1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #define DEBUG_TYPE "tti" 11 #include "llvm/Analysis/TargetTransformInfo.h" 12 #include "llvm/IR/DataLayout.h" 13 #include "llvm/IR/Operator.h" 14 #include "llvm/IR/Instruction.h" 15 #include "llvm/IR/IntrinsicInst.h" 16 #include "llvm/IR/Instructions.h" 17 #include "llvm/Support/CallSite.h" 18 #include "llvm/Support/ErrorHandling.h" 19 20 using namespace llvm; 21 22 // Setup the analysis group to manage the TargetTransformInfo passes. 23 INITIALIZE_ANALYSIS_GROUP(TargetTransformInfo, "Target Information", NoTTI) 24 char TargetTransformInfo::ID = 0; 25 26 TargetTransformInfo::~TargetTransformInfo() { 27 } 28 29 void TargetTransformInfo::pushTTIStack(Pass *P) { 30 TopTTI = this; 31 PrevTTI = &P->getAnalysis<TargetTransformInfo>(); 32 33 // Walk up the chain and update the top TTI pointer. 34 for (TargetTransformInfo *PTTI = PrevTTI; PTTI; PTTI = PTTI->PrevTTI) 35 PTTI->TopTTI = this; 36 } 37 38 void TargetTransformInfo::popTTIStack() { 39 TopTTI = 0; 40 41 // Walk up the chain and update the top TTI pointer. 42 for (TargetTransformInfo *PTTI = PrevTTI; PTTI; PTTI = PTTI->PrevTTI) 43 PTTI->TopTTI = PrevTTI; 44 45 PrevTTI = 0; 46 } 47 48 void TargetTransformInfo::getAnalysisUsage(AnalysisUsage &AU) const { 49 AU.addRequired<TargetTransformInfo>(); 50 } 51 52 unsigned TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty, 53 Type *OpTy) const { 54 return PrevTTI->getOperationCost(Opcode, Ty, OpTy); 55 } 56 57 unsigned TargetTransformInfo::getGEPCost( 58 const Value *Ptr, ArrayRef<const Value *> Operands) const { 59 return PrevTTI->getGEPCost(Ptr, Operands); 60 } 61 62 unsigned TargetTransformInfo::getCallCost(FunctionType *FTy, 63 int NumArgs) const { 64 return PrevTTI->getCallCost(FTy, NumArgs); 65 } 66 67 unsigned TargetTransformInfo::getCallCost(const Function *F, 68 int NumArgs) const { 69 return PrevTTI->getCallCost(F, NumArgs); 70 } 71 72 unsigned TargetTransformInfo::getCallCost( 73 const Function *F, ArrayRef<const Value *> Arguments) const { 74 return PrevTTI->getCallCost(F, Arguments); 75 } 76 77 unsigned TargetTransformInfo::getIntrinsicCost( 78 Intrinsic::ID IID, Type *RetTy, ArrayRef<Type *> ParamTys) const { 79 return PrevTTI->getIntrinsicCost(IID, RetTy, ParamTys); 80 } 81 82 unsigned TargetTransformInfo::getIntrinsicCost( 83 Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments) const { 84 return PrevTTI->getIntrinsicCost(IID, RetTy, Arguments); 85 } 86 87 unsigned TargetTransformInfo::getUserCost(const User *U) const { 88 return PrevTTI->getUserCost(U); 89 } 90 91 bool TargetTransformInfo::hasBranchDivergence() const { 92 return PrevTTI->hasBranchDivergence(); 93 } 94 95 bool TargetTransformInfo::isLoweredToCall(const Function *F) const { 96 return PrevTTI->isLoweredToCall(F); 97 } 98 99 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const { 100 return PrevTTI->isLegalAddImmediate(Imm); 101 } 102 103 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const { 104 return PrevTTI->isLegalICmpImmediate(Imm); 105 } 106 107 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 108 int64_t BaseOffset, 109 bool HasBaseReg, 110 int64_t Scale) const { 111 return PrevTTI->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, 112 Scale); 113 } 114 115 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 116 int64_t BaseOffset, 117 bool HasBaseReg, 118 int64_t Scale) const { 119 return PrevTTI->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, 120 Scale); 121 } 122 123 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const { 124 return PrevTTI->isTruncateFree(Ty1, Ty2); 125 } 126 127 bool TargetTransformInfo::isTypeLegal(Type *Ty) const { 128 return PrevTTI->isTypeLegal(Ty); 129 } 130 131 unsigned TargetTransformInfo::getJumpBufAlignment() const { 132 return PrevTTI->getJumpBufAlignment(); 133 } 134 135 unsigned TargetTransformInfo::getJumpBufSize() const { 136 return PrevTTI->getJumpBufSize(); 137 } 138 139 bool TargetTransformInfo::shouldBuildLookupTables() const { 140 return PrevTTI->shouldBuildLookupTables(); 141 } 142 143 TargetTransformInfo::PopcntSupportKind 144 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const { 145 return PrevTTI->getPopcntSupport(IntTyWidthInBit); 146 } 147 148 unsigned TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const { 149 return PrevTTI->getIntImmCost(Imm, Ty); 150 } 151 152 unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const { 153 return PrevTTI->getNumberOfRegisters(Vector); 154 } 155 156 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const { 157 return PrevTTI->getRegisterBitWidth(Vector); 158 } 159 160 unsigned TargetTransformInfo::getMaximumUnrollFactor() const { 161 return PrevTTI->getMaximumUnrollFactor(); 162 } 163 164 unsigned TargetTransformInfo::getArithmeticInstrCost(unsigned Opcode, 165 Type *Ty, 166 OperandValueKind Op1Info, 167 OperandValueKind Op2Info) const { 168 return PrevTTI->getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info); 169 } 170 171 unsigned TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Tp, 172 int Index, Type *SubTp) const { 173 return PrevTTI->getShuffleCost(Kind, Tp, Index, SubTp); 174 } 175 176 unsigned TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, 177 Type *Src) const { 178 return PrevTTI->getCastInstrCost(Opcode, Dst, Src); 179 } 180 181 unsigned TargetTransformInfo::getCFInstrCost(unsigned Opcode) const { 182 return PrevTTI->getCFInstrCost(Opcode); 183 } 184 185 unsigned TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 186 Type *CondTy) const { 187 return PrevTTI->getCmpSelInstrCost(Opcode, ValTy, CondTy); 188 } 189 190 unsigned TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val, 191 unsigned Index) const { 192 return PrevTTI->getVectorInstrCost(Opcode, Val, Index); 193 } 194 195 unsigned TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src, 196 unsigned Alignment, 197 unsigned AddressSpace) const { 198 return PrevTTI->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace); 199 ; 200 } 201 202 unsigned 203 TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, 204 Type *RetTy, 205 ArrayRef<Type *> Tys) const { 206 return PrevTTI->getIntrinsicInstrCost(ID, RetTy, Tys); 207 } 208 209 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const { 210 return PrevTTI->getNumberOfParts(Tp); 211 } 212 213 unsigned TargetTransformInfo::getAddressComputationCost(Type *Tp, 214 bool IsComplex) const { 215 return PrevTTI->getAddressComputationCost(Tp, IsComplex); 216 } 217 218 namespace { 219 220 struct NoTTI : ImmutablePass, TargetTransformInfo { 221 const DataLayout *DL; 222 223 NoTTI() : ImmutablePass(ID), DL(0) { 224 initializeNoTTIPass(*PassRegistry::getPassRegistry()); 225 } 226 227 virtual void initializePass() { 228 // Note that this subclass is special, and must *not* call initializeTTI as 229 // it does not chain. 230 TopTTI = this; 231 PrevTTI = 0; 232 DL = getAnalysisIfAvailable<DataLayout>(); 233 } 234 235 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 236 // Note that this subclass is special, and must *not* call 237 // TTI::getAnalysisUsage as it breaks the recursion. 238 } 239 240 /// Pass identification. 241 static char ID; 242 243 /// Provide necessary pointer adjustments for the two base classes. 244 virtual void *getAdjustedAnalysisPointer(const void *ID) { 245 if (ID == &TargetTransformInfo::ID) 246 return (TargetTransformInfo*)this; 247 return this; 248 } 249 250 unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) const { 251 switch (Opcode) { 252 default: 253 // By default, just classify everything as 'basic'. 254 return TCC_Basic; 255 256 case Instruction::GetElementPtr: 257 llvm_unreachable("Use getGEPCost for GEP operations!"); 258 259 case Instruction::BitCast: 260 assert(OpTy && "Cast instructions must provide the operand type"); 261 if (Ty == OpTy || (Ty->isPointerTy() && OpTy->isPointerTy())) 262 // Identity and pointer-to-pointer casts are free. 263 return TCC_Free; 264 265 // Otherwise, the default basic cost is used. 266 return TCC_Basic; 267 268 case Instruction::IntToPtr: 269 // An inttoptr cast is free so long as the input is a legal integer type 270 // which doesn't contain values outside the range of a pointer. 271 if (DL && DL->isLegalInteger(OpTy->getScalarSizeInBits()) && 272 OpTy->getScalarSizeInBits() <= DL->getPointerSizeInBits()) 273 return TCC_Free; 274 275 // Otherwise it's not a no-op. 276 return TCC_Basic; 277 278 case Instruction::PtrToInt: 279 // A ptrtoint cast is free so long as the result is large enough to store 280 // the pointer, and a legal integer type. 281 if (DL && DL->isLegalInteger(Ty->getScalarSizeInBits()) && 282 Ty->getScalarSizeInBits() >= DL->getPointerSizeInBits()) 283 return TCC_Free; 284 285 // Otherwise it's not a no-op. 286 return TCC_Basic; 287 288 case Instruction::Trunc: 289 // trunc to a native type is free (assuming the target has compare and 290 // shift-right of the same width). 291 if (DL && DL->isLegalInteger(DL->getTypeSizeInBits(Ty))) 292 return TCC_Free; 293 294 return TCC_Basic; 295 } 296 } 297 298 unsigned getGEPCost(const Value *Ptr, 299 ArrayRef<const Value *> Operands) const { 300 // In the basic model, we just assume that all-constant GEPs will be folded 301 // into their uses via addressing modes. 302 for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx) 303 if (!isa<Constant>(Operands[Idx])) 304 return TCC_Basic; 305 306 return TCC_Free; 307 } 308 309 unsigned getCallCost(FunctionType *FTy, int NumArgs = -1) const { 310 assert(FTy && "FunctionType must be provided to this routine."); 311 312 // The target-independent implementation just measures the size of the 313 // function by approximating that each argument will take on average one 314 // instruction to prepare. 315 316 if (NumArgs < 0) 317 // Set the argument number to the number of explicit arguments in the 318 // function. 319 NumArgs = FTy->getNumParams(); 320 321 return TCC_Basic * (NumArgs + 1); 322 } 323 324 unsigned getCallCost(const Function *F, int NumArgs = -1) const { 325 assert(F && "A concrete function must be provided to this routine."); 326 327 if (NumArgs < 0) 328 // Set the argument number to the number of explicit arguments in the 329 // function. 330 NumArgs = F->arg_size(); 331 332 if (Intrinsic::ID IID = (Intrinsic::ID)F->getIntrinsicID()) { 333 FunctionType *FTy = F->getFunctionType(); 334 SmallVector<Type *, 8> ParamTys(FTy->param_begin(), FTy->param_end()); 335 return TopTTI->getIntrinsicCost(IID, FTy->getReturnType(), ParamTys); 336 } 337 338 if (!TopTTI->isLoweredToCall(F)) 339 return TCC_Basic; // Give a basic cost if it will be lowered directly. 340 341 return TopTTI->getCallCost(F->getFunctionType(), NumArgs); 342 } 343 344 unsigned getCallCost(const Function *F, 345 ArrayRef<const Value *> Arguments) const { 346 // Simply delegate to generic handling of the call. 347 // FIXME: We should use instsimplify or something else to catch calls which 348 // will constant fold with these arguments. 349 return TopTTI->getCallCost(F, Arguments.size()); 350 } 351 352 unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, 353 ArrayRef<Type *> ParamTys) const { 354 switch (IID) { 355 default: 356 // Intrinsics rarely (if ever) have normal argument setup constraints. 357 // Model them as having a basic instruction cost. 358 // FIXME: This is wrong for libc intrinsics. 359 return TCC_Basic; 360 361 case Intrinsic::dbg_declare: 362 case Intrinsic::dbg_value: 363 case Intrinsic::invariant_start: 364 case Intrinsic::invariant_end: 365 case Intrinsic::lifetime_start: 366 case Intrinsic::lifetime_end: 367 case Intrinsic::objectsize: 368 case Intrinsic::ptr_annotation: 369 case Intrinsic::var_annotation: 370 // These intrinsics don't actually represent code after lowering. 371 return TCC_Free; 372 } 373 } 374 375 unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, 376 ArrayRef<const Value *> Arguments) const { 377 // Delegate to the generic intrinsic handling code. This mostly provides an 378 // opportunity for targets to (for example) special case the cost of 379 // certain intrinsics based on constants used as arguments. 380 SmallVector<Type *, 8> ParamTys; 381 ParamTys.reserve(Arguments.size()); 382 for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx) 383 ParamTys.push_back(Arguments[Idx]->getType()); 384 return TopTTI->getIntrinsicCost(IID, RetTy, ParamTys); 385 } 386 387 unsigned getUserCost(const User *U) const { 388 if (isa<PHINode>(U)) 389 return TCC_Free; // Model all PHI nodes as free. 390 391 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) 392 // In the basic model we just assume that all-constant GEPs will be 393 // folded into their uses via addressing modes. 394 return GEP->hasAllConstantIndices() ? TCC_Free : TCC_Basic; 395 396 if (ImmutableCallSite CS = U) { 397 const Function *F = CS.getCalledFunction(); 398 if (!F) { 399 // Just use the called value type. 400 Type *FTy = CS.getCalledValue()->getType()->getPointerElementType(); 401 return TopTTI->getCallCost(cast<FunctionType>(FTy), CS.arg_size()); 402 } 403 404 SmallVector<const Value *, 8> Arguments; 405 for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(), 406 AE = CS.arg_end(); 407 AI != AE; ++AI) 408 Arguments.push_back(*AI); 409 410 return TopTTI->getCallCost(F, Arguments); 411 } 412 413 if (const CastInst *CI = dyn_cast<CastInst>(U)) { 414 // Result of a cmp instruction is often extended (to be used by other 415 // cmp instructions, logical or return instructions). These are usually 416 // nop on most sane targets. 417 if (isa<CmpInst>(CI->getOperand(0))) 418 return TCC_Free; 419 } 420 421 // Otherwise delegate to the fully generic implementations. 422 return getOperationCost(Operator::getOpcode(U), U->getType(), 423 U->getNumOperands() == 1 ? 424 U->getOperand(0)->getType() : 0); 425 } 426 427 bool hasBranchDivergence() const { return false; } 428 429 bool isLoweredToCall(const Function *F) const { 430 // FIXME: These should almost certainly not be handled here, and instead 431 // handled with the help of TLI or the target itself. This was largely 432 // ported from existing analysis heuristics here so that such refactorings 433 // can take place in the future. 434 435 if (F->isIntrinsic()) 436 return false; 437 438 if (F->hasLocalLinkage() || !F->hasName()) 439 return true; 440 441 StringRef Name = F->getName(); 442 443 // These will all likely lower to a single selection DAG node. 444 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" || 445 Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" || 446 Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" || 447 Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") 448 return false; 449 450 // These are all likely to be optimized into something smaller. 451 if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" || 452 Name == "exp2l" || Name == "exp2f" || Name == "floor" || Name == 453 "floorf" || Name == "ceil" || Name == "round" || Name == "ffs" || 454 Name == "ffsl" || Name == "abs" || Name == "labs" || Name == "llabs") 455 return false; 456 457 return true; 458 } 459 460 bool isLegalAddImmediate(int64_t Imm) const { 461 return false; 462 } 463 464 bool isLegalICmpImmediate(int64_t Imm) const { 465 return false; 466 } 467 468 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, 469 bool HasBaseReg, int64_t Scale) const { 470 // Guess that reg+reg addressing is allowed. This heuristic is taken from 471 // the implementation of LSR. 472 return !BaseGV && BaseOffset == 0 && Scale <= 1; 473 } 474 475 int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, 476 bool HasBaseReg, int64_t Scale) const { 477 // Guess that all legal addressing mode are free. 478 if(isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale)) 479 return 0; 480 return -1; 481 } 482 483 484 bool isTruncateFree(Type *Ty1, Type *Ty2) const { 485 return false; 486 } 487 488 bool isTypeLegal(Type *Ty) const { 489 return false; 490 } 491 492 unsigned getJumpBufAlignment() const { 493 return 0; 494 } 495 496 unsigned getJumpBufSize() const { 497 return 0; 498 } 499 500 bool shouldBuildLookupTables() const { 501 return true; 502 } 503 504 PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const { 505 return PSK_Software; 506 } 507 508 unsigned getIntImmCost(const APInt &Imm, Type *Ty) const { 509 return 1; 510 } 511 512 unsigned getNumberOfRegisters(bool Vector) const { 513 return 8; 514 } 515 516 unsigned getRegisterBitWidth(bool Vector) const { 517 return 32; 518 } 519 520 unsigned getMaximumUnrollFactor() const { 521 return 1; 522 } 523 524 unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind, 525 OperandValueKind) const { 526 return 1; 527 } 528 529 unsigned getShuffleCost(ShuffleKind Kind, Type *Tp, 530 int Index = 0, Type *SubTp = 0) const { 531 return 1; 532 } 533 534 unsigned getCastInstrCost(unsigned Opcode, Type *Dst, 535 Type *Src) const { 536 return 1; 537 } 538 539 unsigned getCFInstrCost(unsigned Opcode) const { 540 return 1; 541 } 542 543 unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 544 Type *CondTy = 0) const { 545 return 1; 546 } 547 548 unsigned getVectorInstrCost(unsigned Opcode, Type *Val, 549 unsigned Index = -1) const { 550 return 1; 551 } 552 553 unsigned getMemoryOpCost(unsigned Opcode, Type *Src, 554 unsigned Alignment, 555 unsigned AddressSpace) const { 556 return 1; 557 } 558 559 unsigned getIntrinsicInstrCost(Intrinsic::ID ID, 560 Type *RetTy, 561 ArrayRef<Type*> Tys) const { 562 return 1; 563 } 564 565 unsigned getNumberOfParts(Type *Tp) const { 566 return 0; 567 } 568 569 unsigned getAddressComputationCost(Type *Tp, bool) const { 570 return 0; 571 } 572 }; 573 574 } // end anonymous namespace 575 576 INITIALIZE_AG_PASS(NoTTI, TargetTransformInfo, "notti", 577 "No target information", true, true, true) 578 char NoTTI::ID = 0; 579 580 ImmutablePass *llvm::createNoTargetTransformInfoPass() { 581 return new NoTTI(); 582 } 583