1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements an analysis that determines, for a given memory 11 // operation, what preceding memory operations it depends on. It builds on 12 // alias analysis information, and tries to provide a lazy, caching interface to 13 // a common kind of alias information query. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #define DEBUG_TYPE "memdep" 18 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/Dominators.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/PHITransAddr.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/PredIteratorCache.h" 34 using namespace llvm; 35 36 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses"); 37 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses"); 38 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses"); 39 40 STATISTIC(NumCacheNonLocalPtr, 41 "Number of fully cached non-local ptr responses"); 42 STATISTIC(NumCacheDirtyNonLocalPtr, 43 "Number of cached, but dirty, non-local ptr responses"); 44 STATISTIC(NumUncacheNonLocalPtr, 45 "Number of uncached non-local ptr responses"); 46 STATISTIC(NumCacheCompleteNonLocalPtr, 47 "Number of block queries that were completely cached"); 48 49 // Limit for the number of instructions to scan in a block. 50 static const int BlockScanLimit = 100; 51 52 char MemoryDependenceAnalysis::ID = 0; 53 54 // Register this pass... 55 INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep", 56 "Memory Dependence Analysis", false, true) 57 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 58 INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep", 59 "Memory Dependence Analysis", false, true) 60 61 MemoryDependenceAnalysis::MemoryDependenceAnalysis() 62 : FunctionPass(ID), PredCache(0) { 63 initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry()); 64 } 65 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() { 66 } 67 68 /// Clean up memory in between runs 69 void MemoryDependenceAnalysis::releaseMemory() { 70 LocalDeps.clear(); 71 NonLocalDeps.clear(); 72 NonLocalPointerDeps.clear(); 73 ReverseLocalDeps.clear(); 74 ReverseNonLocalDeps.clear(); 75 ReverseNonLocalPtrDeps.clear(); 76 PredCache->clear(); 77 } 78 79 80 81 /// getAnalysisUsage - Does not modify anything. It uses Alias Analysis. 82 /// 83 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 84 AU.setPreservesAll(); 85 AU.addRequiredTransitive<AliasAnalysis>(); 86 } 87 88 bool MemoryDependenceAnalysis::runOnFunction(Function &) { 89 AA = &getAnalysis<AliasAnalysis>(); 90 TD = getAnalysisIfAvailable<DataLayout>(); 91 DT = getAnalysisIfAvailable<DominatorTree>(); 92 if (!PredCache) 93 PredCache.reset(new PredIteratorCache()); 94 return false; 95 } 96 97 /// RemoveFromReverseMap - This is a helper function that removes Val from 98 /// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry. 99 template <typename KeyTy> 100 static void RemoveFromReverseMap(DenseMap<Instruction*, 101 SmallPtrSet<KeyTy, 4> > &ReverseMap, 102 Instruction *Inst, KeyTy Val) { 103 typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator 104 InstIt = ReverseMap.find(Inst); 105 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?"); 106 bool Found = InstIt->second.erase(Val); 107 assert(Found && "Invalid reverse map!"); (void)Found; 108 if (InstIt->second.empty()) 109 ReverseMap.erase(InstIt); 110 } 111 112 /// GetLocation - If the given instruction references a specific memory 113 /// location, fill in Loc with the details, otherwise set Loc.Ptr to null. 114 /// Return a ModRefInfo value describing the general behavior of the 115 /// instruction. 116 static 117 AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst, 118 AliasAnalysis::Location &Loc, 119 AliasAnalysis *AA) { 120 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 121 if (LI->isUnordered()) { 122 Loc = AA->getLocation(LI); 123 return AliasAnalysis::Ref; 124 } 125 if (LI->getOrdering() == Monotonic) { 126 Loc = AA->getLocation(LI); 127 return AliasAnalysis::ModRef; 128 } 129 Loc = AliasAnalysis::Location(); 130 return AliasAnalysis::ModRef; 131 } 132 133 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 134 if (SI->isUnordered()) { 135 Loc = AA->getLocation(SI); 136 return AliasAnalysis::Mod; 137 } 138 if (SI->getOrdering() == Monotonic) { 139 Loc = AA->getLocation(SI); 140 return AliasAnalysis::ModRef; 141 } 142 Loc = AliasAnalysis::Location(); 143 return AliasAnalysis::ModRef; 144 } 145 146 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) { 147 Loc = AA->getLocation(V); 148 return AliasAnalysis::ModRef; 149 } 150 151 if (const CallInst *CI = isFreeCall(Inst, AA->getTargetLibraryInfo())) { 152 // calls to free() deallocate the entire structure 153 Loc = AliasAnalysis::Location(CI->getArgOperand(0)); 154 return AliasAnalysis::Mod; 155 } 156 157 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 158 switch (II->getIntrinsicID()) { 159 case Intrinsic::lifetime_start: 160 case Intrinsic::lifetime_end: 161 case Intrinsic::invariant_start: 162 Loc = AliasAnalysis::Location(II->getArgOperand(1), 163 cast<ConstantInt>(II->getArgOperand(0)) 164 ->getZExtValue(), 165 II->getMetadata(LLVMContext::MD_tbaa)); 166 // These intrinsics don't really modify the memory, but returning Mod 167 // will allow them to be handled conservatively. 168 return AliasAnalysis::Mod; 169 case Intrinsic::invariant_end: 170 Loc = AliasAnalysis::Location(II->getArgOperand(2), 171 cast<ConstantInt>(II->getArgOperand(1)) 172 ->getZExtValue(), 173 II->getMetadata(LLVMContext::MD_tbaa)); 174 // These intrinsics don't really modify the memory, but returning Mod 175 // will allow them to be handled conservatively. 176 return AliasAnalysis::Mod; 177 default: 178 break; 179 } 180 181 // Otherwise, just do the coarse-grained thing that always works. 182 if (Inst->mayWriteToMemory()) 183 return AliasAnalysis::ModRef; 184 if (Inst->mayReadFromMemory()) 185 return AliasAnalysis::Ref; 186 return AliasAnalysis::NoModRef; 187 } 188 189 /// getCallSiteDependencyFrom - Private helper for finding the local 190 /// dependencies of a call site. 191 MemDepResult MemoryDependenceAnalysis:: 192 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall, 193 BasicBlock::iterator ScanIt, BasicBlock *BB) { 194 unsigned Limit = BlockScanLimit; 195 196 // Walk backwards through the block, looking for dependencies 197 while (ScanIt != BB->begin()) { 198 // Limit the amount of scanning we do so we don't end up with quadratic 199 // running time on extreme testcases. 200 --Limit; 201 if (!Limit) 202 return MemDepResult::getUnknown(); 203 204 Instruction *Inst = --ScanIt; 205 206 // If this inst is a memory op, get the pointer it accessed 207 AliasAnalysis::Location Loc; 208 AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA); 209 if (Loc.Ptr) { 210 // A simple instruction. 211 if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef) 212 return MemDepResult::getClobber(Inst); 213 continue; 214 } 215 216 if (CallSite InstCS = cast<Value>(Inst)) { 217 // Debug intrinsics don't cause dependences. 218 if (isa<DbgInfoIntrinsic>(Inst)) continue; 219 // If these two calls do not interfere, look past it. 220 switch (AA->getModRefInfo(CS, InstCS)) { 221 case AliasAnalysis::NoModRef: 222 // If the two calls are the same, return InstCS as a Def, so that 223 // CS can be found redundant and eliminated. 224 if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) && 225 CS.getInstruction()->isIdenticalToWhenDefined(Inst)) 226 return MemDepResult::getDef(Inst); 227 228 // Otherwise if the two calls don't interact (e.g. InstCS is readnone) 229 // keep scanning. 230 continue; 231 default: 232 return MemDepResult::getClobber(Inst); 233 } 234 } 235 236 // If we could not obtain a pointer for the instruction and the instruction 237 // touches memory then assume that this is a dependency. 238 if (MR != AliasAnalysis::NoModRef) 239 return MemDepResult::getClobber(Inst); 240 } 241 242 // No dependence found. If this is the entry block of the function, it is 243 // unknown, otherwise it is non-local. 244 if (BB != &BB->getParent()->getEntryBlock()) 245 return MemDepResult::getNonLocal(); 246 return MemDepResult::getNonFuncLocal(); 247 } 248 249 /// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that 250 /// would fully overlap MemLoc if done as a wider legal integer load. 251 /// 252 /// MemLocBase, MemLocOffset are lazily computed here the first time the 253 /// base/offs of memloc is needed. 254 static bool 255 isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location &MemLoc, 256 const Value *&MemLocBase, 257 int64_t &MemLocOffs, 258 const LoadInst *LI, 259 const DataLayout *TD) { 260 // If we have no target data, we can't do this. 261 if (TD == 0) return false; 262 263 // If we haven't already computed the base/offset of MemLoc, do so now. 264 if (MemLocBase == 0) 265 MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, TD); 266 267 unsigned Size = MemoryDependenceAnalysis:: 268 getLoadLoadClobberFullWidthSize(MemLocBase, MemLocOffs, MemLoc.Size, 269 LI, *TD); 270 return Size != 0; 271 } 272 273 /// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that 274 /// looks at a memory location for a load (specified by MemLocBase, Offs, 275 /// and Size) and compares it against a load. If the specified load could 276 /// be safely widened to a larger integer load that is 1) still efficient, 277 /// 2) safe for the target, and 3) would provide the specified memory 278 /// location value, then this function returns the size in bytes of the 279 /// load width to use. If not, this returns zero. 280 unsigned MemoryDependenceAnalysis:: 281 getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs, 282 unsigned MemLocSize, const LoadInst *LI, 283 const DataLayout &TD) { 284 // We can only extend simple integer loads. 285 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0; 286 287 // Load widening is hostile to ThreadSanitizer: it may cause false positives 288 // or make the reports more cryptic (access sizes are wrong). 289 if (LI->getParent()->getParent()->getAttributes(). 290 hasAttribute(AttributeSet::FunctionIndex, Attribute::SanitizeThread)) 291 return 0; 292 293 // Get the base of this load. 294 int64_t LIOffs = 0; 295 const Value *LIBase = 296 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, &TD); 297 298 // If the two pointers are not based on the same pointer, we can't tell that 299 // they are related. 300 if (LIBase != MemLocBase) return 0; 301 302 // Okay, the two values are based on the same pointer, but returned as 303 // no-alias. This happens when we have things like two byte loads at "P+1" 304 // and "P+3". Check to see if increasing the size of the "LI" load up to its 305 // alignment (or the largest native integer type) will allow us to load all 306 // the bits required by MemLoc. 307 308 // If MemLoc is before LI, then no widening of LI will help us out. 309 if (MemLocOffs < LIOffs) return 0; 310 311 // Get the alignment of the load in bytes. We assume that it is safe to load 312 // any legal integer up to this size without a problem. For example, if we're 313 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can 314 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it 315 // to i16. 316 unsigned LoadAlign = LI->getAlignment(); 317 318 int64_t MemLocEnd = MemLocOffs+MemLocSize; 319 320 // If no amount of rounding up will let MemLoc fit into LI, then bail out. 321 if (LIOffs+LoadAlign < MemLocEnd) return 0; 322 323 // This is the size of the load to try. Start with the next larger power of 324 // two. 325 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U; 326 NewLoadByteSize = NextPowerOf2(NewLoadByteSize); 327 328 while (1) { 329 // If this load size is bigger than our known alignment or would not fit 330 // into a native integer register, then we fail. 331 if (NewLoadByteSize > LoadAlign || 332 !TD.fitsInLegalInteger(NewLoadByteSize*8)) 333 return 0; 334 335 if (LIOffs+NewLoadByteSize > MemLocEnd && 336 LI->getParent()->getParent()->getAttributes(). 337 hasAttribute(AttributeSet::FunctionIndex, Attribute::SanitizeAddress)) 338 // We will be reading past the location accessed by the original program. 339 // While this is safe in a regular build, Address Safety analysis tools 340 // may start reporting false warnings. So, don't do widening. 341 return 0; 342 343 // If a load of this width would include all of MemLoc, then we succeed. 344 if (LIOffs+NewLoadByteSize >= MemLocEnd) 345 return NewLoadByteSize; 346 347 NewLoadByteSize <<= 1; 348 } 349 } 350 351 /// getPointerDependencyFrom - Return the instruction on which a memory 352 /// location depends. If isLoad is true, this routine ignores may-aliases with 353 /// read-only operations. If isLoad is false, this routine ignores may-aliases 354 /// with reads from read-only locations. If possible, pass the query 355 /// instruction as well; this function may take advantage of the metadata 356 /// annotated to the query instruction to refine the result. 357 MemDepResult MemoryDependenceAnalysis:: 358 getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad, 359 BasicBlock::iterator ScanIt, BasicBlock *BB, 360 Instruction *QueryInst) { 361 362 const Value *MemLocBase = 0; 363 int64_t MemLocOffset = 0; 364 unsigned Limit = BlockScanLimit; 365 bool isInvariantLoad = false; 366 if (isLoad && QueryInst) { 367 LoadInst *LI = dyn_cast<LoadInst>(QueryInst); 368 if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != 0) 369 isInvariantLoad = true; 370 } 371 372 // Walk backwards through the basic block, looking for dependencies. 373 while (ScanIt != BB->begin()) { 374 // Limit the amount of scanning we do so we don't end up with quadratic 375 // running time on extreme testcases. 376 --Limit; 377 if (!Limit) 378 return MemDepResult::getUnknown(); 379 380 Instruction *Inst = --ScanIt; 381 382 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 383 // Debug intrinsics don't (and can't) cause dependences. 384 if (isa<DbgInfoIntrinsic>(II)) continue; 385 386 // If we reach a lifetime begin or end marker, then the query ends here 387 // because the value is undefined. 388 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 389 // FIXME: This only considers queries directly on the invariant-tagged 390 // pointer, not on query pointers that are indexed off of them. It'd 391 // be nice to handle that at some point (the right approach is to use 392 // GetPointerBaseWithConstantOffset). 393 if (AA->isMustAlias(AliasAnalysis::Location(II->getArgOperand(1)), 394 MemLoc)) 395 return MemDepResult::getDef(II); 396 continue; 397 } 398 } 399 400 // Values depend on loads if the pointers are must aliased. This means that 401 // a load depends on another must aliased load from the same value. 402 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 403 // Atomic loads have complications involved. 404 // FIXME: This is overly conservative. 405 if (!LI->isUnordered()) 406 return MemDepResult::getClobber(LI); 407 408 AliasAnalysis::Location LoadLoc = AA->getLocation(LI); 409 410 // If we found a pointer, check if it could be the same as our pointer. 411 AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc); 412 413 if (isLoad) { 414 if (R == AliasAnalysis::NoAlias) { 415 // If this is an over-aligned integer load (for example, 416 // "load i8* %P, align 4") see if it would obviously overlap with the 417 // queried location if widened to a larger load (e.g. if the queried 418 // location is 1 byte at P+1). If so, return it as a load/load 419 // clobber result, allowing the client to decide to widen the load if 420 // it wants to. 421 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) 422 if (LI->getAlignment()*8 > ITy->getPrimitiveSizeInBits() && 423 isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase, 424 MemLocOffset, LI, TD)) 425 return MemDepResult::getClobber(Inst); 426 427 continue; 428 } 429 430 // Must aliased loads are defs of each other. 431 if (R == AliasAnalysis::MustAlias) 432 return MemDepResult::getDef(Inst); 433 434 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads 435 // in terms of clobbering loads, but since it does this by looking 436 // at the clobbering load directly, it doesn't know about any 437 // phi translation that may have happened along the way. 438 439 // If we have a partial alias, then return this as a clobber for the 440 // client to handle. 441 if (R == AliasAnalysis::PartialAlias) 442 return MemDepResult::getClobber(Inst); 443 #endif 444 445 // Random may-alias loads don't depend on each other without a 446 // dependence. 447 continue; 448 } 449 450 // Stores don't depend on other no-aliased accesses. 451 if (R == AliasAnalysis::NoAlias) 452 continue; 453 454 // Stores don't alias loads from read-only memory. 455 if (AA->pointsToConstantMemory(LoadLoc)) 456 continue; 457 458 // Stores depend on may/must aliased loads. 459 return MemDepResult::getDef(Inst); 460 } 461 462 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 463 // Atomic stores have complications involved. 464 // FIXME: This is overly conservative. 465 if (!SI->isUnordered()) 466 return MemDepResult::getClobber(SI); 467 468 // If alias analysis can tell that this store is guaranteed to not modify 469 // the query pointer, ignore it. Use getModRefInfo to handle cases where 470 // the query pointer points to constant memory etc. 471 if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef) 472 continue; 473 474 // Ok, this store might clobber the query pointer. Check to see if it is 475 // a must alias: in this case, we want to return this as a def. 476 AliasAnalysis::Location StoreLoc = AA->getLocation(SI); 477 478 // If we found a pointer, check if it could be the same as our pointer. 479 AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc); 480 481 if (R == AliasAnalysis::NoAlias) 482 continue; 483 if (R == AliasAnalysis::MustAlias) 484 return MemDepResult::getDef(Inst); 485 if (isInvariantLoad) 486 continue; 487 return MemDepResult::getClobber(Inst); 488 } 489 490 // If this is an allocation, and if we know that the accessed pointer is to 491 // the allocation, return Def. This means that there is no dependence and 492 // the access can be optimized based on that. For example, a load could 493 // turn into undef. 494 // Note: Only determine this to be a malloc if Inst is the malloc call, not 495 // a subsequent bitcast of the malloc call result. There can be stores to 496 // the malloced memory between the malloc call and its bitcast uses, and we 497 // need to continue scanning until the malloc call. 498 const TargetLibraryInfo *TLI = AA->getTargetLibraryInfo(); 499 if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, TLI)) { 500 const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, TD); 501 502 if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr)) 503 return MemDepResult::getDef(Inst); 504 // Be conservative if the accessed pointer may alias the allocation. 505 if (AA->alias(Inst, AccessPtr) != AliasAnalysis::NoAlias) 506 return MemDepResult::getClobber(Inst); 507 // If the allocation is not aliased and does not read memory (like 508 // strdup), it is safe to ignore. 509 if (isa<AllocaInst>(Inst) || 510 isMallocLikeFn(Inst, TLI) || isCallocLikeFn(Inst, TLI)) 511 continue; 512 } 513 514 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. 515 AliasAnalysis::ModRefResult MR = AA->getModRefInfo(Inst, MemLoc); 516 // If necessary, perform additional analysis. 517 if (MR == AliasAnalysis::ModRef) 518 MR = AA->callCapturesBefore(Inst, MemLoc, DT); 519 switch (MR) { 520 case AliasAnalysis::NoModRef: 521 // If the call has no effect on the queried pointer, just ignore it. 522 continue; 523 case AliasAnalysis::Mod: 524 return MemDepResult::getClobber(Inst); 525 case AliasAnalysis::Ref: 526 // If the call is known to never store to the pointer, and if this is a 527 // load query, we can safely ignore it (scan past it). 528 if (isLoad) 529 continue; 530 default: 531 // Otherwise, there is a potential dependence. Return a clobber. 532 return MemDepResult::getClobber(Inst); 533 } 534 } 535 536 // No dependence found. If this is the entry block of the function, it is 537 // unknown, otherwise it is non-local. 538 if (BB != &BB->getParent()->getEntryBlock()) 539 return MemDepResult::getNonLocal(); 540 return MemDepResult::getNonFuncLocal(); 541 } 542 543 /// getDependency - Return the instruction on which a memory operation 544 /// depends. 545 MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) { 546 Instruction *ScanPos = QueryInst; 547 548 // Check for a cached result 549 MemDepResult &LocalCache = LocalDeps[QueryInst]; 550 551 // If the cached entry is non-dirty, just return it. Note that this depends 552 // on MemDepResult's default constructing to 'dirty'. 553 if (!LocalCache.isDirty()) 554 return LocalCache; 555 556 // Otherwise, if we have a dirty entry, we know we can start the scan at that 557 // instruction, which may save us some work. 558 if (Instruction *Inst = LocalCache.getInst()) { 559 ScanPos = Inst; 560 561 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); 562 } 563 564 BasicBlock *QueryParent = QueryInst->getParent(); 565 566 // Do the scan. 567 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { 568 // No dependence found. If this is the entry block of the function, it is 569 // unknown, otherwise it is non-local. 570 if (QueryParent != &QueryParent->getParent()->getEntryBlock()) 571 LocalCache = MemDepResult::getNonLocal(); 572 else 573 LocalCache = MemDepResult::getNonFuncLocal(); 574 } else { 575 AliasAnalysis::Location MemLoc; 576 AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA); 577 if (MemLoc.Ptr) { 578 // If we can do a pointer scan, make it happen. 579 bool isLoad = !(MR & AliasAnalysis::Mod); 580 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst)) 581 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start; 582 583 LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos, 584 QueryParent, QueryInst); 585 } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) { 586 CallSite QueryCS(QueryInst); 587 bool isReadOnly = AA->onlyReadsMemory(QueryCS); 588 LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos, 589 QueryParent); 590 } else 591 // Non-memory instruction. 592 LocalCache = MemDepResult::getUnknown(); 593 } 594 595 // Remember the result! 596 if (Instruction *I = LocalCache.getInst()) 597 ReverseLocalDeps[I].insert(QueryInst); 598 599 return LocalCache; 600 } 601 602 #ifndef NDEBUG 603 /// AssertSorted - This method is used when -debug is specified to verify that 604 /// cache arrays are properly kept sorted. 605 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 606 int Count = -1) { 607 if (Count == -1) Count = Cache.size(); 608 if (Count == 0) return; 609 610 for (unsigned i = 1; i != unsigned(Count); ++i) 611 assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!"); 612 } 613 #endif 614 615 /// getNonLocalCallDependency - Perform a full dependency query for the 616 /// specified call, returning the set of blocks that the value is 617 /// potentially live across. The returned set of results will include a 618 /// "NonLocal" result for all blocks where the value is live across. 619 /// 620 /// This method assumes the instruction returns a "NonLocal" dependency 621 /// within its own block. 622 /// 623 /// This returns a reference to an internal data structure that may be 624 /// invalidated on the next non-local query or when an instruction is 625 /// removed. Clients must copy this data if they want it around longer than 626 /// that. 627 const MemoryDependenceAnalysis::NonLocalDepInfo & 628 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) { 629 assert(getDependency(QueryCS.getInstruction()).isNonLocal() && 630 "getNonLocalCallDependency should only be used on calls with non-local deps!"); 631 PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()]; 632 NonLocalDepInfo &Cache = CacheP.first; 633 634 /// DirtyBlocks - This is the set of blocks that need to be recomputed. In 635 /// the cached case, this can happen due to instructions being deleted etc. In 636 /// the uncached case, this starts out as the set of predecessors we care 637 /// about. 638 SmallVector<BasicBlock*, 32> DirtyBlocks; 639 640 if (!Cache.empty()) { 641 // Okay, we have a cache entry. If we know it is not dirty, just return it 642 // with no computation. 643 if (!CacheP.second) { 644 ++NumCacheNonLocal; 645 return Cache; 646 } 647 648 // If we already have a partially computed set of results, scan them to 649 // determine what is dirty, seeding our initial DirtyBlocks worklist. 650 for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end(); 651 I != E; ++I) 652 if (I->getResult().isDirty()) 653 DirtyBlocks.push_back(I->getBB()); 654 655 // Sort the cache so that we can do fast binary search lookups below. 656 std::sort(Cache.begin(), Cache.end()); 657 658 ++NumCacheDirtyNonLocal; 659 //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " 660 // << Cache.size() << " cached: " << *QueryInst; 661 } else { 662 // Seed DirtyBlocks with each of the preds of QueryInst's block. 663 BasicBlock *QueryBB = QueryCS.getInstruction()->getParent(); 664 for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI) 665 DirtyBlocks.push_back(*PI); 666 ++NumUncacheNonLocal; 667 } 668 669 // isReadonlyCall - If this is a read-only call, we can be more aggressive. 670 bool isReadonlyCall = AA->onlyReadsMemory(QueryCS); 671 672 SmallPtrSet<BasicBlock*, 64> Visited; 673 674 unsigned NumSortedEntries = Cache.size(); 675 DEBUG(AssertSorted(Cache)); 676 677 // Iterate while we still have blocks to update. 678 while (!DirtyBlocks.empty()) { 679 BasicBlock *DirtyBB = DirtyBlocks.back(); 680 DirtyBlocks.pop_back(); 681 682 // Already processed this block? 683 if (!Visited.insert(DirtyBB)) 684 continue; 685 686 // Do a binary search to see if we already have an entry for this block in 687 // the cache set. If so, find it. 688 DEBUG(AssertSorted(Cache, NumSortedEntries)); 689 NonLocalDepInfo::iterator Entry = 690 std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries, 691 NonLocalDepEntry(DirtyBB)); 692 if (Entry != Cache.begin() && prior(Entry)->getBB() == DirtyBB) 693 --Entry; 694 695 NonLocalDepEntry *ExistingResult = 0; 696 if (Entry != Cache.begin()+NumSortedEntries && 697 Entry->getBB() == DirtyBB) { 698 // If we already have an entry, and if it isn't already dirty, the block 699 // is done. 700 if (!Entry->getResult().isDirty()) 701 continue; 702 703 // Otherwise, remember this slot so we can update the value. 704 ExistingResult = &*Entry; 705 } 706 707 // If the dirty entry has a pointer, start scanning from it so we don't have 708 // to rescan the entire block. 709 BasicBlock::iterator ScanPos = DirtyBB->end(); 710 if (ExistingResult) { 711 if (Instruction *Inst = ExistingResult->getResult().getInst()) { 712 ScanPos = Inst; 713 // We're removing QueryInst's use of Inst. 714 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, 715 QueryCS.getInstruction()); 716 } 717 } 718 719 // Find out if this block has a local dependency for QueryInst. 720 MemDepResult Dep; 721 722 if (ScanPos != DirtyBB->begin()) { 723 Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB); 724 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { 725 // No dependence found. If this is the entry block of the function, it is 726 // a clobber, otherwise it is unknown. 727 Dep = MemDepResult::getNonLocal(); 728 } else { 729 Dep = MemDepResult::getNonFuncLocal(); 730 } 731 732 // If we had a dirty entry for the block, update it. Otherwise, just add 733 // a new entry. 734 if (ExistingResult) 735 ExistingResult->setResult(Dep); 736 else 737 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep)); 738 739 // If the block has a dependency (i.e. it isn't completely transparent to 740 // the value), remember the association! 741 if (!Dep.isNonLocal()) { 742 // Keep the ReverseNonLocalDeps map up to date so we can efficiently 743 // update this when we remove instructions. 744 if (Instruction *Inst = Dep.getInst()) 745 ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction()); 746 } else { 747 748 // If the block *is* completely transparent to the load, we need to check 749 // the predecessors of this block. Add them to our worklist. 750 for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI) 751 DirtyBlocks.push_back(*PI); 752 } 753 } 754 755 return Cache; 756 } 757 758 /// getNonLocalPointerDependency - Perform a full dependency query for an 759 /// access to the specified (non-volatile) memory location, returning the 760 /// set of instructions that either define or clobber the value. 761 /// 762 /// This method assumes the pointer has a "NonLocal" dependency within its 763 /// own block. 764 /// 765 void MemoryDependenceAnalysis:: 766 getNonLocalPointerDependency(const AliasAnalysis::Location &Loc, bool isLoad, 767 BasicBlock *FromBB, 768 SmallVectorImpl<NonLocalDepResult> &Result) { 769 assert(Loc.Ptr->getType()->isPointerTy() && 770 "Can't get pointer deps of a non-pointer!"); 771 Result.clear(); 772 773 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), TD); 774 775 // This is the set of blocks we've inspected, and the pointer we consider in 776 // each block. Because of critical edges, we currently bail out if querying 777 // a block with multiple different pointers. This can happen during PHI 778 // translation. 779 DenseMap<BasicBlock*, Value*> Visited; 780 if (!getNonLocalPointerDepFromBB(Address, Loc, isLoad, FromBB, 781 Result, Visited, true)) 782 return; 783 Result.clear(); 784 Result.push_back(NonLocalDepResult(FromBB, 785 MemDepResult::getUnknown(), 786 const_cast<Value *>(Loc.Ptr))); 787 } 788 789 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with 790 /// Pointer/PointeeSize using either cached information in Cache or by doing a 791 /// lookup (which may use dirty cache info if available). If we do a lookup, 792 /// add the result to the cache. 793 MemDepResult MemoryDependenceAnalysis:: 794 GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc, 795 bool isLoad, BasicBlock *BB, 796 NonLocalDepInfo *Cache, unsigned NumSortedEntries) { 797 798 // Do a binary search to see if we already have an entry for this block in 799 // the cache set. If so, find it. 800 NonLocalDepInfo::iterator Entry = 801 std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries, 802 NonLocalDepEntry(BB)); 803 if (Entry != Cache->begin() && (Entry-1)->getBB() == BB) 804 --Entry; 805 806 NonLocalDepEntry *ExistingResult = 0; 807 if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB) 808 ExistingResult = &*Entry; 809 810 // If we have a cached entry, and it is non-dirty, use it as the value for 811 // this dependency. 812 if (ExistingResult && !ExistingResult->getResult().isDirty()) { 813 ++NumCacheNonLocalPtr; 814 return ExistingResult->getResult(); 815 } 816 817 // Otherwise, we have to scan for the value. If we have a dirty cache 818 // entry, start scanning from its position, otherwise we scan from the end 819 // of the block. 820 BasicBlock::iterator ScanPos = BB->end(); 821 if (ExistingResult && ExistingResult->getResult().getInst()) { 822 assert(ExistingResult->getResult().getInst()->getParent() == BB && 823 "Instruction invalidated?"); 824 ++NumCacheDirtyNonLocalPtr; 825 ScanPos = ExistingResult->getResult().getInst(); 826 827 // Eliminating the dirty entry from 'Cache', so update the reverse info. 828 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 829 RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey); 830 } else { 831 ++NumUncacheNonLocalPtr; 832 } 833 834 // Scan the block for the dependency. 835 MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB); 836 837 // If we had a dirty entry for the block, update it. Otherwise, just add 838 // a new entry. 839 if (ExistingResult) 840 ExistingResult->setResult(Dep); 841 else 842 Cache->push_back(NonLocalDepEntry(BB, Dep)); 843 844 // If the block has a dependency (i.e. it isn't completely transparent to 845 // the value), remember the reverse association because we just added it 846 // to Cache! 847 if (!Dep.isDef() && !Dep.isClobber()) 848 return Dep; 849 850 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently 851 // update MemDep when we remove instructions. 852 Instruction *Inst = Dep.getInst(); 853 assert(Inst && "Didn't depend on anything?"); 854 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 855 ReverseNonLocalPtrDeps[Inst].insert(CacheKey); 856 return Dep; 857 } 858 859 /// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain 860 /// number of elements in the array that are already properly ordered. This is 861 /// optimized for the case when only a few entries are added. 862 static void 863 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, 864 unsigned NumSortedEntries) { 865 switch (Cache.size() - NumSortedEntries) { 866 case 0: 867 // done, no new entries. 868 break; 869 case 2: { 870 // Two new entries, insert the last one into place. 871 NonLocalDepEntry Val = Cache.back(); 872 Cache.pop_back(); 873 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 874 std::upper_bound(Cache.begin(), Cache.end()-1, Val); 875 Cache.insert(Entry, Val); 876 // FALL THROUGH. 877 } 878 case 1: 879 // One new entry, Just insert the new value at the appropriate position. 880 if (Cache.size() != 1) { 881 NonLocalDepEntry Val = Cache.back(); 882 Cache.pop_back(); 883 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = 884 std::upper_bound(Cache.begin(), Cache.end(), Val); 885 Cache.insert(Entry, Val); 886 } 887 break; 888 default: 889 // Added many values, do a full scale sort. 890 std::sort(Cache.begin(), Cache.end()); 891 break; 892 } 893 } 894 895 /// getNonLocalPointerDepFromBB - Perform a dependency query based on 896 /// pointer/pointeesize starting at the end of StartBB. Add any clobber/def 897 /// results to the results vector and keep track of which blocks are visited in 898 /// 'Visited'. 899 /// 900 /// This has special behavior for the first block queries (when SkipFirstBlock 901 /// is true). In this special case, it ignores the contents of the specified 902 /// block and starts returning dependence info for its predecessors. 903 /// 904 /// This function returns false on success, or true to indicate that it could 905 /// not compute dependence information for some reason. This should be treated 906 /// as a clobber dependence on the first instruction in the predecessor block. 907 bool MemoryDependenceAnalysis:: 908 getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, 909 const AliasAnalysis::Location &Loc, 910 bool isLoad, BasicBlock *StartBB, 911 SmallVectorImpl<NonLocalDepResult> &Result, 912 DenseMap<BasicBlock*, Value*> &Visited, 913 bool SkipFirstBlock) { 914 // Look up the cached info for Pointer. 915 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); 916 917 // Set up a temporary NLPI value. If the map doesn't yet have an entry for 918 // CacheKey, this value will be inserted as the associated value. Otherwise, 919 // it'll be ignored, and we'll have to check to see if the cached size and 920 // tbaa tag are consistent with the current query. 921 NonLocalPointerInfo InitialNLPI; 922 InitialNLPI.Size = Loc.Size; 923 InitialNLPI.TBAATag = Loc.TBAATag; 924 925 // Get the NLPI for CacheKey, inserting one into the map if it doesn't 926 // already have one. 927 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = 928 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI)); 929 NonLocalPointerInfo *CacheInfo = &Pair.first->second; 930 931 // If we already have a cache entry for this CacheKey, we may need to do some 932 // work to reconcile the cache entry and the current query. 933 if (!Pair.second) { 934 if (CacheInfo->Size < Loc.Size) { 935 // The query's Size is greater than the cached one. Throw out the 936 // cached data and proceed with the query at the greater size. 937 CacheInfo->Pair = BBSkipFirstBlockPair(); 938 CacheInfo->Size = Loc.Size; 939 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(), 940 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI) 941 if (Instruction *Inst = DI->getResult().getInst()) 942 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 943 CacheInfo->NonLocalDeps.clear(); 944 } else if (CacheInfo->Size > Loc.Size) { 945 // This query's Size is less than the cached one. Conservatively restart 946 // the query using the greater size. 947 return getNonLocalPointerDepFromBB(Pointer, 948 Loc.getWithNewSize(CacheInfo->Size), 949 isLoad, StartBB, Result, Visited, 950 SkipFirstBlock); 951 } 952 953 // If the query's TBAATag is inconsistent with the cached one, 954 // conservatively throw out the cached data and restart the query with 955 // no tag if needed. 956 if (CacheInfo->TBAATag != Loc.TBAATag) { 957 if (CacheInfo->TBAATag) { 958 CacheInfo->Pair = BBSkipFirstBlockPair(); 959 CacheInfo->TBAATag = 0; 960 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(), 961 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI) 962 if (Instruction *Inst = DI->getResult().getInst()) 963 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 964 CacheInfo->NonLocalDeps.clear(); 965 } 966 if (Loc.TBAATag) 967 return getNonLocalPointerDepFromBB(Pointer, Loc.getWithoutTBAATag(), 968 isLoad, StartBB, Result, Visited, 969 SkipFirstBlock); 970 } 971 } 972 973 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps; 974 975 // If we have valid cached information for exactly the block we are 976 // investigating, just return it with no recomputation. 977 if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { 978 // We have a fully cached result for this query then we can just return the 979 // cached results and populate the visited set. However, we have to verify 980 // that we don't already have conflicting results for these blocks. Check 981 // to ensure that if a block in the results set is in the visited set that 982 // it was for the same pointer query. 983 if (!Visited.empty()) { 984 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 985 I != E; ++I) { 986 DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB()); 987 if (VI == Visited.end() || VI->second == Pointer.getAddr()) 988 continue; 989 990 // We have a pointer mismatch in a block. Just return clobber, saying 991 // that something was clobbered in this result. We could also do a 992 // non-fully cached query, but there is little point in doing this. 993 return true; 994 } 995 } 996 997 Value *Addr = Pointer.getAddr(); 998 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); 999 I != E; ++I) { 1000 Visited.insert(std::make_pair(I->getBB(), Addr)); 1001 if (I->getResult().isNonLocal()) { 1002 continue; 1003 } 1004 1005 if (!DT) { 1006 Result.push_back(NonLocalDepResult(I->getBB(), 1007 MemDepResult::getUnknown(), 1008 Addr)); 1009 } else if (DT->isReachableFromEntry(I->getBB())) { 1010 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr)); 1011 } 1012 } 1013 ++NumCacheCompleteNonLocalPtr; 1014 return false; 1015 } 1016 1017 // Otherwise, either this is a new block, a block with an invalid cache 1018 // pointer or one that we're about to invalidate by putting more info into it 1019 // than its valid cache info. If empty, the result will be valid cache info, 1020 // otherwise it isn't. 1021 if (Cache->empty()) 1022 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); 1023 else 1024 CacheInfo->Pair = BBSkipFirstBlockPair(); 1025 1026 SmallVector<BasicBlock*, 32> Worklist; 1027 Worklist.push_back(StartBB); 1028 1029 // PredList used inside loop. 1030 SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList; 1031 1032 // Keep track of the entries that we know are sorted. Previously cached 1033 // entries will all be sorted. The entries we add we only sort on demand (we 1034 // don't insert every element into its sorted position). We know that we 1035 // won't get any reuse from currently inserted values, because we don't 1036 // revisit blocks after we insert info for them. 1037 unsigned NumSortedEntries = Cache->size(); 1038 DEBUG(AssertSorted(*Cache)); 1039 1040 while (!Worklist.empty()) { 1041 BasicBlock *BB = Worklist.pop_back_val(); 1042 1043 // Skip the first block if we have it. 1044 if (!SkipFirstBlock) { 1045 // Analyze the dependency of *Pointer in FromBB. See if we already have 1046 // been here. 1047 assert(Visited.count(BB) && "Should check 'visited' before adding to WL"); 1048 1049 // Get the dependency info for Pointer in BB. If we have cached 1050 // information, we will use it, otherwise we compute it. 1051 DEBUG(AssertSorted(*Cache, NumSortedEntries)); 1052 MemDepResult Dep = GetNonLocalInfoForBlock(Loc, isLoad, BB, Cache, 1053 NumSortedEntries); 1054 1055 // If we got a Def or Clobber, add this to the list of results. 1056 if (!Dep.isNonLocal()) { 1057 if (!DT) { 1058 Result.push_back(NonLocalDepResult(BB, 1059 MemDepResult::getUnknown(), 1060 Pointer.getAddr())); 1061 continue; 1062 } else if (DT->isReachableFromEntry(BB)) { 1063 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr())); 1064 continue; 1065 } 1066 } 1067 } 1068 1069 // If 'Pointer' is an instruction defined in this block, then we need to do 1070 // phi translation to change it into a value live in the predecessor block. 1071 // If not, we just add the predecessors to the worklist and scan them with 1072 // the same Pointer. 1073 if (!Pointer.NeedsPHITranslationFromBlock(BB)) { 1074 SkipFirstBlock = false; 1075 SmallVector<BasicBlock*, 16> NewBlocks; 1076 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) { 1077 // Verify that we haven't looked at this block yet. 1078 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 1079 InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr())); 1080 if (InsertRes.second) { 1081 // First time we've looked at *PI. 1082 NewBlocks.push_back(*PI); 1083 continue; 1084 } 1085 1086 // If we have seen this block before, but it was with a different 1087 // pointer then we have a phi translation failure and we have to treat 1088 // this as a clobber. 1089 if (InsertRes.first->second != Pointer.getAddr()) { 1090 // Make sure to clean up the Visited map before continuing on to 1091 // PredTranslationFailure. 1092 for (unsigned i = 0; i < NewBlocks.size(); i++) 1093 Visited.erase(NewBlocks[i]); 1094 goto PredTranslationFailure; 1095 } 1096 } 1097 Worklist.append(NewBlocks.begin(), NewBlocks.end()); 1098 continue; 1099 } 1100 1101 // We do need to do phi translation, if we know ahead of time we can't phi 1102 // translate this value, don't even try. 1103 if (!Pointer.IsPotentiallyPHITranslatable()) 1104 goto PredTranslationFailure; 1105 1106 // We may have added values to the cache list before this PHI translation. 1107 // If so, we haven't done anything to ensure that the cache remains sorted. 1108 // Sort it now (if needed) so that recursive invocations of 1109 // getNonLocalPointerDepFromBB and other routines that could reuse the cache 1110 // value will only see properly sorted cache arrays. 1111 if (Cache && NumSortedEntries != Cache->size()) { 1112 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1113 NumSortedEntries = Cache->size(); 1114 } 1115 Cache = 0; 1116 1117 PredList.clear(); 1118 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) { 1119 BasicBlock *Pred = *PI; 1120 PredList.push_back(std::make_pair(Pred, Pointer)); 1121 1122 // Get the PHI translated pointer in this predecessor. This can fail if 1123 // not translatable, in which case the getAddr() returns null. 1124 PHITransAddr &PredPointer = PredList.back().second; 1125 PredPointer.PHITranslateValue(BB, Pred, 0); 1126 1127 Value *PredPtrVal = PredPointer.getAddr(); 1128 1129 // Check to see if we have already visited this pred block with another 1130 // pointer. If so, we can't do this lookup. This failure can occur 1131 // with PHI translation when a critical edge exists and the PHI node in 1132 // the successor translates to a pointer value different than the 1133 // pointer the block was first analyzed with. 1134 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> 1135 InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal)); 1136 1137 if (!InsertRes.second) { 1138 // We found the pred; take it off the list of preds to visit. 1139 PredList.pop_back(); 1140 1141 // If the predecessor was visited with PredPtr, then we already did 1142 // the analysis and can ignore it. 1143 if (InsertRes.first->second == PredPtrVal) 1144 continue; 1145 1146 // Otherwise, the block was previously analyzed with a different 1147 // pointer. We can't represent the result of this case, so we just 1148 // treat this as a phi translation failure. 1149 1150 // Make sure to clean up the Visited map before continuing on to 1151 // PredTranslationFailure. 1152 for (unsigned i = 0, n = PredList.size(); i < n; ++i) 1153 Visited.erase(PredList[i].first); 1154 1155 goto PredTranslationFailure; 1156 } 1157 } 1158 1159 // Actually process results here; this need to be a separate loop to avoid 1160 // calling getNonLocalPointerDepFromBB for blocks we don't want to return 1161 // any results for. (getNonLocalPointerDepFromBB will modify our 1162 // datastructures in ways the code after the PredTranslationFailure label 1163 // doesn't expect.) 1164 for (unsigned i = 0, n = PredList.size(); i < n; ++i) { 1165 BasicBlock *Pred = PredList[i].first; 1166 PHITransAddr &PredPointer = PredList[i].second; 1167 Value *PredPtrVal = PredPointer.getAddr(); 1168 1169 bool CanTranslate = true; 1170 // If PHI translation was unable to find an available pointer in this 1171 // predecessor, then we have to assume that the pointer is clobbered in 1172 // that predecessor. We can still do PRE of the load, which would insert 1173 // a computation of the pointer in this predecessor. 1174 if (PredPtrVal == 0) 1175 CanTranslate = false; 1176 1177 // FIXME: it is entirely possible that PHI translating will end up with 1178 // the same value. Consider PHI translating something like: 1179 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need* 1180 // to recurse here, pedantically speaking. 1181 1182 // If getNonLocalPointerDepFromBB fails here, that means the cached 1183 // result conflicted with the Visited list; we have to conservatively 1184 // assume it is unknown, but this also does not block PRE of the load. 1185 if (!CanTranslate || 1186 getNonLocalPointerDepFromBB(PredPointer, 1187 Loc.getWithNewPtr(PredPtrVal), 1188 isLoad, Pred, 1189 Result, Visited)) { 1190 // Add the entry to the Result list. 1191 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal); 1192 Result.push_back(Entry); 1193 1194 // Since we had a phi translation failure, the cache for CacheKey won't 1195 // include all of the entries that we need to immediately satisfy future 1196 // queries. Mark this in NonLocalPointerDeps by setting the 1197 // BBSkipFirstBlockPair pointer to null. This requires reuse of the 1198 // cached value to do more work but not miss the phi trans failure. 1199 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey]; 1200 NLPI.Pair = BBSkipFirstBlockPair(); 1201 continue; 1202 } 1203 } 1204 1205 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. 1206 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1207 Cache = &CacheInfo->NonLocalDeps; 1208 NumSortedEntries = Cache->size(); 1209 1210 // Since we did phi translation, the "Cache" set won't contain all of the 1211 // results for the query. This is ok (we can still use it to accelerate 1212 // specific block queries) but we can't do the fastpath "return all 1213 // results from the set" Clear out the indicator for this. 1214 CacheInfo->Pair = BBSkipFirstBlockPair(); 1215 SkipFirstBlock = false; 1216 continue; 1217 1218 PredTranslationFailure: 1219 // The following code is "failure"; we can't produce a sane translation 1220 // for the given block. It assumes that we haven't modified any of 1221 // our datastructures while processing the current block. 1222 1223 if (Cache == 0) { 1224 // Refresh the CacheInfo/Cache pointer if it got invalidated. 1225 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1226 Cache = &CacheInfo->NonLocalDeps; 1227 NumSortedEntries = Cache->size(); 1228 } 1229 1230 // Since we failed phi translation, the "Cache" set won't contain all of the 1231 // results for the query. This is ok (we can still use it to accelerate 1232 // specific block queries) but we can't do the fastpath "return all 1233 // results from the set". Clear out the indicator for this. 1234 CacheInfo->Pair = BBSkipFirstBlockPair(); 1235 1236 // If *nothing* works, mark the pointer as unknown. 1237 // 1238 // If this is the magic first block, return this as a clobber of the whole 1239 // incoming value. Since we can't phi translate to one of the predecessors, 1240 // we have to bail out. 1241 if (SkipFirstBlock) 1242 return true; 1243 1244 for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) { 1245 assert(I != Cache->rend() && "Didn't find current block??"); 1246 if (I->getBB() != BB) 1247 continue; 1248 1249 assert(I->getResult().isNonLocal() && 1250 "Should only be here with transparent block"); 1251 I->setResult(MemDepResult::getUnknown()); 1252 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), 1253 Pointer.getAddr())); 1254 break; 1255 } 1256 } 1257 1258 // Okay, we're done now. If we added new values to the cache, re-sort it. 1259 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1260 DEBUG(AssertSorted(*Cache)); 1261 return false; 1262 } 1263 1264 /// RemoveCachedNonLocalPointerDependencies - If P exists in 1265 /// CachedNonLocalPointerInfo, remove it. 1266 void MemoryDependenceAnalysis:: 1267 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) { 1268 CachedNonLocalPointerInfo::iterator It = 1269 NonLocalPointerDeps.find(P); 1270 if (It == NonLocalPointerDeps.end()) return; 1271 1272 // Remove all of the entries in the BB->val map. This involves removing 1273 // instructions from the reverse map. 1274 NonLocalDepInfo &PInfo = It->second.NonLocalDeps; 1275 1276 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { 1277 Instruction *Target = PInfo[i].getResult().getInst(); 1278 if (Target == 0) continue; // Ignore non-local dep results. 1279 assert(Target->getParent() == PInfo[i].getBB()); 1280 1281 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1282 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); 1283 } 1284 1285 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). 1286 NonLocalPointerDeps.erase(It); 1287 } 1288 1289 1290 /// invalidateCachedPointerInfo - This method is used to invalidate cached 1291 /// information about the specified pointer, because it may be too 1292 /// conservative in memdep. This is an optional call that can be used when 1293 /// the client detects an equivalence between the pointer and some other 1294 /// value and replaces the other value with ptr. This can make Ptr available 1295 /// in more places that cached info does not necessarily keep. 1296 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) { 1297 // If Ptr isn't really a pointer, just ignore it. 1298 if (!Ptr->getType()->isPointerTy()) return; 1299 // Flush store info for the pointer. 1300 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false)); 1301 // Flush load info for the pointer. 1302 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true)); 1303 } 1304 1305 /// invalidateCachedPredecessors - Clear the PredIteratorCache info. 1306 /// This needs to be done when the CFG changes, e.g., due to splitting 1307 /// critical edges. 1308 void MemoryDependenceAnalysis::invalidateCachedPredecessors() { 1309 PredCache->clear(); 1310 } 1311 1312 /// removeInstruction - Remove an instruction from the dependence analysis, 1313 /// updating the dependence of instructions that previously depended on it. 1314 /// This method attempts to keep the cache coherent using the reverse map. 1315 void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) { 1316 // Walk through the Non-local dependencies, removing this one as the value 1317 // for any cached queries. 1318 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst); 1319 if (NLDI != NonLocalDeps.end()) { 1320 NonLocalDepInfo &BlockMap = NLDI->second.first; 1321 for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end(); 1322 DI != DE; ++DI) 1323 if (Instruction *Inst = DI->getResult().getInst()) 1324 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); 1325 NonLocalDeps.erase(NLDI); 1326 } 1327 1328 // If we have a cached local dependence query for this instruction, remove it. 1329 // 1330 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); 1331 if (LocalDepEntry != LocalDeps.end()) { 1332 // Remove us from DepInst's reverse set now that the local dep info is gone. 1333 if (Instruction *Inst = LocalDepEntry->second.getInst()) 1334 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst); 1335 1336 // Remove this local dependency info. 1337 LocalDeps.erase(LocalDepEntry); 1338 } 1339 1340 // If we have any cached pointer dependencies on this instruction, remove 1341 // them. If the instruction has non-pointer type, then it can't be a pointer 1342 // base. 1343 1344 // Remove it from both the load info and the store info. The instruction 1345 // can't be in either of these maps if it is non-pointer. 1346 if (RemInst->getType()->isPointerTy()) { 1347 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); 1348 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); 1349 } 1350 1351 // Loop over all of the things that depend on the instruction we're removing. 1352 // 1353 SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd; 1354 1355 // If we find RemInst as a clobber or Def in any of the maps for other values, 1356 // we need to replace its entry with a dirty version of the instruction after 1357 // it. If RemInst is a terminator, we use a null dirty value. 1358 // 1359 // Using a dirty version of the instruction after RemInst saves having to scan 1360 // the entire block to get to this point. 1361 MemDepResult NewDirtyVal; 1362 if (!RemInst->isTerminator()) 1363 NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst)); 1364 1365 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); 1366 if (ReverseDepIt != ReverseLocalDeps.end()) { 1367 SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second; 1368 // RemInst can't be the terminator if it has local stuff depending on it. 1369 assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) && 1370 "Nothing can locally depend on a terminator"); 1371 1372 for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(), 1373 E = ReverseDeps.end(); I != E; ++I) { 1374 Instruction *InstDependingOnRemInst = *I; 1375 assert(InstDependingOnRemInst != RemInst && 1376 "Already removed our local dep info"); 1377 1378 LocalDeps[InstDependingOnRemInst] = NewDirtyVal; 1379 1380 // Make sure to remember that new things depend on NewDepInst. 1381 assert(NewDirtyVal.getInst() && "There is no way something else can have " 1382 "a local dep on this if it is a terminator!"); 1383 ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(), 1384 InstDependingOnRemInst)); 1385 } 1386 1387 ReverseLocalDeps.erase(ReverseDepIt); 1388 1389 // Add new reverse deps after scanning the set, to avoid invalidating the 1390 // 'ReverseDeps' reference. 1391 while (!ReverseDepsToAdd.empty()) { 1392 ReverseLocalDeps[ReverseDepsToAdd.back().first] 1393 .insert(ReverseDepsToAdd.back().second); 1394 ReverseDepsToAdd.pop_back(); 1395 } 1396 } 1397 1398 ReverseDepIt = ReverseNonLocalDeps.find(RemInst); 1399 if (ReverseDepIt != ReverseNonLocalDeps.end()) { 1400 SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second; 1401 for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end(); 1402 I != E; ++I) { 1403 assert(*I != RemInst && "Already removed NonLocalDep info for RemInst"); 1404 1405 PerInstNLInfo &INLD = NonLocalDeps[*I]; 1406 // The information is now dirty! 1407 INLD.second = true; 1408 1409 for (NonLocalDepInfo::iterator DI = INLD.first.begin(), 1410 DE = INLD.first.end(); DI != DE; ++DI) { 1411 if (DI->getResult().getInst() != RemInst) continue; 1412 1413 // Convert to a dirty entry for the subsequent instruction. 1414 DI->setResult(NewDirtyVal); 1415 1416 if (Instruction *NextI = NewDirtyVal.getInst()) 1417 ReverseDepsToAdd.push_back(std::make_pair(NextI, *I)); 1418 } 1419 } 1420 1421 ReverseNonLocalDeps.erase(ReverseDepIt); 1422 1423 // Add new reverse deps after scanning the set, to avoid invalidating 'Set' 1424 while (!ReverseDepsToAdd.empty()) { 1425 ReverseNonLocalDeps[ReverseDepsToAdd.back().first] 1426 .insert(ReverseDepsToAdd.back().second); 1427 ReverseDepsToAdd.pop_back(); 1428 } 1429 } 1430 1431 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a 1432 // value in the NonLocalPointerDeps info. 1433 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = 1434 ReverseNonLocalPtrDeps.find(RemInst); 1435 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { 1436 SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second; 1437 SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd; 1438 1439 for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(), 1440 E = Set.end(); I != E; ++I) { 1441 ValueIsLoadPair P = *I; 1442 assert(P.getPointer() != RemInst && 1443 "Already removed NonLocalPointerDeps info for RemInst"); 1444 1445 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps; 1446 1447 // The cache is not valid for any specific block anymore. 1448 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair(); 1449 1450 // Update any entries for RemInst to use the instruction after it. 1451 for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end(); 1452 DI != DE; ++DI) { 1453 if (DI->getResult().getInst() != RemInst) continue; 1454 1455 // Convert to a dirty entry for the subsequent instruction. 1456 DI->setResult(NewDirtyVal); 1457 1458 if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) 1459 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); 1460 } 1461 1462 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its 1463 // subsequent value may invalidate the sortedness. 1464 std::sort(NLPDI.begin(), NLPDI.end()); 1465 } 1466 1467 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); 1468 1469 while (!ReversePtrDepsToAdd.empty()) { 1470 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first] 1471 .insert(ReversePtrDepsToAdd.back().second); 1472 ReversePtrDepsToAdd.pop_back(); 1473 } 1474 } 1475 1476 1477 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"); 1478 AA->deleteValue(RemInst); 1479 DEBUG(verifyRemoved(RemInst)); 1480 } 1481 /// verifyRemoved - Verify that the specified instruction does not occur 1482 /// in our internal data structures. 1483 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const { 1484 for (LocalDepMapType::const_iterator I = LocalDeps.begin(), 1485 E = LocalDeps.end(); I != E; ++I) { 1486 assert(I->first != D && "Inst occurs in data structures"); 1487 assert(I->second.getInst() != D && 1488 "Inst occurs in data structures"); 1489 } 1490 1491 for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(), 1492 E = NonLocalPointerDeps.end(); I != E; ++I) { 1493 assert(I->first.getPointer() != D && "Inst occurs in NLPD map key"); 1494 const NonLocalDepInfo &Val = I->second.NonLocalDeps; 1495 for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end(); 1496 II != E; ++II) 1497 assert(II->getResult().getInst() != D && "Inst occurs as NLPD value"); 1498 } 1499 1500 for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(), 1501 E = NonLocalDeps.end(); I != E; ++I) { 1502 assert(I->first != D && "Inst occurs in data structures"); 1503 const PerInstNLInfo &INLD = I->second; 1504 for (NonLocalDepInfo::const_iterator II = INLD.first.begin(), 1505 EE = INLD.first.end(); II != EE; ++II) 1506 assert(II->getResult().getInst() != D && "Inst occurs in data structures"); 1507 } 1508 1509 for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(), 1510 E = ReverseLocalDeps.end(); I != E; ++I) { 1511 assert(I->first != D && "Inst occurs in data structures"); 1512 for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(), 1513 EE = I->second.end(); II != EE; ++II) 1514 assert(*II != D && "Inst occurs in data structures"); 1515 } 1516 1517 for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(), 1518 E = ReverseNonLocalDeps.end(); 1519 I != E; ++I) { 1520 assert(I->first != D && "Inst occurs in data structures"); 1521 for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(), 1522 EE = I->second.end(); II != EE; ++II) 1523 assert(*II != D && "Inst occurs in data structures"); 1524 } 1525 1526 for (ReverseNonLocalPtrDepTy::const_iterator 1527 I = ReverseNonLocalPtrDeps.begin(), 1528 E = ReverseNonLocalPtrDeps.end(); I != E; ++I) { 1529 assert(I->first != D && "Inst occurs in rev NLPD map"); 1530 1531 for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(), 1532 E = I->second.end(); II != E; ++II) 1533 assert(*II != ValueIsLoadPair(D, false) && 1534 *II != ValueIsLoadPair(D, true) && 1535 "Inst occurs in ReverseNonLocalPtrDeps map"); 1536 } 1537 1538 } 1539