Home | History | Annotate | Download | only in platform
      1 /*
      2  * Copyright (C) 2006, 2008 Apple Inc. All rights reserved.
      3  * Copyright (C) 2009 Google Inc. All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  * 2. Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in the
     12  *    documentation and/or other materials provided with the distribution.
     13  *
     14  * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
     15  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     17  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE COMPUTER, INC. OR
     18  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     19  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     20  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     21  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
     22  * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     24  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     25  */
     26 
     27 #include "config.h"
     28 #include "platform/Timer.h"
     29 
     30 #include "platform/PlatformThreadData.h"
     31 #include "platform/ThreadTimers.h"
     32 #include "wtf/CurrentTime.h"
     33 #include "wtf/HashSet.h"
     34 #include <limits.h>
     35 #include <math.h>
     36 #include <limits>
     37 
     38 using namespace std;
     39 
     40 namespace WebCore {
     41 
     42 class TimerHeapReference;
     43 
     44 // Timers are stored in a heap data structure, used to implement a priority queue.
     45 // This allows us to efficiently determine which timer needs to fire the soonest.
     46 // Then we set a single shared system timer to fire at that time.
     47 //
     48 // When a timer's "next fire time" changes, we need to move it around in the priority queue.
     49 static Vector<TimerBase*>& threadGlobalTimerHeap()
     50 {
     51     return PlatformThreadData::current().threadTimers().timerHeap();
     52 }
     53 // ----------------
     54 
     55 class TimerHeapPointer {
     56 public:
     57     TimerHeapPointer(TimerBase** pointer) : m_pointer(pointer) { }
     58     TimerHeapReference operator*() const;
     59     TimerBase* operator->() const { return *m_pointer; }
     60 private:
     61     TimerBase** m_pointer;
     62 };
     63 
     64 class TimerHeapReference {
     65 public:
     66     TimerHeapReference(TimerBase*& reference) : m_reference(reference) { }
     67     operator TimerBase*() const { return m_reference; }
     68     TimerHeapPointer operator&() const { return &m_reference; }
     69     TimerHeapReference& operator=(TimerBase*);
     70     TimerHeapReference& operator=(TimerHeapReference);
     71 private:
     72     TimerBase*& m_reference;
     73 };
     74 
     75 inline TimerHeapReference TimerHeapPointer::operator*() const
     76 {
     77     return *m_pointer;
     78 }
     79 
     80 inline TimerHeapReference& TimerHeapReference::operator=(TimerBase* timer)
     81 {
     82     m_reference = timer;
     83     Vector<TimerBase*>& heap = timer->timerHeap();
     84     if (&m_reference >= heap.data() && &m_reference < heap.data() + heap.size())
     85         timer->m_heapIndex = &m_reference - heap.data();
     86     return *this;
     87 }
     88 
     89 inline TimerHeapReference& TimerHeapReference::operator=(TimerHeapReference b)
     90 {
     91     TimerBase* timer = b;
     92     return *this = timer;
     93 }
     94 
     95 inline void swap(TimerHeapReference a, TimerHeapReference b)
     96 {
     97     TimerBase* timerA = a;
     98     TimerBase* timerB = b;
     99 
    100     // Invoke the assignment operator, since that takes care of updating m_heapIndex.
    101     a = timerB;
    102     b = timerA;
    103 }
    104 
    105 // ----------------
    106 
    107 // Class to represent iterators in the heap when calling the standard library heap algorithms.
    108 // Uses a custom pointer and reference type that update indices for pointers in the heap.
    109 class TimerHeapIterator : public iterator<random_access_iterator_tag, TimerBase*, ptrdiff_t, TimerHeapPointer, TimerHeapReference> {
    110 public:
    111     explicit TimerHeapIterator(TimerBase** pointer) : m_pointer(pointer) { checkConsistency(); }
    112 
    113     TimerHeapIterator& operator++() { checkConsistency(); ++m_pointer; checkConsistency(); return *this; }
    114     TimerHeapIterator operator++(int) { checkConsistency(1); return TimerHeapIterator(m_pointer++); }
    115 
    116     TimerHeapIterator& operator--() { checkConsistency(); --m_pointer; checkConsistency(); return *this; }
    117     TimerHeapIterator operator--(int) { checkConsistency(-1); return TimerHeapIterator(m_pointer--); }
    118 
    119     TimerHeapIterator& operator+=(ptrdiff_t i) { checkConsistency(); m_pointer += i; checkConsistency(); return *this; }
    120     TimerHeapIterator& operator-=(ptrdiff_t i) { checkConsistency(); m_pointer -= i; checkConsistency(); return *this; }
    121 
    122     TimerHeapReference operator*() const { return TimerHeapReference(*m_pointer); }
    123     TimerHeapReference operator[](ptrdiff_t i) const { return TimerHeapReference(m_pointer[i]); }
    124     TimerBase* operator->() const { return *m_pointer; }
    125 
    126 private:
    127     void checkConsistency(ptrdiff_t offset = 0) const
    128     {
    129         ASSERT(m_pointer >= threadGlobalTimerHeap().data());
    130         ASSERT(m_pointer <= threadGlobalTimerHeap().data() + threadGlobalTimerHeap().size());
    131         ASSERT_UNUSED(offset, m_pointer + offset >= threadGlobalTimerHeap().data());
    132         ASSERT_UNUSED(offset, m_pointer + offset <= threadGlobalTimerHeap().data() + threadGlobalTimerHeap().size());
    133     }
    134 
    135     friend bool operator==(TimerHeapIterator, TimerHeapIterator);
    136     friend bool operator!=(TimerHeapIterator, TimerHeapIterator);
    137     friend bool operator<(TimerHeapIterator, TimerHeapIterator);
    138     friend bool operator>(TimerHeapIterator, TimerHeapIterator);
    139     friend bool operator<=(TimerHeapIterator, TimerHeapIterator);
    140     friend bool operator>=(TimerHeapIterator, TimerHeapIterator);
    141 
    142     friend TimerHeapIterator operator+(TimerHeapIterator, size_t);
    143     friend TimerHeapIterator operator+(size_t, TimerHeapIterator);
    144 
    145     friend TimerHeapIterator operator-(TimerHeapIterator, size_t);
    146     friend ptrdiff_t operator-(TimerHeapIterator, TimerHeapIterator);
    147 
    148     TimerBase** m_pointer;
    149 };
    150 
    151 inline bool operator==(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer == b.m_pointer; }
    152 inline bool operator!=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer != b.m_pointer; }
    153 inline bool operator<(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer < b.m_pointer; }
    154 inline bool operator>(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer > b.m_pointer; }
    155 inline bool operator<=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer <= b.m_pointer; }
    156 inline bool operator>=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer >= b.m_pointer; }
    157 
    158 inline TimerHeapIterator operator+(TimerHeapIterator a, size_t b) { return TimerHeapIterator(a.m_pointer + b); }
    159 inline TimerHeapIterator operator+(size_t a, TimerHeapIterator b) { return TimerHeapIterator(a + b.m_pointer); }
    160 
    161 inline TimerHeapIterator operator-(TimerHeapIterator a, size_t b) { return TimerHeapIterator(a.m_pointer - b); }
    162 inline ptrdiff_t operator-(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer - b.m_pointer; }
    163 
    164 // ----------------
    165 
    166 class TimerHeapLessThanFunction {
    167 public:
    168     bool operator()(const TimerBase*, const TimerBase*) const;
    169 };
    170 
    171 inline bool TimerHeapLessThanFunction::operator()(const TimerBase* a, const TimerBase* b) const
    172 {
    173     // The comparisons below are "backwards" because the heap puts the largest
    174     // element first and we want the lowest time to be the first one in the heap.
    175     double aFireTime = a->m_nextFireTime;
    176     double bFireTime = b->m_nextFireTime;
    177     if (bFireTime != aFireTime)
    178         return bFireTime < aFireTime;
    179 
    180     // We need to look at the difference of the insertion orders instead of comparing the two
    181     // outright in case of overflow.
    182     unsigned difference = a->m_heapInsertionOrder - b->m_heapInsertionOrder;
    183     return difference < numeric_limits<unsigned>::max() / 2;
    184 }
    185 
    186 // ----------------
    187 
    188 TimerBase::TimerBase()
    189     : m_nextFireTime(0)
    190     , m_unalignedNextFireTime(0)
    191     , m_repeatInterval(0)
    192     , m_heapIndex(-1)
    193     , m_cachedThreadGlobalTimerHeap(0)
    194 #ifndef NDEBUG
    195     , m_thread(currentThread())
    196 #endif
    197 {
    198 }
    199 
    200 TimerBase::~TimerBase()
    201 {
    202     stop();
    203     ASSERT(!inHeap());
    204 }
    205 
    206 void TimerBase::start(double nextFireInterval, double repeatInterval)
    207 {
    208     ASSERT(m_thread == currentThread());
    209 
    210     m_repeatInterval = repeatInterval;
    211     setNextFireTime(monotonicallyIncreasingTime() + nextFireInterval);
    212 }
    213 
    214 void TimerBase::stop()
    215 {
    216     ASSERT(m_thread == currentThread());
    217 
    218     m_repeatInterval = 0;
    219     setNextFireTime(0);
    220 
    221     ASSERT(m_nextFireTime == 0);
    222     ASSERT(m_repeatInterval == 0);
    223     ASSERT(!inHeap());
    224 }
    225 
    226 double TimerBase::nextFireInterval() const
    227 {
    228     ASSERT(isActive());
    229     double current = monotonicallyIncreasingTime();
    230     if (m_nextFireTime < current)
    231         return 0;
    232     return m_nextFireTime - current;
    233 }
    234 
    235 inline void TimerBase::checkHeapIndex() const
    236 {
    237     ASSERT(timerHeap() == threadGlobalTimerHeap());
    238     ASSERT(!timerHeap().isEmpty());
    239     ASSERT(m_heapIndex >= 0);
    240     ASSERT(m_heapIndex < static_cast<int>(timerHeap().size()));
    241     ASSERT(timerHeap()[m_heapIndex] == this);
    242 }
    243 
    244 inline void TimerBase::checkConsistency() const
    245 {
    246     // Timers should be in the heap if and only if they have a non-zero next fire time.
    247     ASSERT(inHeap() == (m_nextFireTime != 0));
    248     if (inHeap())
    249         checkHeapIndex();
    250 }
    251 
    252 void TimerBase::heapDecreaseKey()
    253 {
    254     ASSERT(m_nextFireTime != 0);
    255     checkHeapIndex();
    256     TimerBase** heapData = timerHeap().data();
    257     push_heap(TimerHeapIterator(heapData), TimerHeapIterator(heapData + m_heapIndex + 1), TimerHeapLessThanFunction());
    258     checkHeapIndex();
    259 }
    260 
    261 inline void TimerBase::heapDelete()
    262 {
    263     ASSERT(m_nextFireTime == 0);
    264     heapPop();
    265     timerHeap().removeLast();
    266     m_heapIndex = -1;
    267 }
    268 
    269 void TimerBase::heapDeleteMin()
    270 {
    271     ASSERT(m_nextFireTime == 0);
    272     heapPopMin();
    273     timerHeap().removeLast();
    274     m_heapIndex = -1;
    275 }
    276 
    277 inline void TimerBase::heapIncreaseKey()
    278 {
    279     ASSERT(m_nextFireTime != 0);
    280     heapPop();
    281     heapDecreaseKey();
    282 }
    283 
    284 inline void TimerBase::heapInsert()
    285 {
    286     ASSERT(!inHeap());
    287     timerHeap().append(this);
    288     m_heapIndex = timerHeap().size() - 1;
    289     heapDecreaseKey();
    290 }
    291 
    292 inline void TimerBase::heapPop()
    293 {
    294     // Temporarily force this timer to have the minimum key so we can pop it.
    295     double fireTime = m_nextFireTime;
    296     m_nextFireTime = -numeric_limits<double>::infinity();
    297     heapDecreaseKey();
    298     heapPopMin();
    299     m_nextFireTime = fireTime;
    300 }
    301 
    302 void TimerBase::heapPopMin()
    303 {
    304     ASSERT(this == timerHeap().first());
    305     checkHeapIndex();
    306     Vector<TimerBase*>& heap = timerHeap();
    307     TimerBase** heapData = heap.data();
    308     pop_heap(TimerHeapIterator(heapData), TimerHeapIterator(heapData + heap.size()), TimerHeapLessThanFunction());
    309     checkHeapIndex();
    310     ASSERT(this == timerHeap().last());
    311 }
    312 
    313 static inline bool parentHeapPropertyHolds(const TimerBase* current, const Vector<TimerBase*>& heap, unsigned currentIndex)
    314 {
    315     if (!currentIndex)
    316         return true;
    317     unsigned parentIndex = (currentIndex - 1) / 2;
    318     TimerHeapLessThanFunction compareHeapPosition;
    319     return compareHeapPosition(current, heap[parentIndex]);
    320 }
    321 
    322 static inline bool childHeapPropertyHolds(const TimerBase* current, const Vector<TimerBase*>& heap, unsigned childIndex)
    323 {
    324     if (childIndex >= heap.size())
    325         return true;
    326     TimerHeapLessThanFunction compareHeapPosition;
    327     return compareHeapPosition(heap[childIndex], current);
    328 }
    329 
    330 bool TimerBase::hasValidHeapPosition() const
    331 {
    332     ASSERT(m_nextFireTime);
    333     if (!inHeap())
    334         return false;
    335     // Check if the heap property still holds with the new fire time. If it does we don't need to do anything.
    336     // This assumes that the STL heap is a standard binary heap. In an unlikely event it is not, the assertions
    337     // in updateHeapIfNeeded() will get hit.
    338     const Vector<TimerBase*>& heap = timerHeap();
    339     if (!parentHeapPropertyHolds(this, heap, m_heapIndex))
    340         return false;
    341     unsigned childIndex1 = 2 * m_heapIndex + 1;
    342     unsigned childIndex2 = childIndex1 + 1;
    343     return childHeapPropertyHolds(this, heap, childIndex1) && childHeapPropertyHolds(this, heap, childIndex2);
    344 }
    345 
    346 void TimerBase::updateHeapIfNeeded(double oldTime)
    347 {
    348     if (m_nextFireTime && hasValidHeapPosition())
    349         return;
    350 #ifndef NDEBUG
    351     int oldHeapIndex = m_heapIndex;
    352 #endif
    353     if (!oldTime)
    354         heapInsert();
    355     else if (!m_nextFireTime)
    356         heapDelete();
    357     else if (m_nextFireTime < oldTime)
    358         heapDecreaseKey();
    359     else
    360         heapIncreaseKey();
    361     ASSERT(m_heapIndex != oldHeapIndex);
    362     ASSERT(!inHeap() || hasValidHeapPosition());
    363 }
    364 
    365 void TimerBase::setNextFireTime(double newUnalignedTime)
    366 {
    367     ASSERT(m_thread == currentThread());
    368 
    369     if (m_unalignedNextFireTime != newUnalignedTime)
    370         m_unalignedNextFireTime = newUnalignedTime;
    371 
    372     // Accessing thread global data is slow. Cache the heap pointer.
    373     if (!m_cachedThreadGlobalTimerHeap)
    374         m_cachedThreadGlobalTimerHeap = &threadGlobalTimerHeap();
    375 
    376     // Keep heap valid while changing the next-fire time.
    377     double oldTime = m_nextFireTime;
    378     double newTime = alignedFireTime(newUnalignedTime);
    379     if (oldTime != newTime) {
    380         m_nextFireTime = newTime;
    381         static unsigned currentHeapInsertionOrder;
    382         m_heapInsertionOrder = currentHeapInsertionOrder++;
    383 
    384         bool wasFirstTimerInHeap = m_heapIndex == 0;
    385 
    386         updateHeapIfNeeded(oldTime);
    387 
    388         bool isFirstTimerInHeap = m_heapIndex == 0;
    389 
    390         if (wasFirstTimerInHeap || isFirstTimerInHeap)
    391             PlatformThreadData::current().threadTimers().updateSharedTimer();
    392     }
    393 
    394     checkConsistency();
    395 }
    396 
    397 void TimerBase::fireTimersInNestedEventLoop()
    398 {
    399     // Redirect to ThreadTimers.
    400     PlatformThreadData::current().threadTimers().fireTimersInNestedEventLoop();
    401 }
    402 
    403 void TimerBase::didChangeAlignmentInterval()
    404 {
    405     setNextFireTime(m_unalignedNextFireTime);
    406 }
    407 
    408 double TimerBase::nextUnalignedFireInterval() const
    409 {
    410     ASSERT(isActive());
    411     return max(m_unalignedNextFireTime - monotonicallyIncreasingTime(), 0.0);
    412 }
    413 
    414 } // namespace WebCore
    415 
    416