Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: sameeragarwal (at) google.com (Sameer Agarwal)
     30 //         keir (at) google.com (Keir Mierle)
     31 //
     32 // The Problem object is used to build and hold least squares problems.
     33 
     34 #ifndef CERES_PUBLIC_PROBLEM_H_
     35 #define CERES_PUBLIC_PROBLEM_H_
     36 
     37 #include <cstddef>
     38 #include <map>
     39 #include <set>
     40 #include <vector>
     41 
     42 #include "ceres/internal/macros.h"
     43 #include "ceres/internal/port.h"
     44 #include "ceres/internal/scoped_ptr.h"
     45 #include "ceres/types.h"
     46 #include "glog/logging.h"
     47 
     48 
     49 namespace ceres {
     50 
     51 class CostFunction;
     52 class LossFunction;
     53 class LocalParameterization;
     54 class Solver;
     55 struct CRSMatrix;
     56 
     57 namespace internal {
     58 class Preprocessor;
     59 class ProblemImpl;
     60 class ParameterBlock;
     61 class ResidualBlock;
     62 }  // namespace internal
     63 
     64 // A ResidualBlockId is an opaque handle clients can use to remove residual
     65 // blocks from a Problem after adding them.
     66 typedef internal::ResidualBlock* ResidualBlockId;
     67 
     68 // A class to represent non-linear least squares problems. Such
     69 // problems have a cost function that is a sum of error terms (known
     70 // as "residuals"), where each residual is a function of some subset
     71 // of the parameters. The cost function takes the form
     72 //
     73 //    N    1
     74 //   SUM  --- loss( || r_i1, r_i2,..., r_ik ||^2  ),
     75 //   i=1   2
     76 //
     77 // where
     78 //
     79 //   r_ij     is residual number i, component j; the residual is a
     80 //            function of some subset of the parameters x1...xk. For
     81 //            example, in a structure from motion problem a residual
     82 //            might be the difference between a measured point in an
     83 //            image and the reprojected position for the matching
     84 //            camera, point pair. The residual would have two
     85 //            components, error in x and error in y.
     86 //
     87 //   loss(y)  is the loss function; for example, squared error or
     88 //            Huber L1 loss. If loss(y) = y, then the cost function is
     89 //            non-robustified least squares.
     90 //
     91 // This class is specifically designed to address the important subset
     92 // of "sparse" least squares problems, where each component of the
     93 // residual depends only on a small number number of parameters, even
     94 // though the total number of residuals and parameters may be very
     95 // large. This property affords tremendous gains in scale, allowing
     96 // efficient solving of large problems that are otherwise
     97 // inaccessible.
     98 //
     99 // The canonical example of a sparse least squares problem is
    100 // "structure-from-motion" (SFM), where the parameters are points and
    101 // cameras, and residuals are reprojection errors. Typically a single
    102 // residual will depend only on 9 parameters (3 for the point, 6 for
    103 // the camera).
    104 //
    105 // To create a least squares problem, use the AddResidualBlock() and
    106 // AddParameterBlock() methods, documented below. Here is an example least
    107 // squares problem containing 3 parameter blocks of sizes 3, 4 and 5
    108 // respectively and two residual terms of size 2 and 6:
    109 //
    110 //   double x1[] = { 1.0, 2.0, 3.0 };
    111 //   double x2[] = { 1.0, 2.0, 3.0, 5.0 };
    112 //   double x3[] = { 1.0, 2.0, 3.0, 6.0, 7.0 };
    113 //
    114 //   Problem problem;
    115 //
    116 //   problem.AddResidualBlock(new MyUnaryCostFunction(...), x1);
    117 //   problem.AddResidualBlock(new MyBinaryCostFunction(...), x2, x3);
    118 //
    119 // Please see cost_function.h for details of the CostFunction object.
    120 class Problem {
    121  public:
    122   struct Options {
    123     Options()
    124         : cost_function_ownership(TAKE_OWNERSHIP),
    125           loss_function_ownership(TAKE_OWNERSHIP),
    126           local_parameterization_ownership(TAKE_OWNERSHIP),
    127           enable_fast_parameter_block_removal(false),
    128           disable_all_safety_checks(false) {}
    129 
    130     // These flags control whether the Problem object owns the cost
    131     // functions, loss functions, and parameterizations passed into
    132     // the Problem. If set to TAKE_OWNERSHIP, then the problem object
    133     // will delete the corresponding cost or loss functions on
    134     // destruction. The destructor is careful to delete the pointers
    135     // only once, since sharing cost/loss/parameterizations is
    136     // allowed.
    137     Ownership cost_function_ownership;
    138     Ownership loss_function_ownership;
    139     Ownership local_parameterization_ownership;
    140 
    141     // If true, trades memory for a faster RemoveParameterBlock() operation.
    142     //
    143     // RemoveParameterBlock() takes time proportional to the size of the entire
    144     // Problem. If you only remove parameter blocks from the Problem
    145     // occassionaly, this may be acceptable. However, if you are modifying the
    146     // Problem frequently, and have memory to spare, then flip this switch to
    147     // make RemoveParameterBlock() take time proportional to the number of
    148     // residual blocks that depend on it.  The increase in memory usage is an
    149     // additonal hash set per parameter block containing all the residuals that
    150     // depend on the parameter block.
    151     bool enable_fast_parameter_block_removal;
    152 
    153     // By default, Ceres performs a variety of safety checks when constructing
    154     // the problem. There is a small but measurable performance penalty to
    155     // these checks, typically around 5% of construction time. If you are sure
    156     // your problem construction is correct, and 5% of the problem construction
    157     // time is truly an overhead you want to avoid, then you can set
    158     // disable_all_safety_checks to true.
    159     //
    160     // WARNING: Do not set this to true, unless you are absolutely sure of what
    161     // you are doing.
    162     bool disable_all_safety_checks;
    163   };
    164 
    165   // The default constructor is equivalent to the
    166   // invocation Problem(Problem::Options()).
    167   Problem();
    168   explicit Problem(const Options& options);
    169 
    170   ~Problem();
    171 
    172   // Add a residual block to the overall cost function. The cost
    173   // function carries with it information about the sizes of the
    174   // parameter blocks it expects. The function checks that these match
    175   // the sizes of the parameter blocks listed in parameter_blocks. The
    176   // program aborts if a mismatch is detected. loss_function can be
    177   // NULL, in which case the cost of the term is just the squared norm
    178   // of the residuals.
    179   //
    180   // The user has the option of explicitly adding the parameter blocks
    181   // using AddParameterBlock. This causes additional correctness
    182   // checking; however, AddResidualBlock implicitly adds the parameter
    183   // blocks if they are not present, so calling AddParameterBlock
    184   // explicitly is not required.
    185   //
    186   // The Problem object by default takes ownership of the
    187   // cost_function and loss_function pointers. These objects remain
    188   // live for the life of the Problem object. If the user wishes to
    189   // keep control over the destruction of these objects, then they can
    190   // do this by setting the corresponding enums in the Options struct.
    191   //
    192   // Note: Even though the Problem takes ownership of cost_function
    193   // and loss_function, it does not preclude the user from re-using
    194   // them in another residual block. The destructor takes care to call
    195   // delete on each cost_function or loss_function pointer only once,
    196   // regardless of how many residual blocks refer to them.
    197   //
    198   // Example usage:
    199   //
    200   //   double x1[] = {1.0, 2.0, 3.0};
    201   //   double x2[] = {1.0, 2.0, 5.0, 6.0};
    202   //   double x3[] = {3.0, 6.0, 2.0, 5.0, 1.0};
    203   //
    204   //   Problem problem;
    205   //
    206   //   problem.AddResidualBlock(new MyUnaryCostFunction(...), NULL, x1);
    207   //   problem.AddResidualBlock(new MyBinaryCostFunction(...), NULL, x2, x1);
    208   //
    209   ResidualBlockId AddResidualBlock(CostFunction* cost_function,
    210                                    LossFunction* loss_function,
    211                                    const vector<double*>& parameter_blocks);
    212 
    213   // Convenience methods for adding residuals with a small number of
    214   // parameters. This is the common case. Instead of specifying the
    215   // parameter block arguments as a vector, list them as pointers.
    216   ResidualBlockId AddResidualBlock(CostFunction* cost_function,
    217                                    LossFunction* loss_function,
    218                                    double* x0);
    219   ResidualBlockId AddResidualBlock(CostFunction* cost_function,
    220                                    LossFunction* loss_function,
    221                                    double* x0, double* x1);
    222   ResidualBlockId AddResidualBlock(CostFunction* cost_function,
    223                                    LossFunction* loss_function,
    224                                    double* x0, double* x1, double* x2);
    225   ResidualBlockId AddResidualBlock(CostFunction* cost_function,
    226                                    LossFunction* loss_function,
    227                                    double* x0, double* x1, double* x2,
    228                                    double* x3);
    229   ResidualBlockId AddResidualBlock(CostFunction* cost_function,
    230                                    LossFunction* loss_function,
    231                                    double* x0, double* x1, double* x2,
    232                                    double* x3, double* x4);
    233   ResidualBlockId AddResidualBlock(CostFunction* cost_function,
    234                                    LossFunction* loss_function,
    235                                    double* x0, double* x1, double* x2,
    236                                    double* x3, double* x4, double* x5);
    237   ResidualBlockId AddResidualBlock(CostFunction* cost_function,
    238                                    LossFunction* loss_function,
    239                                    double* x0, double* x1, double* x2,
    240                                    double* x3, double* x4, double* x5,
    241                                    double* x6);
    242   ResidualBlockId AddResidualBlock(CostFunction* cost_function,
    243                                    LossFunction* loss_function,
    244                                    double* x0, double* x1, double* x2,
    245                                    double* x3, double* x4, double* x5,
    246                                    double* x6, double* x7);
    247   ResidualBlockId AddResidualBlock(CostFunction* cost_function,
    248                                    LossFunction* loss_function,
    249                                    double* x0, double* x1, double* x2,
    250                                    double* x3, double* x4, double* x5,
    251                                    double* x6, double* x7, double* x8);
    252   ResidualBlockId AddResidualBlock(CostFunction* cost_function,
    253                                    LossFunction* loss_function,
    254                                    double* x0, double* x1, double* x2,
    255                                    double* x3, double* x4, double* x5,
    256                                    double* x6, double* x7, double* x8,
    257                                    double* x9);
    258 
    259   // Add a parameter block with appropriate size to the problem.
    260   // Repeated calls with the same arguments are ignored. Repeated
    261   // calls with the same double pointer but a different size results
    262   // in undefined behaviour.
    263   void AddParameterBlock(double* values, int size);
    264 
    265   // Add a parameter block with appropriate size and parameterization
    266   // to the problem. Repeated calls with the same arguments are
    267   // ignored. Repeated calls with the same double pointer but a
    268   // different size results in undefined behaviour.
    269   void AddParameterBlock(double* values,
    270                          int size,
    271                          LocalParameterization* local_parameterization);
    272 
    273   // Remove a parameter block from the problem. The parameterization of the
    274   // parameter block, if it exists, will persist until the deletion of the
    275   // problem (similar to cost/loss functions in residual block removal). Any
    276   // residual blocks that depend on the parameter are also removed, as
    277   // described above in RemoveResidualBlock().
    278   //
    279   // If Problem::Options::enable_fast_parameter_block_removal is true, then the
    280   // removal is fast (almost constant time). Otherwise, removing a parameter
    281   // block will incur a scan of the entire Problem object.
    282   //
    283   // WARNING: Removing a residual or parameter block will destroy the implicit
    284   // ordering, rendering the jacobian or residuals returned from the solver
    285   // uninterpretable. If you depend on the evaluated jacobian, do not use
    286   // remove! This may change in a future release.
    287   void RemoveParameterBlock(double* values);
    288 
    289   // Remove a residual block from the problem. Any parameters that the residual
    290   // block depends on are not removed. The cost and loss functions for the
    291   // residual block will not get deleted immediately; won't happen until the
    292   // problem itself is deleted.
    293   //
    294   // WARNING: Removing a residual or parameter block will destroy the implicit
    295   // ordering, rendering the jacobian or residuals returned from the solver
    296   // uninterpretable. If you depend on the evaluated jacobian, do not use
    297   // remove! This may change in a future release.
    298   void RemoveResidualBlock(ResidualBlockId residual_block);
    299 
    300   // Hold the indicated parameter block constant during optimization.
    301   void SetParameterBlockConstant(double* values);
    302 
    303   // Allow the indicated parameter to vary during optimization.
    304   void SetParameterBlockVariable(double* values);
    305 
    306   // Set the local parameterization for one of the parameter blocks.
    307   // The local_parameterization is owned by the Problem by default. It
    308   // is acceptable to set the same parameterization for multiple
    309   // parameters; the destructor is careful to delete local
    310   // parameterizations only once. The local parameterization can only
    311   // be set once per parameter, and cannot be changed once set.
    312   void SetParameterization(double* values,
    313                            LocalParameterization* local_parameterization);
    314 
    315   // Number of parameter blocks in the problem. Always equals
    316   // parameter_blocks().size() and parameter_block_sizes().size().
    317   int NumParameterBlocks() const;
    318 
    319   // The size of the parameter vector obtained by summing over the
    320   // sizes of all the parameter blocks.
    321   int NumParameters() const;
    322 
    323   // Number of residual blocks in the problem. Always equals
    324   // residual_blocks().size().
    325   int NumResidualBlocks() const;
    326 
    327   // The size of the residual vector obtained by summing over the
    328   // sizes of all of the residual blocks.
    329   int NumResiduals() const;
    330 
    331   // The size of the parameter block.
    332   int ParameterBlockSize(const double* values) const;
    333 
    334   // The size of local parameterization for the parameter block. If
    335   // there is no local parameterization associated with this parameter
    336   // block, then ParameterBlockLocalSize = ParameterBlockSize.
    337   int ParameterBlockLocalSize(const double* values) const;
    338 
    339   // Fills the passed parameter_blocks vector with pointers to the
    340   // parameter blocks currently in the problem. After this call,
    341   // parameter_block.size() == NumParameterBlocks.
    342   void GetParameterBlocks(vector<double*>* parameter_blocks) const;
    343 
    344   // Options struct to control Problem::Evaluate.
    345   struct EvaluateOptions {
    346     EvaluateOptions()
    347         : apply_loss_function(true),
    348           num_threads(1) {
    349     }
    350 
    351     // The set of parameter blocks for which evaluation should be
    352     // performed. This vector determines the order that parameter
    353     // blocks occur in the gradient vector and in the columns of the
    354     // jacobian matrix. If parameter_blocks is empty, then it is
    355     // assumed to be equal to vector containing ALL the parameter
    356     // blocks.  Generally speaking the parameter blocks will occur in
    357     // the order in which they were added to the problem. But, this
    358     // may change if the user removes any parameter blocks from the
    359     // problem.
    360     //
    361     // NOTE: This vector should contain the same pointers as the ones
    362     // used to add parameter blocks to the Problem. These parameter
    363     // block should NOT point to new memory locations. Bad things will
    364     // happen otherwise.
    365     vector<double*> parameter_blocks;
    366 
    367     // The set of residual blocks to evaluate. This vector determines
    368     // the order in which the residuals occur, and how the rows of the
    369     // jacobian are ordered. If residual_blocks is empty, then it is
    370     // assumed to be equal to the vector containing all the residual
    371     // blocks. If this vector is empty, then it is assumed to be equal
    372     // to a vector containing ALL the residual blocks. Generally
    373     // speaking the residual blocks will occur in the order in which
    374     // they were added to the problem. But, this may change if the
    375     // user removes any residual blocks from the problem.
    376     vector<ResidualBlockId> residual_blocks;
    377 
    378     // Even though the residual blocks in the problem may contain loss
    379     // functions, setting apply_loss_function to false will turn off
    380     // the application of the loss function to the output of the cost
    381     // function. This is of use for example if the user wishes to
    382     // analyse the solution quality by studying the distribution of
    383     // residuals before and after the solve.
    384     bool apply_loss_function;
    385 
    386     int num_threads;
    387   };
    388 
    389   // Evaluate Problem. Any of the output pointers can be NULL. Which
    390   // residual blocks and parameter blocks are used is controlled by
    391   // the EvaluateOptions struct above.
    392   //
    393   // Note 1: The evaluation will use the values stored in the memory
    394   // locations pointed to by the parameter block pointers used at the
    395   // time of the construction of the problem. i.e.,
    396   //
    397   //   Problem problem;
    398   //   double x = 1;
    399   //   problem.AddResidualBlock(new MyCostFunction, NULL, &x);
    400   //
    401   //   double cost = 0.0;
    402   //   problem.Evaluate(Problem::EvaluateOptions(), &cost, NULL, NULL, NULL);
    403   //
    404   // The cost is evaluated at x = 1. If you wish to evaluate the
    405   // problem at x = 2, then
    406   //
    407   //    x = 2;
    408   //    problem.Evaluate(Problem::EvaluateOptions(), &cost, NULL, NULL, NULL);
    409   //
    410   // is the way to do so.
    411   //
    412   // Note 2: If no local parameterizations are used, then the size of
    413   // the gradient vector (and the number of columns in the jacobian)
    414   // is the sum of the sizes of all the parameter blocks. If a
    415   // parameter block has a local parameterization, then it contributes
    416   // "LocalSize" entries to the gradient vector (and the number of
    417   // columns in the jacobian).
    418   bool Evaluate(const EvaluateOptions& options,
    419                 double* cost,
    420                 vector<double>* residuals,
    421                 vector<double>* gradient,
    422                 CRSMatrix* jacobian);
    423 
    424  private:
    425   friend class Solver;
    426   friend class Covariance;
    427   internal::scoped_ptr<internal::ProblemImpl> problem_impl_;
    428   CERES_DISALLOW_COPY_AND_ASSIGN(Problem);
    429 };
    430 
    431 }  // namespace ceres
    432 
    433 #endif  // CERES_PUBLIC_PROBLEM_H_
    434