1 //===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements Loop Rotation Pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "loop-rotate" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/CodeMetrics.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/LoopPass.h" 20 #include "llvm/Analysis/ScalarEvolution.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/Support/CFG.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 28 #include "llvm/Transforms/Utils/Local.h" 29 #include "llvm/Transforms/Utils/SSAUpdater.h" 30 #include "llvm/Transforms/Utils/ValueMapper.h" 31 using namespace llvm; 32 33 #define MAX_HEADER_SIZE 16 34 35 STATISTIC(NumRotated, "Number of loops rotated"); 36 namespace { 37 38 class LoopRotate : public LoopPass { 39 public: 40 static char ID; // Pass ID, replacement for typeid 41 LoopRotate() : LoopPass(ID) { 42 initializeLoopRotatePass(*PassRegistry::getPassRegistry()); 43 } 44 45 // LCSSA form makes instruction renaming easier. 46 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 47 AU.addPreserved<DominatorTree>(); 48 AU.addRequired<LoopInfo>(); 49 AU.addPreserved<LoopInfo>(); 50 AU.addRequiredID(LoopSimplifyID); 51 AU.addPreservedID(LoopSimplifyID); 52 AU.addRequiredID(LCSSAID); 53 AU.addPreservedID(LCSSAID); 54 AU.addPreserved<ScalarEvolution>(); 55 AU.addRequired<TargetTransformInfo>(); 56 } 57 58 bool runOnLoop(Loop *L, LPPassManager &LPM); 59 bool simplifyLoopLatch(Loop *L); 60 bool rotateLoop(Loop *L, bool SimplifiedLatch); 61 62 private: 63 LoopInfo *LI; 64 const TargetTransformInfo *TTI; 65 }; 66 } 67 68 char LoopRotate::ID = 0; 69 INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false) 70 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 71 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 72 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 73 INITIALIZE_PASS_DEPENDENCY(LCSSA) 74 INITIALIZE_PASS_END(LoopRotate, "loop-rotate", "Rotate Loops", false, false) 75 76 Pass *llvm::createLoopRotatePass() { return new LoopRotate(); } 77 78 /// Rotate Loop L as many times as possible. Return true if 79 /// the loop is rotated at least once. 80 bool LoopRotate::runOnLoop(Loop *L, LPPassManager &LPM) { 81 LI = &getAnalysis<LoopInfo>(); 82 TTI = &getAnalysis<TargetTransformInfo>(); 83 84 // Simplify the loop latch before attempting to rotate the header 85 // upward. Rotation may not be needed if the loop tail can be folded into the 86 // loop exit. 87 bool SimplifiedLatch = simplifyLoopLatch(L); 88 89 // One loop can be rotated multiple times. 90 bool MadeChange = false; 91 while (rotateLoop(L, SimplifiedLatch)) { 92 MadeChange = true; 93 SimplifiedLatch = false; 94 } 95 return MadeChange; 96 } 97 98 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the 99 /// old header into the preheader. If there were uses of the values produced by 100 /// these instruction that were outside of the loop, we have to insert PHI nodes 101 /// to merge the two values. Do this now. 102 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader, 103 BasicBlock *OrigPreheader, 104 ValueToValueMapTy &ValueMap) { 105 // Remove PHI node entries that are no longer live. 106 BasicBlock::iterator I, E = OrigHeader->end(); 107 for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I) 108 PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader)); 109 110 // Now fix up users of the instructions in OrigHeader, inserting PHI nodes 111 // as necessary. 112 SSAUpdater SSA; 113 for (I = OrigHeader->begin(); I != E; ++I) { 114 Value *OrigHeaderVal = I; 115 116 // If there are no uses of the value (e.g. because it returns void), there 117 // is nothing to rewrite. 118 if (OrigHeaderVal->use_empty()) 119 continue; 120 121 Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal]; 122 123 // The value now exits in two versions: the initial value in the preheader 124 // and the loop "next" value in the original header. 125 SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName()); 126 SSA.AddAvailableValue(OrigHeader, OrigHeaderVal); 127 SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal); 128 129 // Visit each use of the OrigHeader instruction. 130 for (Value::use_iterator UI = OrigHeaderVal->use_begin(), 131 UE = OrigHeaderVal->use_end(); UI != UE; ) { 132 // Grab the use before incrementing the iterator. 133 Use &U = UI.getUse(); 134 135 // Increment the iterator before removing the use from the list. 136 ++UI; 137 138 // SSAUpdater can't handle a non-PHI use in the same block as an 139 // earlier def. We can easily handle those cases manually. 140 Instruction *UserInst = cast<Instruction>(U.getUser()); 141 if (!isa<PHINode>(UserInst)) { 142 BasicBlock *UserBB = UserInst->getParent(); 143 144 // The original users in the OrigHeader are already using the 145 // original definitions. 146 if (UserBB == OrigHeader) 147 continue; 148 149 // Users in the OrigPreHeader need to use the value to which the 150 // original definitions are mapped. 151 if (UserBB == OrigPreheader) { 152 U = OrigPreHeaderVal; 153 continue; 154 } 155 } 156 157 // Anything else can be handled by SSAUpdater. 158 SSA.RewriteUse(U); 159 } 160 } 161 } 162 163 /// Determine whether the instructions in this range my be safely and cheaply 164 /// speculated. This is not an important enough situation to develop complex 165 /// heuristics. We handle a single arithmetic instruction along with any type 166 /// conversions. 167 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin, 168 BasicBlock::iterator End) { 169 bool seenIncrement = false; 170 for (BasicBlock::iterator I = Begin; I != End; ++I) { 171 172 if (!isSafeToSpeculativelyExecute(I)) 173 return false; 174 175 if (isa<DbgInfoIntrinsic>(I)) 176 continue; 177 178 switch (I->getOpcode()) { 179 default: 180 return false; 181 case Instruction::GetElementPtr: 182 // GEPs are cheap if all indices are constant. 183 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 184 return false; 185 // fall-thru to increment case 186 case Instruction::Add: 187 case Instruction::Sub: 188 case Instruction::And: 189 case Instruction::Or: 190 case Instruction::Xor: 191 case Instruction::Shl: 192 case Instruction::LShr: 193 case Instruction::AShr: 194 if (seenIncrement) 195 return false; 196 seenIncrement = true; 197 break; 198 case Instruction::Trunc: 199 case Instruction::ZExt: 200 case Instruction::SExt: 201 // ignore type conversions 202 break; 203 } 204 } 205 return true; 206 } 207 208 /// Fold the loop tail into the loop exit by speculating the loop tail 209 /// instructions. Typically, this is a single post-increment. In the case of a 210 /// simple 2-block loop, hoisting the increment can be much better than 211 /// duplicating the entire loop header. In the cast of loops with early exits, 212 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in 213 /// canonical form so downstream passes can handle it. 214 /// 215 /// I don't believe this invalidates SCEV. 216 bool LoopRotate::simplifyLoopLatch(Loop *L) { 217 BasicBlock *Latch = L->getLoopLatch(); 218 if (!Latch || Latch->hasAddressTaken()) 219 return false; 220 221 BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator()); 222 if (!Jmp || !Jmp->isUnconditional()) 223 return false; 224 225 BasicBlock *LastExit = Latch->getSinglePredecessor(); 226 if (!LastExit || !L->isLoopExiting(LastExit)) 227 return false; 228 229 BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator()); 230 if (!BI) 231 return false; 232 233 if (!shouldSpeculateInstrs(Latch->begin(), Jmp)) 234 return false; 235 236 DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into " 237 << LastExit->getName() << "\n"); 238 239 // Hoist the instructions from Latch into LastExit. 240 LastExit->getInstList().splice(BI, Latch->getInstList(), Latch->begin(), Jmp); 241 242 unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1; 243 BasicBlock *Header = Jmp->getSuccessor(0); 244 assert(Header == L->getHeader() && "expected a backward branch"); 245 246 // Remove Latch from the CFG so that LastExit becomes the new Latch. 247 BI->setSuccessor(FallThruPath, Header); 248 Latch->replaceSuccessorsPhiUsesWith(LastExit); 249 Jmp->eraseFromParent(); 250 251 // Nuke the Latch block. 252 assert(Latch->empty() && "unable to evacuate Latch"); 253 LI->removeBlock(Latch); 254 if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) 255 DT->eraseNode(Latch); 256 Latch->eraseFromParent(); 257 return true; 258 } 259 260 /// Rotate loop LP. Return true if the loop is rotated. 261 /// 262 /// \param SimplifiedLatch is true if the latch was just folded into the final 263 /// loop exit. In this case we may want to rotate even though the new latch is 264 /// now an exiting branch. This rotation would have happened had the latch not 265 /// been simplified. However, if SimplifiedLatch is false, then we avoid 266 /// rotating loops in which the latch exits to avoid excessive or endless 267 /// rotation. LoopRotate should be repeatable and converge to a canonical 268 /// form. This property is satisfied because simplifying the loop latch can only 269 /// happen once across multiple invocations of the LoopRotate pass. 270 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) { 271 // If the loop has only one block then there is not much to rotate. 272 if (L->getBlocks().size() == 1) 273 return false; 274 275 BasicBlock *OrigHeader = L->getHeader(); 276 BasicBlock *OrigLatch = L->getLoopLatch(); 277 278 BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator()); 279 if (BI == 0 || BI->isUnconditional()) 280 return false; 281 282 // If the loop header is not one of the loop exiting blocks then 283 // either this loop is already rotated or it is not 284 // suitable for loop rotation transformations. 285 if (!L->isLoopExiting(OrigHeader)) 286 return false; 287 288 // If the loop latch already contains a branch that leaves the loop then the 289 // loop is already rotated. 290 if (OrigLatch == 0) 291 return false; 292 293 // Rotate if either the loop latch does *not* exit the loop, or if the loop 294 // latch was just simplified. 295 if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch) 296 return false; 297 298 // Check size of original header and reject loop if it is very big or we can't 299 // duplicate blocks inside it. 300 { 301 CodeMetrics Metrics; 302 Metrics.analyzeBasicBlock(OrigHeader, *TTI); 303 if (Metrics.notDuplicatable) { 304 DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non duplicatable" 305 << " instructions: "; L->dump()); 306 return false; 307 } 308 if (Metrics.NumInsts > MAX_HEADER_SIZE) 309 return false; 310 } 311 312 // Now, this loop is suitable for rotation. 313 BasicBlock *OrigPreheader = L->getLoopPreheader(); 314 315 // If the loop could not be converted to canonical form, it must have an 316 // indirectbr in it, just give up. 317 if (OrigPreheader == 0) 318 return false; 319 320 // Anything ScalarEvolution may know about this loop or the PHI nodes 321 // in its header will soon be invalidated. 322 if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>()) 323 SE->forgetLoop(L); 324 325 DEBUG(dbgs() << "LoopRotation: rotating "; L->dump()); 326 327 // Find new Loop header. NewHeader is a Header's one and only successor 328 // that is inside loop. Header's other successor is outside the 329 // loop. Otherwise loop is not suitable for rotation. 330 BasicBlock *Exit = BI->getSuccessor(0); 331 BasicBlock *NewHeader = BI->getSuccessor(1); 332 if (L->contains(Exit)) 333 std::swap(Exit, NewHeader); 334 assert(NewHeader && "Unable to determine new loop header"); 335 assert(L->contains(NewHeader) && !L->contains(Exit) && 336 "Unable to determine loop header and exit blocks"); 337 338 // This code assumes that the new header has exactly one predecessor. 339 // Remove any single-entry PHI nodes in it. 340 assert(NewHeader->getSinglePredecessor() && 341 "New header doesn't have one pred!"); 342 FoldSingleEntryPHINodes(NewHeader); 343 344 // Begin by walking OrigHeader and populating ValueMap with an entry for 345 // each Instruction. 346 BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end(); 347 ValueToValueMapTy ValueMap; 348 349 // For PHI nodes, the value available in OldPreHeader is just the 350 // incoming value from OldPreHeader. 351 for (; PHINode *PN = dyn_cast<PHINode>(I); ++I) 352 ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader); 353 354 // For the rest of the instructions, either hoist to the OrigPreheader if 355 // possible or create a clone in the OldPreHeader if not. 356 TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator(); 357 while (I != E) { 358 Instruction *Inst = I++; 359 360 // If the instruction's operands are invariant and it doesn't read or write 361 // memory, then it is safe to hoist. Doing this doesn't change the order of 362 // execution in the preheader, but does prevent the instruction from 363 // executing in each iteration of the loop. This means it is safe to hoist 364 // something that might trap, but isn't safe to hoist something that reads 365 // memory (without proving that the loop doesn't write). 366 if (L->hasLoopInvariantOperands(Inst) && 367 !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() && 368 !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst) && 369 !isa<AllocaInst>(Inst)) { 370 Inst->moveBefore(LoopEntryBranch); 371 continue; 372 } 373 374 // Otherwise, create a duplicate of the instruction. 375 Instruction *C = Inst->clone(); 376 377 // Eagerly remap the operands of the instruction. 378 RemapInstruction(C, ValueMap, 379 RF_NoModuleLevelChanges|RF_IgnoreMissingEntries); 380 381 // With the operands remapped, see if the instruction constant folds or is 382 // otherwise simplifyable. This commonly occurs because the entry from PHI 383 // nodes allows icmps and other instructions to fold. 384 Value *V = SimplifyInstruction(C); 385 if (V && LI->replacementPreservesLCSSAForm(C, V)) { 386 // If so, then delete the temporary instruction and stick the folded value 387 // in the map. 388 delete C; 389 ValueMap[Inst] = V; 390 } else { 391 // Otherwise, stick the new instruction into the new block! 392 C->setName(Inst->getName()); 393 C->insertBefore(LoopEntryBranch); 394 ValueMap[Inst] = C; 395 } 396 } 397 398 // Along with all the other instructions, we just cloned OrigHeader's 399 // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's 400 // successors by duplicating their incoming values for OrigHeader. 401 TerminatorInst *TI = OrigHeader->getTerminator(); 402 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 403 for (BasicBlock::iterator BI = TI->getSuccessor(i)->begin(); 404 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 405 PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader); 406 407 // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove 408 // OrigPreHeader's old terminator (the original branch into the loop), and 409 // remove the corresponding incoming values from the PHI nodes in OrigHeader. 410 LoopEntryBranch->eraseFromParent(); 411 412 // If there were any uses of instructions in the duplicated block outside the 413 // loop, update them, inserting PHI nodes as required 414 RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap); 415 416 // NewHeader is now the header of the loop. 417 L->moveToHeader(NewHeader); 418 assert(L->getHeader() == NewHeader && "Latch block is our new header"); 419 420 421 // At this point, we've finished our major CFG changes. As part of cloning 422 // the loop into the preheader we've simplified instructions and the 423 // duplicated conditional branch may now be branching on a constant. If it is 424 // branching on a constant and if that constant means that we enter the loop, 425 // then we fold away the cond branch to an uncond branch. This simplifies the 426 // loop in cases important for nested loops, and it also means we don't have 427 // to split as many edges. 428 BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator()); 429 assert(PHBI->isConditional() && "Should be clone of BI condbr!"); 430 if (!isa<ConstantInt>(PHBI->getCondition()) || 431 PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) 432 != NewHeader) { 433 // The conditional branch can't be folded, handle the general case. 434 // Update DominatorTree to reflect the CFG change we just made. Then split 435 // edges as necessary to preserve LoopSimplify form. 436 if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) { 437 // Everything that was dominated by the old loop header is now dominated 438 // by the original loop preheader. Conceptually the header was merged 439 // into the preheader, even though we reuse the actual block as a new 440 // loop latch. 441 DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader); 442 SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(), 443 OrigHeaderNode->end()); 444 DomTreeNode *OrigPreheaderNode = DT->getNode(OrigPreheader); 445 for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) 446 DT->changeImmediateDominator(HeaderChildren[I], OrigPreheaderNode); 447 448 assert(DT->getNode(Exit)->getIDom() == OrigPreheaderNode); 449 assert(DT->getNode(NewHeader)->getIDom() == OrigPreheaderNode); 450 451 // Update OrigHeader to be dominated by the new header block. 452 DT->changeImmediateDominator(OrigHeader, OrigLatch); 453 } 454 455 // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and 456 // thus is not a preheader anymore. 457 // Split the edge to form a real preheader. 458 BasicBlock *NewPH = SplitCriticalEdge(OrigPreheader, NewHeader, this); 459 NewPH->setName(NewHeader->getName() + ".lr.ph"); 460 461 // Preserve canonical loop form, which means that 'Exit' should have only 462 // one predecessor. 463 BasicBlock *ExitSplit = SplitCriticalEdge(L->getLoopLatch(), Exit, this); 464 ExitSplit->moveBefore(Exit); 465 } else { 466 // We can fold the conditional branch in the preheader, this makes things 467 // simpler. The first step is to remove the extra edge to the Exit block. 468 Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/); 469 BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI); 470 NewBI->setDebugLoc(PHBI->getDebugLoc()); 471 PHBI->eraseFromParent(); 472 473 // With our CFG finalized, update DomTree if it is available. 474 if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) { 475 // Update OrigHeader to be dominated by the new header block. 476 DT->changeImmediateDominator(NewHeader, OrigPreheader); 477 DT->changeImmediateDominator(OrigHeader, OrigLatch); 478 479 // Brute force incremental dominator tree update. Call 480 // findNearestCommonDominator on all CFG predecessors of each child of the 481 // original header. 482 DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader); 483 SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(), 484 OrigHeaderNode->end()); 485 bool Changed; 486 do { 487 Changed = false; 488 for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) { 489 DomTreeNode *Node = HeaderChildren[I]; 490 BasicBlock *BB = Node->getBlock(); 491 492 pred_iterator PI = pred_begin(BB); 493 BasicBlock *NearestDom = *PI; 494 for (pred_iterator PE = pred_end(BB); PI != PE; ++PI) 495 NearestDom = DT->findNearestCommonDominator(NearestDom, *PI); 496 497 // Remember if this changes the DomTree. 498 if (Node->getIDom()->getBlock() != NearestDom) { 499 DT->changeImmediateDominator(BB, NearestDom); 500 Changed = true; 501 } 502 } 503 504 // If the dominator changed, this may have an effect on other 505 // predecessors, continue until we reach a fixpoint. 506 } while (Changed); 507 } 508 } 509 510 assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation"); 511 assert(L->getLoopLatch() && "Invalid loop latch after loop rotation"); 512 513 // Now that the CFG and DomTree are in a consistent state again, try to merge 514 // the OrigHeader block into OrigLatch. This will succeed if they are 515 // connected by an unconditional branch. This is just a cleanup so the 516 // emitted code isn't too gross in this common case. 517 MergeBlockIntoPredecessor(OrigHeader, this); 518 519 DEBUG(dbgs() << "LoopRotation: into "; L->dump()); 520 521 ++NumRotated; 522 return true; 523 } 524