Home | History | Annotate | Download | only in fpu
      1 /* Native implementation of soft float functions */
      2 #include <math.h>
      3 
      4 #if (defined(CONFIG_BSD) && !defined(__APPLE__) && !defined(__GLIBC__)) \
      5     || defined(CONFIG_SOLARIS)
      6 #include <ieeefp.h>
      7 #define fabsf(f) ((float)fabs(f))
      8 #else
      9 #include <fenv.h>
     10 #endif
     11 
     12 #if defined(__OpenBSD__) || defined(__NetBSD__)
     13 #include <sys/param.h>
     14 #endif
     15 
     16 /*
     17  * Define some C99-7.12.3 classification macros and
     18  *        some C99-.12.4 for Solaris systems OS less than 10,
     19  *        or Solaris 10 systems running GCC 3.x or less.
     20  *   Solaris 10 with GCC4 does not need these macros as they
     21  *   are defined in <iso/math_c99.h> with a compiler directive
     22  */
     23 #if defined(CONFIG_SOLARIS) && \
     24            ((CONFIG_SOLARIS_VERSION <= 9 ) || \
     25            ((CONFIG_SOLARIS_VERSION == 10) && (__GNUC__ < 4))) \
     26     || (defined(__OpenBSD__) && (OpenBSD < 200811))
     27 /*
     28  * C99 7.12.3 classification macros
     29  * and
     30  * C99 7.12.14 comparison macros
     31  *
     32  * ... do not work on Solaris 10 using GNU CC 3.4.x.
     33  * Try to workaround the missing / broken C99 math macros.
     34  */
     35 #if defined(__OpenBSD__)
     36 #define unordered(x, y) (isnan(x) || isnan(y))
     37 #endif
     38 
     39 #ifdef __NetBSD__
     40 #ifndef isgreater
     41 #define isgreater(x, y)		__builtin_isgreater(x, y)
     42 #endif
     43 #ifndef isgreaterequal
     44 #define isgreaterequal(x, y)	__builtin_isgreaterequal(x, y)
     45 #endif
     46 #ifndef isless
     47 #define isless(x, y)		__builtin_isless(x, y)
     48 #endif
     49 #ifndef islessequal
     50 #define islessequal(x, y)	__builtin_islessequal(x, y)
     51 #endif
     52 #ifndef isunordered
     53 #define isunordered(x, y)	__builtin_isunordered(x, y)
     54 #endif
     55 #endif
     56 
     57 
     58 #define isnormal(x)             (fpclass(x) >= FP_NZERO)
     59 #define isgreater(x, y)         ((!unordered(x, y)) && ((x) > (y)))
     60 #define isgreaterequal(x, y)    ((!unordered(x, y)) && ((x) >= (y)))
     61 #define isless(x, y)            ((!unordered(x, y)) && ((x) < (y)))
     62 #define islessequal(x, y)       ((!unordered(x, y)) && ((x) <= (y)))
     63 #define isunordered(x,y)        unordered(x, y)
     64 #endif
     65 
     66 #if defined(__sun__) && !defined(CONFIG_NEEDS_LIBSUNMATH)
     67 
     68 #ifndef isnan
     69 # define isnan(x) \
     70     (sizeof (x) == sizeof (long double) ? isnan_ld (x) \
     71      : sizeof (x) == sizeof (double) ? isnan_d (x) \
     72      : isnan_f (x))
     73 static inline int isnan_f  (float       x) { return x != x; }
     74 static inline int isnan_d  (double      x) { return x != x; }
     75 static inline int isnan_ld (long double x) { return x != x; }
     76 #endif
     77 
     78 #ifndef isinf
     79 # define isinf(x) \
     80     (sizeof (x) == sizeof (long double) ? isinf_ld (x) \
     81      : sizeof (x) == sizeof (double) ? isinf_d (x) \
     82      : isinf_f (x))
     83 static inline int isinf_f  (float       x) { return isnan (x - x); }
     84 static inline int isinf_d  (double      x) { return isnan (x - x); }
     85 static inline int isinf_ld (long double x) { return isnan (x - x); }
     86 #endif
     87 #endif
     88 
     89 typedef float float32;
     90 typedef double float64;
     91 #ifdef FLOATX80
     92 typedef long double floatx80;
     93 #endif
     94 
     95 typedef union {
     96     float32 f;
     97     uint32_t i;
     98 } float32u;
     99 typedef union {
    100     float64 f;
    101     uint64_t i;
    102 } float64u;
    103 #ifdef FLOATX80
    104 typedef union {
    105     floatx80 f;
    106     struct {
    107         uint64_t low;
    108         uint16_t high;
    109     } i;
    110 } floatx80u;
    111 #endif
    112 
    113 /*----------------------------------------------------------------------------
    114 | Software IEC/IEEE floating-point rounding mode.
    115 *----------------------------------------------------------------------------*/
    116 #if (defined(CONFIG_BSD) && !defined(__APPLE__) && !defined(__GLIBC__)) \
    117     || defined(CONFIG_SOLARIS)
    118 #if defined(__OpenBSD__)
    119 #define FE_RM FP_RM
    120 #define FE_RP FP_RP
    121 #define FE_RZ FP_RZ
    122 #endif
    123 enum {
    124     float_round_nearest_even = FP_RN,
    125     float_round_down         = FP_RM,
    126     float_round_up           = FP_RP,
    127     float_round_to_zero      = FP_RZ
    128 };
    129 #else
    130 enum {
    131     float_round_nearest_even = FE_TONEAREST,
    132     float_round_down         = FE_DOWNWARD,
    133     float_round_up           = FE_UPWARD,
    134     float_round_to_zero      = FE_TOWARDZERO
    135 };
    136 #endif
    137 
    138 typedef struct float_status {
    139     int float_rounding_mode;
    140 #ifdef FLOATX80
    141     int floatx80_rounding_precision;
    142 #endif
    143 } float_status;
    144 
    145 void set_float_rounding_mode(int val STATUS_PARAM);
    146 #ifdef FLOATX80
    147 void set_floatx80_rounding_precision(int val STATUS_PARAM);
    148 #endif
    149 
    150 /*----------------------------------------------------------------------------
    151 | Software IEC/IEEE integer-to-floating-point conversion routines.
    152 *----------------------------------------------------------------------------*/
    153 float32 int32_to_float32( int STATUS_PARAM);
    154 float32 uint32_to_float32( unsigned int STATUS_PARAM);
    155 float64 int32_to_float64( int STATUS_PARAM);
    156 float64 uint32_to_float64( unsigned int STATUS_PARAM);
    157 #ifdef FLOATX80
    158 floatx80 int32_to_floatx80( int STATUS_PARAM);
    159 #endif
    160 #ifdef FLOAT128
    161 float128 int32_to_float128( int STATUS_PARAM);
    162 #endif
    163 float32 int64_to_float32( int64_t STATUS_PARAM);
    164 float32 uint64_to_float32( uint64_t STATUS_PARAM);
    165 float64 int64_to_float64( int64_t STATUS_PARAM);
    166 float64 uint64_to_float64( uint64_t v STATUS_PARAM);
    167 #ifdef FLOATX80
    168 floatx80 int64_to_floatx80( int64_t STATUS_PARAM);
    169 #endif
    170 #ifdef FLOAT128
    171 float128 int64_to_float128( int64_t STATUS_PARAM);
    172 #endif
    173 
    174 /*----------------------------------------------------------------------------
    175 | Software IEC/IEEE single-precision conversion constants.
    176 *----------------------------------------------------------------------------*/
    177 #define float32_zero (0.0)
    178 #define float32_one (1.0)
    179 #define float32_ln2 (0.6931471)
    180 #define float32_pi (3.1415926)
    181 #define float32_half (0.5)
    182 
    183 /*----------------------------------------------------------------------------
    184 | Software IEC/IEEE single-precision conversion routines.
    185 *----------------------------------------------------------------------------*/
    186 int float32_to_int32( float32  STATUS_PARAM);
    187 int float32_to_int32_round_to_zero( float32  STATUS_PARAM);
    188 unsigned int float32_to_uint32( float32 a STATUS_PARAM);
    189 unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM);
    190 int64_t float32_to_int64( float32  STATUS_PARAM);
    191 int64_t float32_to_int64_round_to_zero( float32  STATUS_PARAM);
    192 float64 float32_to_float64( float32  STATUS_PARAM);
    193 #ifdef FLOATX80
    194 floatx80 float32_to_floatx80( float32  STATUS_PARAM);
    195 #endif
    196 #ifdef FLOAT128
    197 float128 float32_to_float128( float32  STATUS_PARAM);
    198 #endif
    199 
    200 /*----------------------------------------------------------------------------
    201 | Software IEC/IEEE single-precision operations.
    202 *----------------------------------------------------------------------------*/
    203 float32 float32_round_to_int( float32  STATUS_PARAM);
    204 INLINE float32 float32_add( float32 a, float32 b STATUS_PARAM)
    205 {
    206     return a + b;
    207 }
    208 INLINE float32 float32_sub( float32 a, float32 b STATUS_PARAM)
    209 {
    210     return a - b;
    211 }
    212 INLINE float32 float32_mul( float32 a, float32 b STATUS_PARAM)
    213 {
    214     return a * b;
    215 }
    216 INLINE float32 float32_div( float32 a, float32 b STATUS_PARAM)
    217 {
    218     return a / b;
    219 }
    220 float32 float32_rem( float32, float32  STATUS_PARAM);
    221 float32 float32_sqrt( float32  STATUS_PARAM);
    222 INLINE int float32_eq_quiet( float32 a, float32 b STATUS_PARAM)
    223 {
    224     return a == b;
    225 }
    226 INLINE int float32_le( float32 a, float32 b STATUS_PARAM)
    227 {
    228     return a <= b;
    229 }
    230 INLINE int float32_lt( float32 a, float32 b STATUS_PARAM)
    231 {
    232     return a < b;
    233 }
    234 INLINE int float32_eq( float32 a, float32 b STATUS_PARAM)
    235 {
    236     return a <= b && a >= b;
    237 }
    238 INLINE int float32_le_quiet( float32 a, float32 b STATUS_PARAM)
    239 {
    240     return islessequal(a, b);
    241 }
    242 INLINE int float32_lt_quiet( float32 a, float32 b STATUS_PARAM)
    243 {
    244     return isless(a, b);
    245 }
    246 INLINE int float32_unordered( float32 a, float32 b STATUS_PARAM)
    247 {
    248     return isunordered(a, b);
    249 }
    250 INLINE int float32_unordered_quiet( float32 a, float32 b STATUS_PARAM)
    251 {
    252     return isunordered(a, b);
    253 }
    254 int float32_compare( float32, float32 STATUS_PARAM );
    255 int float32_compare_quiet( float32, float32 STATUS_PARAM );
    256 int float32_is_signaling_nan( float32 );
    257 int float32_is_quiet_nan( float32 );
    258 int float32_is_any_nan( float32 );
    259 
    260 INLINE float32 float32_abs(float32 a)
    261 {
    262     return fabsf(a);
    263 }
    264 
    265 INLINE float32 float32_chs(float32 a)
    266 {
    267     return -a;
    268 }
    269 
    270 INLINE float32 float32_is_infinity(float32 a)
    271 {
    272     return fpclassify(a) == FP_INFINITE;
    273 }
    274 
    275 INLINE float32 float32_is_neg(float32 a)
    276 {
    277     float32u u;
    278     u.f = a;
    279     return u.i >> 31;
    280 }
    281 
    282 INLINE float32 float32_is_zero(float32 a)
    283 {
    284     return fpclassify(a) == FP_ZERO;
    285 }
    286 
    287 INLINE float32 float32_scalbn(float32 a, int n STATUS_PARAM)
    288 {
    289     return scalbnf(a, n);
    290 }
    291 
    292 /*----------------------------------------------------------------------------
    293 | Software IEC/IEEE double-precision conversion constants.
    294 *----------------------------------------------------------------------------*/
    295 #define float64_zero (0.0)
    296 #define float64_one (1.0)
    297 #define float64_ln2 (0.693147180559945)
    298 #define float64_pi (3.141592653589793)
    299 #define float64_half (0.5)
    300 
    301 /*----------------------------------------------------------------------------
    302 | Software IEC/IEEE double-precision conversion routines.
    303 *----------------------------------------------------------------------------*/
    304 int float64_to_int32( float64 STATUS_PARAM );
    305 int float64_to_int32_round_to_zero( float64 STATUS_PARAM );
    306 unsigned int float64_to_uint32( float64 STATUS_PARAM );
    307 unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
    308 int64_t float64_to_int64( float64 STATUS_PARAM );
    309 int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM );
    310 uint64_t float64_to_uint64( float64 STATUS_PARAM );
    311 uint64_t float64_to_uint64_round_to_zero( float64 STATUS_PARAM );
    312 float32 float64_to_float32( float64 STATUS_PARAM );
    313 #ifdef FLOATX80
    314 floatx80 float64_to_floatx80( float64 STATUS_PARAM );
    315 #endif
    316 #ifdef FLOAT128
    317 float128 float64_to_float128( float64 STATUS_PARAM );
    318 #endif
    319 
    320 /*----------------------------------------------------------------------------
    321 | Software IEC/IEEE double-precision operations.
    322 *----------------------------------------------------------------------------*/
    323 float64 float64_round_to_int( float64 STATUS_PARAM );
    324 float64 float64_trunc_to_int( float64 STATUS_PARAM );
    325 INLINE float64 float64_add( float64 a, float64 b STATUS_PARAM)
    326 {
    327     return a + b;
    328 }
    329 INLINE float64 float64_sub( float64 a, float64 b STATUS_PARAM)
    330 {
    331     return a - b;
    332 }
    333 INLINE float64 float64_mul( float64 a, float64 b STATUS_PARAM)
    334 {
    335     return a * b;
    336 }
    337 INLINE float64 float64_div( float64 a, float64 b STATUS_PARAM)
    338 {
    339     return a / b;
    340 }
    341 float64 float64_rem( float64, float64 STATUS_PARAM );
    342 float64 float64_sqrt( float64 STATUS_PARAM );
    343 INLINE int float64_eq_quiet( float64 a, float64 b STATUS_PARAM)
    344 {
    345     return a == b;
    346 }
    347 INLINE int float64_le( float64 a, float64 b STATUS_PARAM)
    348 {
    349     return a <= b;
    350 }
    351 INLINE int float64_lt( float64 a, float64 b STATUS_PARAM)
    352 {
    353     return a < b;
    354 }
    355 INLINE int float64_eq( float64 a, float64 b STATUS_PARAM)
    356 {
    357     return a <= b && a >= b;
    358 }
    359 INLINE int float64_le_quiet( float64 a, float64 b STATUS_PARAM)
    360 {
    361     return islessequal(a, b);
    362 }
    363 INLINE int float64_lt_quiet( float64 a, float64 b STATUS_PARAM)
    364 {
    365     return isless(a, b);
    366 
    367 }
    368 INLINE int float64_unordered( float64 a, float64 b STATUS_PARAM)
    369 {
    370     return isunordered(a, b);
    371 }
    372 INLINE int float64_unordered_quiet( float64 a, float64 b STATUS_PARAM)
    373 {
    374     return isunordered(a, b);
    375 }
    376 int float64_compare( float64, float64 STATUS_PARAM );
    377 int float64_compare_quiet( float64, float64 STATUS_PARAM );
    378 int float64_is_signaling_nan( float64 );
    379 int float64_is_any_nan( float64 );
    380 int float64_is_quiet_nan( float64 );
    381 
    382 INLINE float64 float64_abs(float64 a)
    383 {
    384     return fabs(a);
    385 }
    386 
    387 INLINE float64 float64_chs(float64 a)
    388 {
    389     return -a;
    390 }
    391 
    392 INLINE float64 float64_is_infinity(float64 a)
    393 {
    394     return fpclassify(a) == FP_INFINITE;
    395 }
    396 
    397 INLINE float64 float64_is_neg(float64 a)
    398 {
    399     float64u u;
    400     u.f = a;
    401     return u.i >> 63;
    402 }
    403 
    404 INLINE float64 float64_is_zero(float64 a)
    405 {
    406     return fpclassify(a) == FP_ZERO;
    407 }
    408 
    409 INLINE float64 float64_scalbn(float64 a, int n STATUS_PARAM)
    410 {
    411     return scalbn(a, n);
    412 }
    413 
    414 #ifdef FLOATX80
    415 
    416 /*----------------------------------------------------------------------------
    417 | Software IEC/IEEE extended double-precision conversion constants.
    418 *----------------------------------------------------------------------------*/
    419 #define floatx80_zero (0.0L)
    420 #define floatx80_one (1.0L)
    421 #define floatx80_ln2 (0.69314718055994530943L)
    422 #define floatx80_pi (3.14159265358979323851L)
    423 #define floatx80_half (0.5L)
    424 
    425 /*----------------------------------------------------------------------------
    426 | Software IEC/IEEE extended double-precision conversion routines.
    427 *----------------------------------------------------------------------------*/
    428 int floatx80_to_int32( floatx80 STATUS_PARAM );
    429 int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
    430 int64_t floatx80_to_int64( floatx80 STATUS_PARAM);
    431 int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM);
    432 float32 floatx80_to_float32( floatx80 STATUS_PARAM );
    433 float64 floatx80_to_float64( floatx80 STATUS_PARAM );
    434 #ifdef FLOAT128
    435 float128 floatx80_to_float128( floatx80 STATUS_PARAM );
    436 #endif
    437 
    438 /*----------------------------------------------------------------------------
    439 | Software IEC/IEEE extended double-precision operations.
    440 *----------------------------------------------------------------------------*/
    441 floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
    442 INLINE floatx80 floatx80_add( floatx80 a, floatx80 b STATUS_PARAM)
    443 {
    444     return a + b;
    445 }
    446 INLINE floatx80 floatx80_sub( floatx80 a, floatx80 b STATUS_PARAM)
    447 {
    448     return a - b;
    449 }
    450 INLINE floatx80 floatx80_mul( floatx80 a, floatx80 b STATUS_PARAM)
    451 {
    452     return a * b;
    453 }
    454 INLINE floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM)
    455 {
    456     return a / b;
    457 }
    458 floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
    459 floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
    460 INLINE int floatx80_eq_quiet( floatx80 a, floatx80 b STATUS_PARAM)
    461 {
    462     return a == b;
    463 }
    464 INLINE int floatx80_le( floatx80 a, floatx80 b STATUS_PARAM)
    465 {
    466     return a <= b;
    467 }
    468 INLINE int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM)
    469 {
    470     return a < b;
    471 }
    472 INLINE int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM)
    473 {
    474     return a <= b && a >= b;
    475 }
    476 INLINE int floatx80_le_quiet( floatx80 a, floatx80 b STATUS_PARAM)
    477 {
    478     return islessequal(a, b);
    479 }
    480 INLINE int floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM)
    481 {
    482     return isless(a, b);
    483 
    484 }
    485 INLINE int floatx80_unordered( floatx80 a, floatx80 b STATUS_PARAM)
    486 {
    487     return isunordered(a, b);
    488 }
    489 INLINE int floatx80_unordered_quiet( floatx80 a, floatx80 b STATUS_PARAM)
    490 {
    491     return isunordered(a, b);
    492 }
    493 int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
    494 int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
    495 int floatx80_is_signaling_nan( floatx80 );
    496 int floatx80_is_quiet_nan( floatx80 );
    497 int floatx80_is_any_nan( floatx80 );
    498 
    499 INLINE floatx80 floatx80_abs(floatx80 a)
    500 {
    501     return fabsl(a);
    502 }
    503 
    504 INLINE floatx80 floatx80_chs(floatx80 a)
    505 {
    506     return -a;
    507 }
    508 
    509 INLINE floatx80 floatx80_is_infinity(floatx80 a)
    510 {
    511     return fpclassify(a) == FP_INFINITE;
    512 }
    513 
    514 INLINE floatx80 floatx80_is_neg(floatx80 a)
    515 {
    516     floatx80u u;
    517     u.f = a;
    518     return u.i.high >> 15;
    519 }
    520 
    521 INLINE floatx80 floatx80_is_zero(floatx80 a)
    522 {
    523     return fpclassify(a) == FP_ZERO;
    524 }
    525 
    526 INLINE floatx80 floatx80_scalbn(floatx80 a, int n STATUS_PARAM)
    527 {
    528     return scalbnl(a, n);
    529 }
    530 
    531 #endif
    532