1 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SystemZ implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SystemZInstrInfo.h" 15 #include "SystemZTargetMachine.h" 16 #include "SystemZInstrBuilder.h" 17 #include "llvm/CodeGen/LiveVariables.h" 18 #include "llvm/CodeGen/MachineRegisterInfo.h" 19 20 #define GET_INSTRINFO_CTOR 21 #define GET_INSTRMAP_INFO 22 #include "SystemZGenInstrInfo.inc" 23 24 using namespace llvm; 25 26 // Return a mask with Count low bits set. 27 static uint64_t allOnes(unsigned int Count) { 28 return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1; 29 } 30 31 SystemZInstrInfo::SystemZInstrInfo(SystemZTargetMachine &tm) 32 : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP), 33 RI(tm), TM(tm) { 34 } 35 36 // MI is a 128-bit load or store. Split it into two 64-bit loads or stores, 37 // each having the opcode given by NewOpcode. 38 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI, 39 unsigned NewOpcode) const { 40 MachineBasicBlock *MBB = MI->getParent(); 41 MachineFunction &MF = *MBB->getParent(); 42 43 // Get two load or store instructions. Use the original instruction for one 44 // of them (arbitarily the second here) and create a clone for the other. 45 MachineInstr *EarlierMI = MF.CloneMachineInstr(MI); 46 MBB->insert(MI, EarlierMI); 47 48 // Set up the two 64-bit registers. 49 MachineOperand &HighRegOp = EarlierMI->getOperand(0); 50 MachineOperand &LowRegOp = MI->getOperand(0); 51 HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_high)); 52 LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_low)); 53 54 // The address in the first (high) instruction is already correct. 55 // Adjust the offset in the second (low) instruction. 56 MachineOperand &HighOffsetOp = EarlierMI->getOperand(2); 57 MachineOperand &LowOffsetOp = MI->getOperand(2); 58 LowOffsetOp.setImm(LowOffsetOp.getImm() + 8); 59 60 // Set the opcodes. 61 unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm()); 62 unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm()); 63 assert(HighOpcode && LowOpcode && "Both offsets should be in range"); 64 65 EarlierMI->setDesc(get(HighOpcode)); 66 MI->setDesc(get(LowOpcode)); 67 } 68 69 // Split ADJDYNALLOC instruction MI. 70 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const { 71 MachineBasicBlock *MBB = MI->getParent(); 72 MachineFunction &MF = *MBB->getParent(); 73 MachineFrameInfo *MFFrame = MF.getFrameInfo(); 74 MachineOperand &OffsetMO = MI->getOperand(2); 75 76 uint64_t Offset = (MFFrame->getMaxCallFrameSize() + 77 SystemZMC::CallFrameSize + 78 OffsetMO.getImm()); 79 unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset); 80 assert(NewOpcode && "No support for huge argument lists yet"); 81 MI->setDesc(get(NewOpcode)); 82 OffsetMO.setImm(Offset); 83 } 84 85 // If MI is a simple load or store for a frame object, return the register 86 // it loads or stores and set FrameIndex to the index of the frame object. 87 // Return 0 otherwise. 88 // 89 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. 90 static int isSimpleMove(const MachineInstr *MI, int &FrameIndex, 91 unsigned Flag) { 92 const MCInstrDesc &MCID = MI->getDesc(); 93 if ((MCID.TSFlags & Flag) && 94 MI->getOperand(1).isFI() && 95 MI->getOperand(2).getImm() == 0 && 96 MI->getOperand(3).getReg() == 0) { 97 FrameIndex = MI->getOperand(1).getIndex(); 98 return MI->getOperand(0).getReg(); 99 } 100 return 0; 101 } 102 103 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, 104 int &FrameIndex) const { 105 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad); 106 } 107 108 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr *MI, 109 int &FrameIndex) const { 110 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore); 111 } 112 113 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr *MI, 114 int &DestFrameIndex, 115 int &SrcFrameIndex) const { 116 // Check for MVC 0(Length,FI1),0(FI2) 117 const MachineFrameInfo *MFI = MI->getParent()->getParent()->getFrameInfo(); 118 if (MI->getOpcode() != SystemZ::MVC || 119 !MI->getOperand(0).isFI() || 120 MI->getOperand(1).getImm() != 0 || 121 !MI->getOperand(3).isFI() || 122 MI->getOperand(4).getImm() != 0) 123 return false; 124 125 // Check that Length covers the full slots. 126 int64_t Length = MI->getOperand(2).getImm(); 127 unsigned FI1 = MI->getOperand(0).getIndex(); 128 unsigned FI2 = MI->getOperand(3).getIndex(); 129 if (MFI->getObjectSize(FI1) != Length || 130 MFI->getObjectSize(FI2) != Length) 131 return false; 132 133 DestFrameIndex = FI1; 134 SrcFrameIndex = FI2; 135 return true; 136 } 137 138 bool SystemZInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, 139 MachineBasicBlock *&TBB, 140 MachineBasicBlock *&FBB, 141 SmallVectorImpl<MachineOperand> &Cond, 142 bool AllowModify) const { 143 // Most of the code and comments here are boilerplate. 144 145 // Start from the bottom of the block and work up, examining the 146 // terminator instructions. 147 MachineBasicBlock::iterator I = MBB.end(); 148 while (I != MBB.begin()) { 149 --I; 150 if (I->isDebugValue()) 151 continue; 152 153 // Working from the bottom, when we see a non-terminator instruction, we're 154 // done. 155 if (!isUnpredicatedTerminator(I)) 156 break; 157 158 // A terminator that isn't a branch can't easily be handled by this 159 // analysis. 160 if (!I->isBranch()) 161 return true; 162 163 // Can't handle indirect branches. 164 SystemZII::Branch Branch(getBranchInfo(I)); 165 if (!Branch.Target->isMBB()) 166 return true; 167 168 // Punt on compound branches. 169 if (Branch.Type != SystemZII::BranchNormal) 170 return true; 171 172 if (Branch.CCMask == SystemZ::CCMASK_ANY) { 173 // Handle unconditional branches. 174 if (!AllowModify) { 175 TBB = Branch.Target->getMBB(); 176 continue; 177 } 178 179 // If the block has any instructions after a JMP, delete them. 180 while (llvm::next(I) != MBB.end()) 181 llvm::next(I)->eraseFromParent(); 182 183 Cond.clear(); 184 FBB = 0; 185 186 // Delete the JMP if it's equivalent to a fall-through. 187 if (MBB.isLayoutSuccessor(Branch.Target->getMBB())) { 188 TBB = 0; 189 I->eraseFromParent(); 190 I = MBB.end(); 191 continue; 192 } 193 194 // TBB is used to indicate the unconditinal destination. 195 TBB = Branch.Target->getMBB(); 196 continue; 197 } 198 199 // Working from the bottom, handle the first conditional branch. 200 if (Cond.empty()) { 201 // FIXME: add X86-style branch swap 202 FBB = TBB; 203 TBB = Branch.Target->getMBB(); 204 Cond.push_back(MachineOperand::CreateImm(Branch.CCValid)); 205 Cond.push_back(MachineOperand::CreateImm(Branch.CCMask)); 206 continue; 207 } 208 209 // Handle subsequent conditional branches. 210 assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch"); 211 212 // Only handle the case where all conditional branches branch to the same 213 // destination. 214 if (TBB != Branch.Target->getMBB()) 215 return true; 216 217 // If the conditions are the same, we can leave them alone. 218 unsigned OldCCValid = Cond[0].getImm(); 219 unsigned OldCCMask = Cond[1].getImm(); 220 if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask) 221 continue; 222 223 // FIXME: Try combining conditions like X86 does. Should be easy on Z! 224 return false; 225 } 226 227 return false; 228 } 229 230 unsigned SystemZInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 231 // Most of the code and comments here are boilerplate. 232 MachineBasicBlock::iterator I = MBB.end(); 233 unsigned Count = 0; 234 235 while (I != MBB.begin()) { 236 --I; 237 if (I->isDebugValue()) 238 continue; 239 if (!I->isBranch()) 240 break; 241 if (!getBranchInfo(I).Target->isMBB()) 242 break; 243 // Remove the branch. 244 I->eraseFromParent(); 245 I = MBB.end(); 246 ++Count; 247 } 248 249 return Count; 250 } 251 252 bool SystemZInstrInfo:: 253 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 254 assert(Cond.size() == 2 && "Invalid condition"); 255 Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm()); 256 return false; 257 } 258 259 unsigned 260 SystemZInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 261 MachineBasicBlock *FBB, 262 const SmallVectorImpl<MachineOperand> &Cond, 263 DebugLoc DL) const { 264 // In this function we output 32-bit branches, which should always 265 // have enough range. They can be shortened and relaxed by later code 266 // in the pipeline, if desired. 267 268 // Shouldn't be a fall through. 269 assert(TBB && "InsertBranch must not be told to insert a fallthrough"); 270 assert((Cond.size() == 2 || Cond.size() == 0) && 271 "SystemZ branch conditions have one component!"); 272 273 if (Cond.empty()) { 274 // Unconditional branch? 275 assert(!FBB && "Unconditional branch with multiple successors!"); 276 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB); 277 return 1; 278 } 279 280 // Conditional branch. 281 unsigned Count = 0; 282 unsigned CCValid = Cond[0].getImm(); 283 unsigned CCMask = Cond[1].getImm(); 284 BuildMI(&MBB, DL, get(SystemZ::BRC)) 285 .addImm(CCValid).addImm(CCMask).addMBB(TBB); 286 ++Count; 287 288 if (FBB) { 289 // Two-way Conditional branch. Insert the second branch. 290 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB); 291 ++Count; 292 } 293 return Count; 294 } 295 296 // If Opcode is a move that has a conditional variant, return that variant, 297 // otherwise return 0. 298 static unsigned getConditionalMove(unsigned Opcode) { 299 switch (Opcode) { 300 case SystemZ::LR: return SystemZ::LOCR; 301 case SystemZ::LGR: return SystemZ::LOCGR; 302 default: return 0; 303 } 304 } 305 306 bool SystemZInstrInfo::isPredicable(MachineInstr *MI) const { 307 unsigned Opcode = MI->getOpcode(); 308 if (TM.getSubtargetImpl()->hasLoadStoreOnCond() && 309 getConditionalMove(Opcode)) 310 return true; 311 return false; 312 } 313 314 bool SystemZInstrInfo:: 315 isProfitableToIfCvt(MachineBasicBlock &MBB, 316 unsigned NumCycles, unsigned ExtraPredCycles, 317 const BranchProbability &Probability) const { 318 // For now only convert single instructions. 319 return NumCycles == 1; 320 } 321 322 bool SystemZInstrInfo:: 323 isProfitableToIfCvt(MachineBasicBlock &TMBB, 324 unsigned NumCyclesT, unsigned ExtraPredCyclesT, 325 MachineBasicBlock &FMBB, 326 unsigned NumCyclesF, unsigned ExtraPredCyclesF, 327 const BranchProbability &Probability) const { 328 // For now avoid converting mutually-exclusive cases. 329 return false; 330 } 331 332 bool SystemZInstrInfo:: 333 PredicateInstruction(MachineInstr *MI, 334 const SmallVectorImpl<MachineOperand> &Pred) const { 335 assert(Pred.size() == 2 && "Invalid condition"); 336 unsigned CCValid = Pred[0].getImm(); 337 unsigned CCMask = Pred[1].getImm(); 338 assert(CCMask > 0 && CCMask < 15 && "Invalid predicate"); 339 unsigned Opcode = MI->getOpcode(); 340 if (TM.getSubtargetImpl()->hasLoadStoreOnCond()) { 341 if (unsigned CondOpcode = getConditionalMove(Opcode)) { 342 MI->setDesc(get(CondOpcode)); 343 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 344 .addImm(CCValid).addImm(CCMask) 345 .addReg(SystemZ::CC, RegState::Implicit);; 346 return true; 347 } 348 } 349 return false; 350 } 351 352 void 353 SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 354 MachineBasicBlock::iterator MBBI, DebugLoc DL, 355 unsigned DestReg, unsigned SrcReg, 356 bool KillSrc) const { 357 // Split 128-bit GPR moves into two 64-bit moves. This handles ADDR128 too. 358 if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) { 359 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_high), 360 RI.getSubReg(SrcReg, SystemZ::subreg_high), KillSrc); 361 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_low), 362 RI.getSubReg(SrcReg, SystemZ::subreg_low), KillSrc); 363 return; 364 } 365 366 // Everything else needs only one instruction. 367 unsigned Opcode; 368 if (SystemZ::GR32BitRegClass.contains(DestReg, SrcReg)) 369 Opcode = SystemZ::LR; 370 else if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg)) 371 Opcode = SystemZ::LGR; 372 else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg)) 373 Opcode = SystemZ::LER; 374 else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg)) 375 Opcode = SystemZ::LDR; 376 else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg)) 377 Opcode = SystemZ::LXR; 378 else 379 llvm_unreachable("Impossible reg-to-reg copy"); 380 381 BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) 382 .addReg(SrcReg, getKillRegState(KillSrc)); 383 } 384 385 void 386 SystemZInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 387 MachineBasicBlock::iterator MBBI, 388 unsigned SrcReg, bool isKill, 389 int FrameIdx, 390 const TargetRegisterClass *RC, 391 const TargetRegisterInfo *TRI) const { 392 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 393 394 // Callers may expect a single instruction, so keep 128-bit moves 395 // together for now and lower them after register allocation. 396 unsigned LoadOpcode, StoreOpcode; 397 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); 398 addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode)) 399 .addReg(SrcReg, getKillRegState(isKill)), FrameIdx); 400 } 401 402 void 403 SystemZInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 404 MachineBasicBlock::iterator MBBI, 405 unsigned DestReg, int FrameIdx, 406 const TargetRegisterClass *RC, 407 const TargetRegisterInfo *TRI) const { 408 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 409 410 // Callers may expect a single instruction, so keep 128-bit moves 411 // together for now and lower them after register allocation. 412 unsigned LoadOpcode, StoreOpcode; 413 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); 414 addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg), 415 FrameIdx); 416 } 417 418 // Return true if MI is a simple load or store with a 12-bit displacement 419 // and no index. Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. 420 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) { 421 const MCInstrDesc &MCID = MI->getDesc(); 422 return ((MCID.TSFlags & Flag) && 423 isUInt<12>(MI->getOperand(2).getImm()) && 424 MI->getOperand(3).getReg() == 0); 425 } 426 427 namespace { 428 struct LogicOp { 429 LogicOp() : RegSize(0), ImmLSB(0), ImmSize(0) {} 430 LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize) 431 : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {} 432 433 operator bool() const { return RegSize; } 434 435 unsigned RegSize, ImmLSB, ImmSize; 436 }; 437 } 438 439 static LogicOp interpretAndImmediate(unsigned Opcode) { 440 switch (Opcode) { 441 case SystemZ::NILL32: return LogicOp(32, 0, 16); 442 case SystemZ::NILH32: return LogicOp(32, 16, 16); 443 case SystemZ::NILL: return LogicOp(64, 0, 16); 444 case SystemZ::NILH: return LogicOp(64, 16, 16); 445 case SystemZ::NIHL: return LogicOp(64, 32, 16); 446 case SystemZ::NIHH: return LogicOp(64, 48, 16); 447 case SystemZ::NILF32: return LogicOp(32, 0, 32); 448 case SystemZ::NILF: return LogicOp(64, 0, 32); 449 case SystemZ::NIHF: return LogicOp(64, 32, 32); 450 default: return LogicOp(); 451 } 452 } 453 454 // Used to return from convertToThreeAddress after replacing two-address 455 // instruction OldMI with three-address instruction NewMI. 456 static MachineInstr *finishConvertToThreeAddress(MachineInstr *OldMI, 457 MachineInstr *NewMI, 458 LiveVariables *LV) { 459 if (LV) { 460 unsigned NumOps = OldMI->getNumOperands(); 461 for (unsigned I = 1; I < NumOps; ++I) { 462 MachineOperand &Op = OldMI->getOperand(I); 463 if (Op.isReg() && Op.isKill()) 464 LV->replaceKillInstruction(Op.getReg(), OldMI, NewMI); 465 } 466 } 467 return NewMI; 468 } 469 470 MachineInstr * 471 SystemZInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, 472 MachineBasicBlock::iterator &MBBI, 473 LiveVariables *LV) const { 474 MachineInstr *MI = MBBI; 475 MachineBasicBlock *MBB = MI->getParent(); 476 477 unsigned Opcode = MI->getOpcode(); 478 unsigned NumOps = MI->getNumOperands(); 479 480 // Try to convert something like SLL into SLLK, if supported. 481 // We prefer to keep the two-operand form where possible both 482 // because it tends to be shorter and because some instructions 483 // have memory forms that can be used during spilling. 484 if (TM.getSubtargetImpl()->hasDistinctOps()) { 485 int ThreeOperandOpcode = SystemZ::getThreeOperandOpcode(Opcode); 486 if (ThreeOperandOpcode >= 0) { 487 MachineOperand &Dest = MI->getOperand(0); 488 MachineOperand &Src = MI->getOperand(1); 489 MachineInstrBuilder MIB = 490 BuildMI(*MBB, MBBI, MI->getDebugLoc(), get(ThreeOperandOpcode)) 491 .addOperand(Dest); 492 // Keep the kill state, but drop the tied flag. 493 MIB.addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg()); 494 // Keep the remaining operands as-is. 495 for (unsigned I = 2; I < NumOps; ++I) 496 MIB.addOperand(MI->getOperand(I)); 497 return finishConvertToThreeAddress(MI, MIB, LV); 498 } 499 } 500 501 // Try to convert an AND into an RISBG-type instruction. 502 if (LogicOp And = interpretAndImmediate(Opcode)) { 503 unsigned NewOpcode; 504 if (And.RegSize == 64) 505 NewOpcode = SystemZ::RISBG; 506 else if (TM.getSubtargetImpl()->hasHighWord()) 507 NewOpcode = SystemZ::RISBLG32; 508 else 509 // We can't use RISBG for 32-bit operations because it clobbers the 510 // high word of the destination too. 511 NewOpcode = 0; 512 if (NewOpcode) { 513 uint64_t Imm = MI->getOperand(2).getImm() << And.ImmLSB; 514 // AND IMMEDIATE leaves the other bits of the register unchanged. 515 Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB); 516 unsigned Start, End; 517 if (isRxSBGMask(Imm, And.RegSize, Start, End)) { 518 if (NewOpcode == SystemZ::RISBLG32) { 519 Start &= 31; 520 End &= 31; 521 } 522 MachineOperand &Dest = MI->getOperand(0); 523 MachineOperand &Src = MI->getOperand(1); 524 MachineInstrBuilder MIB = 525 BuildMI(*MBB, MI, MI->getDebugLoc(), get(NewOpcode)) 526 .addOperand(Dest).addReg(0) 527 .addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg()) 528 .addImm(Start).addImm(End + 128).addImm(0); 529 return finishConvertToThreeAddress(MI, MIB, LV); 530 } 531 } 532 } 533 return 0; 534 } 535 536 MachineInstr * 537 SystemZInstrInfo::foldMemoryOperandImpl(MachineFunction &MF, 538 MachineInstr *MI, 539 const SmallVectorImpl<unsigned> &Ops, 540 int FrameIndex) const { 541 const MachineFrameInfo *MFI = MF.getFrameInfo(); 542 unsigned Size = MFI->getObjectSize(FrameIndex); 543 544 // Eary exit for cases we don't care about 545 if (Ops.size() != 1) 546 return 0; 547 548 unsigned OpNum = Ops[0]; 549 assert(Size == MF.getRegInfo() 550 .getRegClass(MI->getOperand(OpNum).getReg())->getSize() && 551 "Invalid size combination"); 552 553 unsigned Opcode = MI->getOpcode(); 554 if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) { 555 bool Op0IsGPR = (Opcode == SystemZ::LGDR); 556 bool Op1IsGPR = (Opcode == SystemZ::LDGR); 557 // If we're spilling the destination of an LDGR or LGDR, store the 558 // source register instead. 559 if (OpNum == 0) { 560 unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD; 561 return BuildMI(MF, MI->getDebugLoc(), get(StoreOpcode)) 562 .addOperand(MI->getOperand(1)).addFrameIndex(FrameIndex) 563 .addImm(0).addReg(0); 564 } 565 // If we're spilling the source of an LDGR or LGDR, load the 566 // destination register instead. 567 if (OpNum == 1) { 568 unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD; 569 unsigned Dest = MI->getOperand(0).getReg(); 570 return BuildMI(MF, MI->getDebugLoc(), get(LoadOpcode), Dest) 571 .addFrameIndex(FrameIndex).addImm(0).addReg(0); 572 } 573 } 574 575 // Look for cases where the source of a simple store or the destination 576 // of a simple load is being spilled. Try to use MVC instead. 577 // 578 // Although MVC is in practice a fast choice in these cases, it is still 579 // logically a bytewise copy. This means that we cannot use it if the 580 // load or store is volatile. It also means that the transformation is 581 // not valid in cases where the two memories partially overlap; however, 582 // that is not a problem here, because we know that one of the memories 583 // is a full frame index. 584 if (OpNum == 0 && MI->hasOneMemOperand()) { 585 MachineMemOperand *MMO = *MI->memoperands_begin(); 586 if (MMO->getSize() == Size && !MMO->isVolatile()) { 587 // Handle conversion of loads. 588 if (isSimpleBD12Move(MI, SystemZII::SimpleBDXLoad)) { 589 return BuildMI(MF, MI->getDebugLoc(), get(SystemZ::MVC)) 590 .addFrameIndex(FrameIndex).addImm(0).addImm(Size) 591 .addOperand(MI->getOperand(1)).addImm(MI->getOperand(2).getImm()) 592 .addMemOperand(MMO); 593 } 594 // Handle conversion of stores. 595 if (isSimpleBD12Move(MI, SystemZII::SimpleBDXStore)) { 596 return BuildMI(MF, MI->getDebugLoc(), get(SystemZ::MVC)) 597 .addOperand(MI->getOperand(1)).addImm(MI->getOperand(2).getImm()) 598 .addImm(Size).addFrameIndex(FrameIndex).addImm(0) 599 .addMemOperand(MMO); 600 } 601 } 602 } 603 604 // If the spilled operand is the final one, try to change <INSN>R 605 // into <INSN>. 606 int MemOpcode = SystemZ::getMemOpcode(Opcode); 607 if (MemOpcode >= 0) { 608 unsigned NumOps = MI->getNumExplicitOperands(); 609 if (OpNum == NumOps - 1) { 610 const MCInstrDesc &MemDesc = get(MemOpcode); 611 uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags); 612 assert(AccessBytes != 0 && "Size of access should be known"); 613 assert(AccessBytes <= Size && "Access outside the frame index"); 614 uint64_t Offset = Size - AccessBytes; 615 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(MemOpcode)); 616 for (unsigned I = 0; I < OpNum; ++I) 617 MIB.addOperand(MI->getOperand(I)); 618 MIB.addFrameIndex(FrameIndex).addImm(Offset); 619 if (MemDesc.TSFlags & SystemZII::HasIndex) 620 MIB.addReg(0); 621 return MIB; 622 } 623 } 624 625 return 0; 626 } 627 628 MachineInstr * 629 SystemZInstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr* MI, 630 const SmallVectorImpl<unsigned> &Ops, 631 MachineInstr* LoadMI) const { 632 return 0; 633 } 634 635 bool 636 SystemZInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const { 637 switch (MI->getOpcode()) { 638 case SystemZ::L128: 639 splitMove(MI, SystemZ::LG); 640 return true; 641 642 case SystemZ::ST128: 643 splitMove(MI, SystemZ::STG); 644 return true; 645 646 case SystemZ::LX: 647 splitMove(MI, SystemZ::LD); 648 return true; 649 650 case SystemZ::STX: 651 splitMove(MI, SystemZ::STD); 652 return true; 653 654 case SystemZ::ADJDYNALLOC: 655 splitAdjDynAlloc(MI); 656 return true; 657 658 default: 659 return false; 660 } 661 } 662 663 uint64_t SystemZInstrInfo::getInstSizeInBytes(const MachineInstr *MI) const { 664 if (MI->getOpcode() == TargetOpcode::INLINEASM) { 665 const MachineFunction *MF = MI->getParent()->getParent(); 666 const char *AsmStr = MI->getOperand(0).getSymbolName(); 667 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 668 } 669 return MI->getDesc().getSize(); 670 } 671 672 SystemZII::Branch 673 SystemZInstrInfo::getBranchInfo(const MachineInstr *MI) const { 674 switch (MI->getOpcode()) { 675 case SystemZ::BR: 676 case SystemZ::J: 677 case SystemZ::JG: 678 return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY, 679 SystemZ::CCMASK_ANY, &MI->getOperand(0)); 680 681 case SystemZ::BRC: 682 case SystemZ::BRCL: 683 return SystemZII::Branch(SystemZII::BranchNormal, 684 MI->getOperand(0).getImm(), 685 MI->getOperand(1).getImm(), &MI->getOperand(2)); 686 687 case SystemZ::BRCT: 688 return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP, 689 SystemZ::CCMASK_CMP_NE, &MI->getOperand(2)); 690 691 case SystemZ::BRCTG: 692 return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP, 693 SystemZ::CCMASK_CMP_NE, &MI->getOperand(2)); 694 695 case SystemZ::CIJ: 696 case SystemZ::CRJ: 697 return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP, 698 MI->getOperand(2).getImm(), &MI->getOperand(3)); 699 700 case SystemZ::CGIJ: 701 case SystemZ::CGRJ: 702 return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP, 703 MI->getOperand(2).getImm(), &MI->getOperand(3)); 704 705 default: 706 llvm_unreachable("Unrecognized branch opcode"); 707 } 708 } 709 710 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC, 711 unsigned &LoadOpcode, 712 unsigned &StoreOpcode) const { 713 if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) { 714 LoadOpcode = SystemZ::L; 715 StoreOpcode = SystemZ::ST32; 716 } else if (RC == &SystemZ::GR64BitRegClass || 717 RC == &SystemZ::ADDR64BitRegClass) { 718 LoadOpcode = SystemZ::LG; 719 StoreOpcode = SystemZ::STG; 720 } else if (RC == &SystemZ::GR128BitRegClass || 721 RC == &SystemZ::ADDR128BitRegClass) { 722 LoadOpcode = SystemZ::L128; 723 StoreOpcode = SystemZ::ST128; 724 } else if (RC == &SystemZ::FP32BitRegClass) { 725 LoadOpcode = SystemZ::LE; 726 StoreOpcode = SystemZ::STE; 727 } else if (RC == &SystemZ::FP64BitRegClass) { 728 LoadOpcode = SystemZ::LD; 729 StoreOpcode = SystemZ::STD; 730 } else if (RC == &SystemZ::FP128BitRegClass) { 731 LoadOpcode = SystemZ::LX; 732 StoreOpcode = SystemZ::STX; 733 } else 734 llvm_unreachable("Unsupported regclass to load or store"); 735 } 736 737 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode, 738 int64_t Offset) const { 739 const MCInstrDesc &MCID = get(Opcode); 740 int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset); 741 if (isUInt<12>(Offset) && isUInt<12>(Offset2)) { 742 // Get the instruction to use for unsigned 12-bit displacements. 743 int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode); 744 if (Disp12Opcode >= 0) 745 return Disp12Opcode; 746 747 // All address-related instructions can use unsigned 12-bit 748 // displacements. 749 return Opcode; 750 } 751 if (isInt<20>(Offset) && isInt<20>(Offset2)) { 752 // Get the instruction to use for signed 20-bit displacements. 753 int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode); 754 if (Disp20Opcode >= 0) 755 return Disp20Opcode; 756 757 // Check whether Opcode allows signed 20-bit displacements. 758 if (MCID.TSFlags & SystemZII::Has20BitOffset) 759 return Opcode; 760 } 761 return 0; 762 } 763 764 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const { 765 switch (Opcode) { 766 case SystemZ::L: return SystemZ::LT; 767 case SystemZ::LY: return SystemZ::LT; 768 case SystemZ::LG: return SystemZ::LTG; 769 case SystemZ::LGF: return SystemZ::LTGF; 770 case SystemZ::LR: return SystemZ::LTR; 771 case SystemZ::LGFR: return SystemZ::LTGFR; 772 case SystemZ::LGR: return SystemZ::LTGR; 773 case SystemZ::LER: return SystemZ::LTEBR; 774 case SystemZ::LDR: return SystemZ::LTDBR; 775 case SystemZ::LXR: return SystemZ::LTXBR; 776 default: return 0; 777 } 778 } 779 780 // Return true if Mask matches the regexp 0*1+0*, given that zero masks 781 // have already been filtered out. Store the first set bit in LSB and 782 // the number of set bits in Length if so. 783 static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) { 784 unsigned First = findFirstSet(Mask); 785 uint64_t Top = (Mask >> First) + 1; 786 if ((Top & -Top) == Top) { 787 LSB = First; 788 Length = findFirstSet(Top); 789 return true; 790 } 791 return false; 792 } 793 794 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize, 795 unsigned &Start, unsigned &End) const { 796 // Reject trivial all-zero masks. 797 if (Mask == 0) 798 return false; 799 800 // Handle the 1+0+ or 0+1+0* cases. Start then specifies the index of 801 // the msb and End specifies the index of the lsb. 802 unsigned LSB, Length; 803 if (isStringOfOnes(Mask, LSB, Length)) { 804 Start = 63 - (LSB + Length - 1); 805 End = 63 - LSB; 806 return true; 807 } 808 809 // Handle the wrap-around 1+0+1+ cases. Start then specifies the msb 810 // of the low 1s and End specifies the lsb of the high 1s. 811 if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) { 812 assert(LSB > 0 && "Bottom bit must be set"); 813 assert(LSB + Length < BitSize && "Top bit must be set"); 814 Start = 63 - (LSB - 1); 815 End = 63 - (LSB + Length); 816 return true; 817 } 818 819 return false; 820 } 821 822 unsigned SystemZInstrInfo::getCompareAndBranch(unsigned Opcode, 823 const MachineInstr *MI) const { 824 switch (Opcode) { 825 case SystemZ::CR: 826 return SystemZ::CRJ; 827 case SystemZ::CGR: 828 return SystemZ::CGRJ; 829 case SystemZ::CHI: 830 return MI && isInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CIJ : 0; 831 case SystemZ::CGHI: 832 return MI && isInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CGIJ : 0; 833 default: 834 return 0; 835 } 836 } 837 838 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB, 839 MachineBasicBlock::iterator MBBI, 840 unsigned Reg, uint64_t Value) const { 841 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 842 unsigned Opcode; 843 if (isInt<16>(Value)) 844 Opcode = SystemZ::LGHI; 845 else if (SystemZ::isImmLL(Value)) 846 Opcode = SystemZ::LLILL; 847 else if (SystemZ::isImmLH(Value)) { 848 Opcode = SystemZ::LLILH; 849 Value >>= 16; 850 } else { 851 assert(isInt<32>(Value) && "Huge values not handled yet"); 852 Opcode = SystemZ::LGFI; 853 } 854 BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value); 855 } 856