Home | History | Annotate | Download | only in Analysis
      1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #define DEBUG_TYPE "tti"
     11 #include "llvm/Analysis/TargetTransformInfo.h"
     12 #include "llvm/IR/DataLayout.h"
     13 #include "llvm/IR/Operator.h"
     14 #include "llvm/IR/Instruction.h"
     15 #include "llvm/IR/IntrinsicInst.h"
     16 #include "llvm/IR/Instructions.h"
     17 #include "llvm/Support/CallSite.h"
     18 #include "llvm/Support/ErrorHandling.h"
     19 
     20 using namespace llvm;
     21 
     22 // Setup the analysis group to manage the TargetTransformInfo passes.
     23 INITIALIZE_ANALYSIS_GROUP(TargetTransformInfo, "Target Information", NoTTI)
     24 char TargetTransformInfo::ID = 0;
     25 
     26 TargetTransformInfo::~TargetTransformInfo() {
     27 }
     28 
     29 void TargetTransformInfo::pushTTIStack(Pass *P) {
     30   TopTTI = this;
     31   PrevTTI = &P->getAnalysis<TargetTransformInfo>();
     32 
     33   // Walk up the chain and update the top TTI pointer.
     34   for (TargetTransformInfo *PTTI = PrevTTI; PTTI; PTTI = PTTI->PrevTTI)
     35     PTTI->TopTTI = this;
     36 }
     37 
     38 void TargetTransformInfo::popTTIStack() {
     39   TopTTI = 0;
     40 
     41   // Walk up the chain and update the top TTI pointer.
     42   for (TargetTransformInfo *PTTI = PrevTTI; PTTI; PTTI = PTTI->PrevTTI)
     43     PTTI->TopTTI = PrevTTI;
     44 
     45   PrevTTI = 0;
     46 }
     47 
     48 void TargetTransformInfo::getAnalysisUsage(AnalysisUsage &AU) const {
     49   AU.addRequired<TargetTransformInfo>();
     50 }
     51 
     52 unsigned TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty,
     53                                                Type *OpTy) const {
     54   return PrevTTI->getOperationCost(Opcode, Ty, OpTy);
     55 }
     56 
     57 unsigned TargetTransformInfo::getGEPCost(
     58     const Value *Ptr, ArrayRef<const Value *> Operands) const {
     59   return PrevTTI->getGEPCost(Ptr, Operands);
     60 }
     61 
     62 unsigned TargetTransformInfo::getCallCost(FunctionType *FTy,
     63                                           int NumArgs) const {
     64   return PrevTTI->getCallCost(FTy, NumArgs);
     65 }
     66 
     67 unsigned TargetTransformInfo::getCallCost(const Function *F,
     68                                           int NumArgs) const {
     69   return PrevTTI->getCallCost(F, NumArgs);
     70 }
     71 
     72 unsigned TargetTransformInfo::getCallCost(
     73     const Function *F, ArrayRef<const Value *> Arguments) const {
     74   return PrevTTI->getCallCost(F, Arguments);
     75 }
     76 
     77 unsigned TargetTransformInfo::getIntrinsicCost(
     78     Intrinsic::ID IID, Type *RetTy, ArrayRef<Type *> ParamTys) const {
     79   return PrevTTI->getIntrinsicCost(IID, RetTy, ParamTys);
     80 }
     81 
     82 unsigned TargetTransformInfo::getIntrinsicCost(
     83     Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments) const {
     84   return PrevTTI->getIntrinsicCost(IID, RetTy, Arguments);
     85 }
     86 
     87 unsigned TargetTransformInfo::getUserCost(const User *U) const {
     88   return PrevTTI->getUserCost(U);
     89 }
     90 
     91 bool TargetTransformInfo::hasBranchDivergence() const {
     92   return PrevTTI->hasBranchDivergence();
     93 }
     94 
     95 bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
     96   return PrevTTI->isLoweredToCall(F);
     97 }
     98 
     99 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
    100   return PrevTTI->isLegalAddImmediate(Imm);
    101 }
    102 
    103 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
    104   return PrevTTI->isLegalICmpImmediate(Imm);
    105 }
    106 
    107 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
    108                                                 int64_t BaseOffset,
    109                                                 bool HasBaseReg,
    110                                                 int64_t Scale) const {
    111   return PrevTTI->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
    112                                         Scale);
    113 }
    114 
    115 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
    116                                               int64_t BaseOffset,
    117                                               bool HasBaseReg,
    118                                               int64_t Scale) const {
    119   return PrevTTI->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
    120                                        Scale);
    121 }
    122 
    123 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
    124   return PrevTTI->isTruncateFree(Ty1, Ty2);
    125 }
    126 
    127 bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
    128   return PrevTTI->isTypeLegal(Ty);
    129 }
    130 
    131 unsigned TargetTransformInfo::getJumpBufAlignment() const {
    132   return PrevTTI->getJumpBufAlignment();
    133 }
    134 
    135 unsigned TargetTransformInfo::getJumpBufSize() const {
    136   return PrevTTI->getJumpBufSize();
    137 }
    138 
    139 bool TargetTransformInfo::shouldBuildLookupTables() const {
    140   return PrevTTI->shouldBuildLookupTables();
    141 }
    142 
    143 TargetTransformInfo::PopcntSupportKind
    144 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
    145   return PrevTTI->getPopcntSupport(IntTyWidthInBit);
    146 }
    147 
    148 unsigned TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const {
    149   return PrevTTI->getIntImmCost(Imm, Ty);
    150 }
    151 
    152 unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const {
    153   return PrevTTI->getNumberOfRegisters(Vector);
    154 }
    155 
    156 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const {
    157   return PrevTTI->getRegisterBitWidth(Vector);
    158 }
    159 
    160 unsigned TargetTransformInfo::getMaximumUnrollFactor() const {
    161   return PrevTTI->getMaximumUnrollFactor();
    162 }
    163 
    164 unsigned TargetTransformInfo::getArithmeticInstrCost(unsigned Opcode,
    165                                                 Type *Ty,
    166                                                 OperandValueKind Op1Info,
    167                                                 OperandValueKind Op2Info) const {
    168   return PrevTTI->getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
    169 }
    170 
    171 unsigned TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Tp,
    172                                              int Index, Type *SubTp) const {
    173   return PrevTTI->getShuffleCost(Kind, Tp, Index, SubTp);
    174 }
    175 
    176 unsigned TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst,
    177                                                Type *Src) const {
    178   return PrevTTI->getCastInstrCost(Opcode, Dst, Src);
    179 }
    180 
    181 unsigned TargetTransformInfo::getCFInstrCost(unsigned Opcode) const {
    182   return PrevTTI->getCFInstrCost(Opcode);
    183 }
    184 
    185 unsigned TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
    186                                                  Type *CondTy) const {
    187   return PrevTTI->getCmpSelInstrCost(Opcode, ValTy, CondTy);
    188 }
    189 
    190 unsigned TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val,
    191                                                  unsigned Index) const {
    192   return PrevTTI->getVectorInstrCost(Opcode, Val, Index);
    193 }
    194 
    195 unsigned TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src,
    196                                               unsigned Alignment,
    197                                               unsigned AddressSpace) const {
    198   return PrevTTI->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
    199   ;
    200 }
    201 
    202 unsigned
    203 TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID,
    204                                            Type *RetTy,
    205                                            ArrayRef<Type *> Tys) const {
    206   return PrevTTI->getIntrinsicInstrCost(ID, RetTy, Tys);
    207 }
    208 
    209 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
    210   return PrevTTI->getNumberOfParts(Tp);
    211 }
    212 
    213 unsigned TargetTransformInfo::getAddressComputationCost(Type *Tp,
    214                                                         bool IsComplex) const {
    215   return PrevTTI->getAddressComputationCost(Tp, IsComplex);
    216 }
    217 
    218 namespace {
    219 
    220 struct NoTTI : ImmutablePass, TargetTransformInfo {
    221   const DataLayout *DL;
    222 
    223   NoTTI() : ImmutablePass(ID), DL(0) {
    224     initializeNoTTIPass(*PassRegistry::getPassRegistry());
    225   }
    226 
    227   virtual void initializePass() {
    228     // Note that this subclass is special, and must *not* call initializeTTI as
    229     // it does not chain.
    230     TopTTI = this;
    231     PrevTTI = 0;
    232     DL = getAnalysisIfAvailable<DataLayout>();
    233   }
    234 
    235   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    236     // Note that this subclass is special, and must *not* call
    237     // TTI::getAnalysisUsage as it breaks the recursion.
    238   }
    239 
    240   /// Pass identification.
    241   static char ID;
    242 
    243   /// Provide necessary pointer adjustments for the two base classes.
    244   virtual void *getAdjustedAnalysisPointer(const void *ID) {
    245     if (ID == &TargetTransformInfo::ID)
    246       return (TargetTransformInfo*)this;
    247     return this;
    248   }
    249 
    250   unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) const {
    251     switch (Opcode) {
    252     default:
    253       // By default, just classify everything as 'basic'.
    254       return TCC_Basic;
    255 
    256     case Instruction::GetElementPtr:
    257       llvm_unreachable("Use getGEPCost for GEP operations!");
    258 
    259     case Instruction::BitCast:
    260       assert(OpTy && "Cast instructions must provide the operand type");
    261       if (Ty == OpTy || (Ty->isPointerTy() && OpTy->isPointerTy()))
    262         // Identity and pointer-to-pointer casts are free.
    263         return TCC_Free;
    264 
    265       // Otherwise, the default basic cost is used.
    266       return TCC_Basic;
    267 
    268     case Instruction::IntToPtr:
    269       // An inttoptr cast is free so long as the input is a legal integer type
    270       // which doesn't contain values outside the range of a pointer.
    271       if (DL && DL->isLegalInteger(OpTy->getScalarSizeInBits()) &&
    272           OpTy->getScalarSizeInBits() <= DL->getPointerSizeInBits())
    273         return TCC_Free;
    274 
    275       // Otherwise it's not a no-op.
    276       return TCC_Basic;
    277 
    278     case Instruction::PtrToInt:
    279       // A ptrtoint cast is free so long as the result is large enough to store
    280       // the pointer, and a legal integer type.
    281       if (DL && DL->isLegalInteger(Ty->getScalarSizeInBits()) &&
    282           Ty->getScalarSizeInBits() >= DL->getPointerSizeInBits())
    283         return TCC_Free;
    284 
    285       // Otherwise it's not a no-op.
    286       return TCC_Basic;
    287 
    288     case Instruction::Trunc:
    289       // trunc to a native type is free (assuming the target has compare and
    290       // shift-right of the same width).
    291       if (DL && DL->isLegalInteger(DL->getTypeSizeInBits(Ty)))
    292         return TCC_Free;
    293 
    294       return TCC_Basic;
    295     }
    296   }
    297 
    298   unsigned getGEPCost(const Value *Ptr,
    299                       ArrayRef<const Value *> Operands) const {
    300     // In the basic model, we just assume that all-constant GEPs will be folded
    301     // into their uses via addressing modes.
    302     for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx)
    303       if (!isa<Constant>(Operands[Idx]))
    304         return TCC_Basic;
    305 
    306     return TCC_Free;
    307   }
    308 
    309   unsigned getCallCost(FunctionType *FTy, int NumArgs = -1) const {
    310     assert(FTy && "FunctionType must be provided to this routine.");
    311 
    312     // The target-independent implementation just measures the size of the
    313     // function by approximating that each argument will take on average one
    314     // instruction to prepare.
    315 
    316     if (NumArgs < 0)
    317       // Set the argument number to the number of explicit arguments in the
    318       // function.
    319       NumArgs = FTy->getNumParams();
    320 
    321     return TCC_Basic * (NumArgs + 1);
    322   }
    323 
    324   unsigned getCallCost(const Function *F, int NumArgs = -1) const {
    325     assert(F && "A concrete function must be provided to this routine.");
    326 
    327     if (NumArgs < 0)
    328       // Set the argument number to the number of explicit arguments in the
    329       // function.
    330       NumArgs = F->arg_size();
    331 
    332     if (Intrinsic::ID IID = (Intrinsic::ID)F->getIntrinsicID()) {
    333       FunctionType *FTy = F->getFunctionType();
    334       SmallVector<Type *, 8> ParamTys(FTy->param_begin(), FTy->param_end());
    335       return TopTTI->getIntrinsicCost(IID, FTy->getReturnType(), ParamTys);
    336     }
    337 
    338     if (!TopTTI->isLoweredToCall(F))
    339       return TCC_Basic; // Give a basic cost if it will be lowered directly.
    340 
    341     return TopTTI->getCallCost(F->getFunctionType(), NumArgs);
    342   }
    343 
    344   unsigned getCallCost(const Function *F,
    345                        ArrayRef<const Value *> Arguments) const {
    346     // Simply delegate to generic handling of the call.
    347     // FIXME: We should use instsimplify or something else to catch calls which
    348     // will constant fold with these arguments.
    349     return TopTTI->getCallCost(F, Arguments.size());
    350   }
    351 
    352   unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
    353                             ArrayRef<Type *> ParamTys) const {
    354     switch (IID) {
    355     default:
    356       // Intrinsics rarely (if ever) have normal argument setup constraints.
    357       // Model them as having a basic instruction cost.
    358       // FIXME: This is wrong for libc intrinsics.
    359       return TCC_Basic;
    360 
    361     case Intrinsic::dbg_declare:
    362     case Intrinsic::dbg_value:
    363     case Intrinsic::invariant_start:
    364     case Intrinsic::invariant_end:
    365     case Intrinsic::lifetime_start:
    366     case Intrinsic::lifetime_end:
    367     case Intrinsic::objectsize:
    368     case Intrinsic::ptr_annotation:
    369     case Intrinsic::var_annotation:
    370       // These intrinsics don't actually represent code after lowering.
    371       return TCC_Free;
    372     }
    373   }
    374 
    375   unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
    376                             ArrayRef<const Value *> Arguments) const {
    377     // Delegate to the generic intrinsic handling code. This mostly provides an
    378     // opportunity for targets to (for example) special case the cost of
    379     // certain intrinsics based on constants used as arguments.
    380     SmallVector<Type *, 8> ParamTys;
    381     ParamTys.reserve(Arguments.size());
    382     for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
    383       ParamTys.push_back(Arguments[Idx]->getType());
    384     return TopTTI->getIntrinsicCost(IID, RetTy, ParamTys);
    385   }
    386 
    387   unsigned getUserCost(const User *U) const {
    388     if (isa<PHINode>(U))
    389       return TCC_Free; // Model all PHI nodes as free.
    390 
    391     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U))
    392       // In the basic model we just assume that all-constant GEPs will be
    393       // folded into their uses via addressing modes.
    394       return GEP->hasAllConstantIndices() ? TCC_Free : TCC_Basic;
    395 
    396     if (ImmutableCallSite CS = U) {
    397       const Function *F = CS.getCalledFunction();
    398       if (!F) {
    399         // Just use the called value type.
    400         Type *FTy = CS.getCalledValue()->getType()->getPointerElementType();
    401         return TopTTI->getCallCost(cast<FunctionType>(FTy), CS.arg_size());
    402       }
    403 
    404       SmallVector<const Value *, 8> Arguments;
    405       for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(),
    406                                            AE = CS.arg_end();
    407            AI != AE; ++AI)
    408         Arguments.push_back(*AI);
    409 
    410       return TopTTI->getCallCost(F, Arguments);
    411     }
    412 
    413     if (const CastInst *CI = dyn_cast<CastInst>(U)) {
    414       // Result of a cmp instruction is often extended (to be used by other
    415       // cmp instructions, logical or return instructions). These are usually
    416       // nop on most sane targets.
    417       if (isa<CmpInst>(CI->getOperand(0)))
    418         return TCC_Free;
    419     }
    420 
    421     // Otherwise delegate to the fully generic implementations.
    422     return getOperationCost(Operator::getOpcode(U), U->getType(),
    423                             U->getNumOperands() == 1 ?
    424                                 U->getOperand(0)->getType() : 0);
    425   }
    426 
    427   bool hasBranchDivergence() const { return false; }
    428 
    429   bool isLoweredToCall(const Function *F) const {
    430     // FIXME: These should almost certainly not be handled here, and instead
    431     // handled with the help of TLI or the target itself. This was largely
    432     // ported from existing analysis heuristics here so that such refactorings
    433     // can take place in the future.
    434 
    435     if (F->isIntrinsic())
    436       return false;
    437 
    438     if (F->hasLocalLinkage() || !F->hasName())
    439       return true;
    440 
    441     StringRef Name = F->getName();
    442 
    443     // These will all likely lower to a single selection DAG node.
    444     if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
    445         Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" ||
    446         Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" ||
    447         Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl")
    448       return false;
    449 
    450     // These are all likely to be optimized into something smaller.
    451     if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" ||
    452         Name == "exp2l" || Name == "exp2f" || Name == "floor" || Name ==
    453         "floorf" || Name == "ceil" || Name == "round" || Name == "ffs" ||
    454         Name == "ffsl" || Name == "abs" || Name == "labs" || Name == "llabs")
    455       return false;
    456 
    457     return true;
    458   }
    459 
    460   bool isLegalAddImmediate(int64_t Imm) const {
    461     return false;
    462   }
    463 
    464   bool isLegalICmpImmediate(int64_t Imm) const {
    465     return false;
    466   }
    467 
    468   bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
    469                              bool HasBaseReg, int64_t Scale) const {
    470     // Guess that reg+reg addressing is allowed. This heuristic is taken from
    471     // the implementation of LSR.
    472     return !BaseGV && BaseOffset == 0 && Scale <= 1;
    473   }
    474 
    475   int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
    476                            bool HasBaseReg, int64_t Scale) const {
    477     // Guess that all legal addressing mode are free.
    478     if(isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale))
    479       return 0;
    480     return -1;
    481   }
    482 
    483 
    484   bool isTruncateFree(Type *Ty1, Type *Ty2) const {
    485     return false;
    486   }
    487 
    488   bool isTypeLegal(Type *Ty) const {
    489     return false;
    490   }
    491 
    492   unsigned getJumpBufAlignment() const {
    493     return 0;
    494   }
    495 
    496   unsigned getJumpBufSize() const {
    497     return 0;
    498   }
    499 
    500   bool shouldBuildLookupTables() const {
    501     return true;
    502   }
    503 
    504   PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const {
    505     return PSK_Software;
    506   }
    507 
    508   unsigned getIntImmCost(const APInt &Imm, Type *Ty) const {
    509     return 1;
    510   }
    511 
    512   unsigned getNumberOfRegisters(bool Vector) const {
    513     return 8;
    514   }
    515 
    516   unsigned  getRegisterBitWidth(bool Vector) const {
    517     return 32;
    518   }
    519 
    520   unsigned getMaximumUnrollFactor() const {
    521     return 1;
    522   }
    523 
    524   unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind,
    525                                   OperandValueKind) const {
    526     return 1;
    527   }
    528 
    529   unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
    530                           int Index = 0, Type *SubTp = 0) const {
    531     return 1;
    532   }
    533 
    534   unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
    535                             Type *Src) const {
    536     return 1;
    537   }
    538 
    539   unsigned getCFInstrCost(unsigned Opcode) const {
    540     return 1;
    541   }
    542 
    543   unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
    544                               Type *CondTy = 0) const {
    545     return 1;
    546   }
    547 
    548   unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
    549                               unsigned Index = -1) const {
    550     return 1;
    551   }
    552 
    553   unsigned getMemoryOpCost(unsigned Opcode, Type *Src,
    554                            unsigned Alignment,
    555                            unsigned AddressSpace) const {
    556     return 1;
    557   }
    558 
    559   unsigned getIntrinsicInstrCost(Intrinsic::ID ID,
    560                                  Type *RetTy,
    561                                  ArrayRef<Type*> Tys) const {
    562     return 1;
    563   }
    564 
    565   unsigned getNumberOfParts(Type *Tp) const {
    566     return 0;
    567   }
    568 
    569   unsigned getAddressComputationCost(Type *Tp, bool) const {
    570     return 0;
    571   }
    572 };
    573 
    574 } // end anonymous namespace
    575 
    576 INITIALIZE_AG_PASS(NoTTI, TargetTransformInfo, "notti",
    577                    "No target information", true, true, true)
    578 char NoTTI::ID = 0;
    579 
    580 ImmutablePass *llvm::createNoTargetTransformInfoPass() {
    581   return new NoTTI();
    582 }
    583