basic blocks in BBS. 710 Region* getCommonRegion(SmallVectorImpl<BasicBlock*> &BBs) const; 711 712 Region *getTopLevelRegion() const { 713 return TopLevelRegion; 714 } 715 716 /// @brief Update RegionInfo after a basic block was split. 717 /// 718 /// @param NewBB The basic block that was created before OldBB. 719 /// @param OldBB The old basic block. 720 void splitBlock(BasicBlock* NewBB, BasicBlock *OldBB); 721 722 /// @brief Clear the Node Cache for all Regions. 723 /// 724 /// @see Region::clearNodeCache() 725 void clearNodeCache() { 726 if (TopLevelRegion) 727 TopLevelRegion->clearNodeCache(); 728 } 729 }; 730 731 inline raw_ostream &operator<<(raw_ostream &OS, const RegionNode &Node) { 732 if (Node.isSubRegion()) 733 return OS << Node.getNodeAs<Region>()->getNameStr(); 734 else 735 return OS << Node.getNodeAs<BasicBlock>()->getName(); 736 } 737 } // End llvm namespace 738 #endif 739 740