/external/eigen/Eigen/src/Eigenvalues/ |
MatrixBaseEigenvalues.h | 27 return ComplexEigenSolver<PlainObject>(m_eval, false).eigenvalues(); 39 return EigenSolver<PlainObject>(m_eval, false).eigenvalues(); 45 /** \brief Computes the eigenvalues of a matrix 46 * \returns Column vector containing the eigenvalues. 49 * This function computes the eigenvalues with the help of the EigenSolver 53 * The eigenvalues are repeated according to their algebraic multiplicity, 54 * so there are as many eigenvalues as rows in the matrix. 62 * \sa EigenSolver::eigenvalues(), ComplexEigenSolver::eigenvalues(), 63 * SelfAdjointView::eigenvalues() 67 MatrixBase<Derived>::eigenvalues() const function in class:Eigen::MatrixBase 89 SelfAdjointView<MatrixType, UpLo>::eigenvalues() const function in class:Eigen::SelfAdjointView [all...] |
ComplexEigenSolver.h | 24 * \brief Computes eigenvalues and eigenvectors of general complex matrices 30 * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars 32 * \f$. If \f$ D \f$ is a diagonal matrix with the eigenvalues on 39 * eigenvalues and eigenvectors of a given function. The 73 /** \brief Type for vector of eigenvalues as returned by eigenvalues(). 120 * eigenvalues are computed; if false, only the eigenvalues are 148 * \f$ as returned by eigenvalues(). The eigenvectors are normalized to 159 eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.") 181 const EigenvalueType& eigenvalues() const function in class:Eigen::ComplexEigenSolver [all...] |
EigenSolver.h | 23 * \brief Computes eigenvalues and eigenvectors of general matrices 29 * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars 31 * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and 36 * The eigenvalues and eigenvectors of a matrix may be complex, even when the 46 * Call the function compute() to compute the eigenvalues and eigenvectors of 49 * eigenvalues and eigenvectors at construction time. Once the eigenvalue and 50 * eigenvectors are computed, they can be retrieved with the eigenvalues() and 62 * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver 92 /** \brief Type for vector of eigenvalues as returned by eigenvalues(). 243 const EigenvalueType& eigenvalues() const function in class:Eigen::EigenSolver [all...] |
SelfAdjointEigenSolver.h | 30 * \brief Computes eigenvalues and eigenvectors of selfadjoint matrices 38 * transpose. This class computes the eigenvalues and eigenvectors of a 40 * \f$ v \f$ such that \f$ Av = \lambda v \f$. The eigenvalues of a 42 * the eigenvalues on the diagonal, and \f$ V \f$ is a matrix with the 53 * Call the function compute() to compute the eigenvalues and eigenvectors of 56 * the eigenvalues and eigenvectors at construction time. Once the eigenvalue 57 * and eigenvectors are computed, they can be retrieved with the eigenvalues() 66 * \sa MatrixBase::eigenvalues(), class EigenSolver, class ComplexEigenSolver 94 /** \brief Type for vector of eigenvalues as returned by eigenvalues() 250 const RealVectorType& eigenvalues() const function in class:Eigen::SelfAdjointEigenSolver [all...] |
/external/chromium_org/ui/gfx/ |
matrix3_f.cc | 134 float eigenvalues[3]; local 142 eigenvalues[0] = data_[M00]; 143 eigenvalues[1] = data_[M11]; 144 eigenvalues[2] = data_[M22]; 169 eigenvalues[0] = q + 2 * p * static_cast<float>(cos(phi)); 170 eigenvalues[2] = q + 2 * p * 172 eigenvalues[1] = 3 * q - eigenvalues[0] - eigenvalues[2]; 175 // Put eigenvalues in the descending order [all...] |
/external/opencv/cv/src/ |
cvshapedescr.cpp | 788 double eigenvalues[6], eigenvectors[36]; local 797 CvMat _EIGVECS = cvMat(6,6,CV_64F,eigenvectors), _EIGVALS = cvMat(6,1,CV_64F,eigenvalues); 855 double a = eigenvalues[i]; 873 // and find its eigenvalues and vectors too 878 if( eigenvalues[i] > 0 ) 881 if( i >= 3 /*eigenvalues[0] < DBL_EPSILON*/ ) 959 _EIGVALS = cvMat( 1, 2, CV_64F, eigenvalues ); 963 box->size.width = (float)(2./sqrt(eigenvalues[0])); 964 box->size.height = (float)(2./sqrt(eigenvalues[1])); [all...] |