Home | History | Annotate | Download | only in Scalar
      1 //===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements Loop Rotation Pass.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "loop-rotate"
     15 #include "llvm/Transforms/Scalar.h"
     16 #include "llvm/ADT/Statistic.h"
     17 #include "llvm/Analysis/CodeMetrics.h"
     18 #include "llvm/Analysis/InstructionSimplify.h"
     19 #include "llvm/Analysis/LoopPass.h"
     20 #include "llvm/Analysis/ScalarEvolution.h"
     21 #include "llvm/Analysis/TargetTransformInfo.h"
     22 #include "llvm/Analysis/ValueTracking.h"
     23 #include "llvm/IR/Function.h"
     24 #include "llvm/IR/IntrinsicInst.h"
     25 #include "llvm/Support/CFG.h"
     26 #include "llvm/Support/Debug.h"
     27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     28 #include "llvm/Transforms/Utils/Local.h"
     29 #include "llvm/Transforms/Utils/SSAUpdater.h"
     30 #include "llvm/Transforms/Utils/ValueMapper.h"
     31 using namespace llvm;
     32 
     33 #define MAX_HEADER_SIZE 16
     34 
     35 STATISTIC(NumRotated, "Number of loops rotated");
     36 namespace {
     37 
     38   class LoopRotate : public LoopPass {
     39   public:
     40     static char ID; // Pass ID, replacement for typeid
     41     LoopRotate() : LoopPass(ID) {
     42       initializeLoopRotatePass(*PassRegistry::getPassRegistry());
     43     }
     44 
     45     // LCSSA form makes instruction renaming easier.
     46     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     47       AU.addPreserved<DominatorTree>();
     48       AU.addRequired<LoopInfo>();
     49       AU.addPreserved<LoopInfo>();
     50       AU.addRequiredID(LoopSimplifyID);
     51       AU.addPreservedID(LoopSimplifyID);
     52       AU.addRequiredID(LCSSAID);
     53       AU.addPreservedID(LCSSAID);
     54       AU.addPreserved<ScalarEvolution>();
     55       AU.addRequired<TargetTransformInfo>();
     56     }
     57 
     58     bool runOnLoop(Loop *L, LPPassManager &LPM);
     59     bool simplifyLoopLatch(Loop *L);
     60     bool rotateLoop(Loop *L, bool SimplifiedLatch);
     61 
     62   private:
     63     LoopInfo *LI;
     64     const TargetTransformInfo *TTI;
     65   };
     66 }
     67 
     68 char LoopRotate::ID = 0;
     69 INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
     70 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
     71 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
     72 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
     73 INITIALIZE_PASS_DEPENDENCY(LCSSA)
     74 INITIALIZE_PASS_END(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
     75 
     76 Pass *llvm::createLoopRotatePass() { return new LoopRotate(); }
     77 
     78 /// Rotate Loop L as many times as possible. Return true if
     79 /// the loop is rotated at least once.
     80 bool LoopRotate::runOnLoop(Loop *L, LPPassManager &LPM) {
     81   LI = &getAnalysis<LoopInfo>();
     82   TTI = &getAnalysis<TargetTransformInfo>();
     83 
     84   // Simplify the loop latch before attempting to rotate the header
     85   // upward. Rotation may not be needed if the loop tail can be folded into the
     86   // loop exit.
     87   bool SimplifiedLatch = simplifyLoopLatch(L);
     88 
     89   // One loop can be rotated multiple times.
     90   bool MadeChange = false;
     91   while (rotateLoop(L, SimplifiedLatch)) {
     92     MadeChange = true;
     93     SimplifiedLatch = false;
     94   }
     95   return MadeChange;
     96 }
     97 
     98 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
     99 /// old header into the preheader.  If there were uses of the values produced by
    100 /// these instruction that were outside of the loop, we have to insert PHI nodes
    101 /// to merge the two values.  Do this now.
    102 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
    103                                             BasicBlock *OrigPreheader,
    104                                             ValueToValueMapTy &ValueMap) {
    105   // Remove PHI node entries that are no longer live.
    106   BasicBlock::iterator I, E = OrigHeader->end();
    107   for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
    108     PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
    109 
    110   // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
    111   // as necessary.
    112   SSAUpdater SSA;
    113   for (I = OrigHeader->begin(); I != E; ++I) {
    114     Value *OrigHeaderVal = I;
    115 
    116     // If there are no uses of the value (e.g. because it returns void), there
    117     // is nothing to rewrite.
    118     if (OrigHeaderVal->use_empty())
    119       continue;
    120 
    121     Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal];
    122 
    123     // The value now exits in two versions: the initial value in the preheader
    124     // and the loop "next" value in the original header.
    125     SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
    126     SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
    127     SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
    128 
    129     // Visit each use of the OrigHeader instruction.
    130     for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
    131          UE = OrigHeaderVal->use_end(); UI != UE; ) {
    132       // Grab the use before incrementing the iterator.
    133       Use &U = UI.getUse();
    134 
    135       // Increment the iterator before removing the use from the list.
    136       ++UI;
    137 
    138       // SSAUpdater can't handle a non-PHI use in the same block as an
    139       // earlier def. We can easily handle those cases manually.
    140       Instruction *UserInst = cast<Instruction>(U.getUser());
    141       if (!isa<PHINode>(UserInst)) {
    142         BasicBlock *UserBB = UserInst->getParent();
    143 
    144         // The original users in the OrigHeader are already using the
    145         // original definitions.
    146         if (UserBB == OrigHeader)
    147           continue;
    148 
    149         // Users in the OrigPreHeader need to use the value to which the
    150         // original definitions are mapped.
    151         if (UserBB == OrigPreheader) {
    152           U = OrigPreHeaderVal;
    153           continue;
    154         }
    155       }
    156 
    157       // Anything else can be handled by SSAUpdater.
    158       SSA.RewriteUse(U);
    159     }
    160   }
    161 }
    162 
    163 /// Determine whether the instructions in this range my be safely and cheaply
    164 /// speculated. This is not an important enough situation to develop complex
    165 /// heuristics. We handle a single arithmetic instruction along with any type
    166 /// conversions.
    167 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
    168                                   BasicBlock::iterator End) {
    169   bool seenIncrement = false;
    170   for (BasicBlock::iterator I = Begin; I != End; ++I) {
    171 
    172     if (!isSafeToSpeculativelyExecute(I))
    173       return false;
    174 
    175     if (isa<DbgInfoIntrinsic>(I))
    176       continue;
    177 
    178     switch (I->getOpcode()) {
    179     default:
    180       return false;
    181     case Instruction::GetElementPtr:
    182       // GEPs are cheap if all indices are constant.
    183       if (!cast<GEPOperator>(I)->hasAllConstantIndices())
    184         return false;
    185       // fall-thru to increment case
    186     case Instruction::Add:
    187     case Instruction::Sub:
    188     case Instruction::And:
    189     case Instruction::Or:
    190     case Instruction::Xor:
    191     case Instruction::Shl:
    192     case Instruction::LShr:
    193     case Instruction::AShr:
    194       if (seenIncrement)
    195         return false;
    196       seenIncrement = true;
    197       break;
    198     case Instruction::Trunc:
    199     case Instruction::ZExt:
    200     case Instruction::SExt:
    201       // ignore type conversions
    202       break;
    203     }
    204   }
    205   return true;
    206 }
    207 
    208 /// Fold the loop tail into the loop exit by speculating the loop tail
    209 /// instructions. Typically, this is a single post-increment. In the case of a
    210 /// simple 2-block loop, hoisting the increment can be much better than
    211 /// duplicating the entire loop header. In the cast of loops with early exits,
    212 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
    213 /// canonical form so downstream passes can handle it.
    214 ///
    215 /// I don't believe this invalidates SCEV.
    216 bool LoopRotate::simplifyLoopLatch(Loop *L) {
    217   BasicBlock *Latch = L->getLoopLatch();
    218   if (!Latch || Latch->hasAddressTaken())
    219     return false;
    220 
    221   BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
    222   if (!Jmp || !Jmp->isUnconditional())
    223     return false;
    224 
    225   BasicBlock *LastExit = Latch->getSinglePredecessor();
    226   if (!LastExit || !L->isLoopExiting(LastExit))
    227     return false;
    228 
    229   BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
    230   if (!BI)
    231     return false;
    232 
    233   if (!shouldSpeculateInstrs(Latch->begin(), Jmp))
    234     return false;
    235 
    236   DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
    237         << LastExit->getName() << "\n");
    238 
    239   // Hoist the instructions from Latch into LastExit.
    240   LastExit->getInstList().splice(BI, Latch->getInstList(), Latch->begin(), Jmp);
    241 
    242   unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1;
    243   BasicBlock *Header = Jmp->getSuccessor(0);
    244   assert(Header == L->getHeader() && "expected a backward branch");
    245 
    246   // Remove Latch from the CFG so that LastExit becomes the new Latch.
    247   BI->setSuccessor(FallThruPath, Header);
    248   Latch->replaceSuccessorsPhiUsesWith(LastExit);
    249   Jmp->eraseFromParent();
    250 
    251   // Nuke the Latch block.
    252   assert(Latch->empty() && "unable to evacuate Latch");
    253   LI->removeBlock(Latch);
    254   if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>())
    255     DT->eraseNode(Latch);
    256   Latch->eraseFromParent();
    257   return true;
    258 }
    259 
    260 /// Rotate loop LP. Return true if the loop is rotated.
    261 ///
    262 /// \param SimplifiedLatch is true if the latch was just folded into the final
    263 /// loop exit. In this case we may want to rotate even though the new latch is
    264 /// now an exiting branch. This rotation would have happened had the latch not
    265 /// been simplified. However, if SimplifiedLatch is false, then we avoid
    266 /// rotating loops in which the latch exits to avoid excessive or endless
    267 /// rotation. LoopRotate should be repeatable and converge to a canonical
    268 /// form. This property is satisfied because simplifying the loop latch can only
    269 /// happen once across multiple invocations of the LoopRotate pass.
    270 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
    271   // If the loop has only one block then there is not much to rotate.
    272   if (L->getBlocks().size() == 1)
    273     return false;
    274 
    275   BasicBlock *OrigHeader = L->getHeader();
    276   BasicBlock *OrigLatch = L->getLoopLatch();
    277 
    278   BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
    279   if (BI == 0 || BI->isUnconditional())
    280     return false;
    281 
    282   // If the loop header is not one of the loop exiting blocks then
    283   // either this loop is already rotated or it is not
    284   // suitable for loop rotation transformations.
    285   if (!L->isLoopExiting(OrigHeader))
    286     return false;
    287 
    288   // If the loop latch already contains a branch that leaves the loop then the
    289   // loop is already rotated.
    290   if (OrigLatch == 0)
    291     return false;
    292 
    293   // Rotate if either the loop latch does *not* exit the loop, or if the loop
    294   // latch was just simplified.
    295   if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch)
    296     return false;
    297 
    298   // Check size of original header and reject loop if it is very big or we can't
    299   // duplicate blocks inside it.
    300   {
    301     CodeMetrics Metrics;
    302     Metrics.analyzeBasicBlock(OrigHeader, *TTI);
    303     if (Metrics.notDuplicatable) {
    304       DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non duplicatable"
    305             << " instructions: "; L->dump());
    306       return false;
    307     }
    308     if (Metrics.NumInsts > MAX_HEADER_SIZE)
    309       return false;
    310   }
    311 
    312   // Now, this loop is suitable for rotation.
    313   BasicBlock *OrigPreheader = L->getLoopPreheader();
    314 
    315   // If the loop could not be converted to canonical form, it must have an
    316   // indirectbr in it, just give up.
    317   if (OrigPreheader == 0)
    318     return false;
    319 
    320   // Anything ScalarEvolution may know about this loop or the PHI nodes
    321   // in its header will soon be invalidated.
    322   if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
    323     SE->forgetLoop(L);
    324 
    325   DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
    326 
    327   // Find new Loop header. NewHeader is a Header's one and only successor
    328   // that is inside loop.  Header's other successor is outside the
    329   // loop.  Otherwise loop is not suitable for rotation.
    330   BasicBlock *Exit = BI->getSuccessor(0);
    331   BasicBlock *NewHeader = BI->getSuccessor(1);
    332   if (L->contains(Exit))
    333     std::swap(Exit, NewHeader);
    334   assert(NewHeader && "Unable to determine new loop header");
    335   assert(L->contains(NewHeader) && !L->contains(Exit) &&
    336          "Unable to determine loop header and exit blocks");
    337 
    338   // This code assumes that the new header has exactly one predecessor.
    339   // Remove any single-entry PHI nodes in it.
    340   assert(NewHeader->getSinglePredecessor() &&
    341          "New header doesn't have one pred!");
    342   FoldSingleEntryPHINodes(NewHeader);
    343 
    344   // Begin by walking OrigHeader and populating ValueMap with an entry for
    345   // each Instruction.
    346   BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
    347   ValueToValueMapTy ValueMap;
    348 
    349   // For PHI nodes, the value available in OldPreHeader is just the
    350   // incoming value from OldPreHeader.
    351   for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
    352     ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader);
    353 
    354   // For the rest of the instructions, either hoist to the OrigPreheader if
    355   // possible or create a clone in the OldPreHeader if not.
    356   TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator();
    357   while (I != E) {
    358     Instruction *Inst = I++;
    359 
    360     // If the instruction's operands are invariant and it doesn't read or write
    361     // memory, then it is safe to hoist.  Doing this doesn't change the order of
    362     // execution in the preheader, but does prevent the instruction from
    363     // executing in each iteration of the loop.  This means it is safe to hoist
    364     // something that might trap, but isn't safe to hoist something that reads
    365     // memory (without proving that the loop doesn't write).
    366     if (L->hasLoopInvariantOperands(Inst) &&
    367         !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() &&
    368         !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst) &&
    369         !isa<AllocaInst>(Inst)) {
    370       Inst->moveBefore(LoopEntryBranch);
    371       continue;
    372     }
    373 
    374     // Otherwise, create a duplicate of the instruction.
    375     Instruction *C = Inst->clone();
    376 
    377     // Eagerly remap the operands of the instruction.
    378     RemapInstruction(C, ValueMap,
    379                      RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
    380 
    381     // With the operands remapped, see if the instruction constant folds or is
    382     // otherwise simplifyable.  This commonly occurs because the entry from PHI
    383     // nodes allows icmps and other instructions to fold.
    384     Value *V = SimplifyInstruction(C);
    385     if (V && LI->replacementPreservesLCSSAForm(C, V)) {
    386       // If so, then delete the temporary instruction and stick the folded value
    387       // in the map.
    388       delete C;
    389       ValueMap[Inst] = V;
    390     } else {
    391       // Otherwise, stick the new instruction into the new block!
    392       C->setName(Inst->getName());
    393       C->insertBefore(LoopEntryBranch);
    394       ValueMap[Inst] = C;
    395     }
    396   }
    397 
    398   // Along with all the other instructions, we just cloned OrigHeader's
    399   // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
    400   // successors by duplicating their incoming values for OrigHeader.
    401   TerminatorInst *TI = OrigHeader->getTerminator();
    402   for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
    403     for (BasicBlock::iterator BI = TI->getSuccessor(i)->begin();
    404          PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
    405       PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
    406 
    407   // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
    408   // OrigPreHeader's old terminator (the original branch into the loop), and
    409   // remove the corresponding incoming values from the PHI nodes in OrigHeader.
    410   LoopEntryBranch->eraseFromParent();
    411 
    412   // If there were any uses of instructions in the duplicated block outside the
    413   // loop, update them, inserting PHI nodes as required
    414   RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap);
    415 
    416   // NewHeader is now the header of the loop.
    417   L->moveToHeader(NewHeader);
    418   assert(L->getHeader() == NewHeader && "Latch block is our new header");
    419 
    420 
    421   // At this point, we've finished our major CFG changes.  As part of cloning
    422   // the loop into the preheader we've simplified instructions and the
    423   // duplicated conditional branch may now be branching on a constant.  If it is
    424   // branching on a constant and if that constant means that we enter the loop,
    425   // then we fold away the cond branch to an uncond branch.  This simplifies the
    426   // loop in cases important for nested loops, and it also means we don't have
    427   // to split as many edges.
    428   BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
    429   assert(PHBI->isConditional() && "Should be clone of BI condbr!");
    430   if (!isa<ConstantInt>(PHBI->getCondition()) ||
    431       PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero())
    432           != NewHeader) {
    433     // The conditional branch can't be folded, handle the general case.
    434     // Update DominatorTree to reflect the CFG change we just made.  Then split
    435     // edges as necessary to preserve LoopSimplify form.
    436     if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
    437       // Everything that was dominated by the old loop header is now dominated
    438       // by the original loop preheader. Conceptually the header was merged
    439       // into the preheader, even though we reuse the actual block as a new
    440       // loop latch.
    441       DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader);
    442       SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
    443                                                    OrigHeaderNode->end());
    444       DomTreeNode *OrigPreheaderNode = DT->getNode(OrigPreheader);
    445       for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I)
    446         DT->changeImmediateDominator(HeaderChildren[I], OrigPreheaderNode);
    447 
    448       assert(DT->getNode(Exit)->getIDom() == OrigPreheaderNode);
    449       assert(DT->getNode(NewHeader)->getIDom() == OrigPreheaderNode);
    450 
    451       // Update OrigHeader to be dominated by the new header block.
    452       DT->changeImmediateDominator(OrigHeader, OrigLatch);
    453     }
    454 
    455     // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
    456     // thus is not a preheader anymore.
    457     // Split the edge to form a real preheader.
    458     BasicBlock *NewPH = SplitCriticalEdge(OrigPreheader, NewHeader, this);
    459     NewPH->setName(NewHeader->getName() + ".lr.ph");
    460 
    461     // Preserve canonical loop form, which means that 'Exit' should have only
    462     // one predecessor.
    463     BasicBlock *ExitSplit = SplitCriticalEdge(L->getLoopLatch(), Exit, this);
    464     ExitSplit->moveBefore(Exit);
    465   } else {
    466     // We can fold the conditional branch in the preheader, this makes things
    467     // simpler. The first step is to remove the extra edge to the Exit block.
    468     Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
    469     BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
    470     NewBI->setDebugLoc(PHBI->getDebugLoc());
    471     PHBI->eraseFromParent();
    472 
    473     // With our CFG finalized, update DomTree if it is available.
    474     if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
    475       // Update OrigHeader to be dominated by the new header block.
    476       DT->changeImmediateDominator(NewHeader, OrigPreheader);
    477       DT->changeImmediateDominator(OrigHeader, OrigLatch);
    478 
    479       // Brute force incremental dominator tree update. Call
    480       // findNearestCommonDominator on all CFG predecessors of each child of the
    481       // original header.
    482       DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader);
    483       SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
    484                                                    OrigHeaderNode->end());
    485       bool Changed;
    486       do {
    487         Changed = false;
    488         for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) {
    489           DomTreeNode *Node = HeaderChildren[I];
    490           BasicBlock *BB = Node->getBlock();
    491 
    492           pred_iterator PI = pred_begin(BB);
    493           BasicBlock *NearestDom = *PI;
    494           for (pred_iterator PE = pred_end(BB); PI != PE; ++PI)
    495             NearestDom = DT->findNearestCommonDominator(NearestDom, *PI);
    496 
    497           // Remember if this changes the DomTree.
    498           if (Node->getIDom()->getBlock() != NearestDom) {
    499             DT->changeImmediateDominator(BB, NearestDom);
    500             Changed = true;
    501           }
    502         }
    503 
    504       // If the dominator changed, this may have an effect on other
    505       // predecessors, continue until we reach a fixpoint.
    506       } while (Changed);
    507     }
    508   }
    509 
    510   assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
    511   assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
    512 
    513   // Now that the CFG and DomTree are in a consistent state again, try to merge
    514   // the OrigHeader block into OrigLatch.  This will succeed if they are
    515   // connected by an unconditional branch.  This is just a cleanup so the
    516   // emitted code isn't too gross in this common case.
    517   MergeBlockIntoPredecessor(OrigHeader, this);
    518 
    519   DEBUG(dbgs() << "LoopRotation: into "; L->dump());
    520 
    521   ++NumRotated;
    522   return true;
    523 }
    524