1 //===-- llvm/DerivedTypes.h - Classes for handling data types ---*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the declarations of classes that represent "derived 11 // types". These are things like "arrays of x" or "structure of x, y, z" or 12 // "function returning x taking (y,z) as parameters", etc... 13 // 14 // The implementations of these classes live in the Type.cpp file. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #ifndef LLVM_IR_DERIVEDTYPES_H 19 #define LLVM_IR_DERIVEDTYPES_H 20 21 #include "llvm/IR/Type.h" 22 #include "llvm/Support/Compiler.h" 23 #include "llvm/Support/DataTypes.h" 24 25 namespace llvm { 26 27 class Value; 28 class APInt; 29 class LLVMContext; 30 template<typename T> class ArrayRef; 31 class StringRef; 32 33 /// Class to represent integer types. Note that this class is also used to 34 /// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and 35 /// Int64Ty. 36 /// @brief Integer representation type 37 class IntegerType : public Type { 38 friend class LLVMContextImpl; 39 40 protected: 41 explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){ 42 setSubclassData(NumBits); 43 } 44 public: 45 /// This enum is just used to hold constants we need for IntegerType. 46 enum { 47 MIN_INT_BITS = 1, ///< Minimum number of bits that can be specified 48 MAX_INT_BITS = (1<<23)-1 ///< Maximum number of bits that can be specified 49 ///< Note that bit width is stored in the Type classes SubclassData field 50 ///< which has 23 bits. This yields a maximum bit width of 8,388,607 bits. 51 }; 52 53 /// This static method is the primary way of constructing an IntegerType. 54 /// If an IntegerType with the same NumBits value was previously instantiated, 55 /// that instance will be returned. Otherwise a new one will be created. Only 56 /// one instance with a given NumBits value is ever created. 57 /// @brief Get or create an IntegerType instance. 58 static IntegerType *get(LLVMContext &C, unsigned NumBits); 59 60 /// @brief Get the number of bits in this IntegerType 61 unsigned getBitWidth() const { return getSubclassData(); } 62 63 /// getBitMask - Return a bitmask with ones set for all of the bits 64 /// that can be set by an unsigned version of this type. This is 0xFF for 65 /// i8, 0xFFFF for i16, etc. 66 uint64_t getBitMask() const { 67 return ~uint64_t(0UL) >> (64-getBitWidth()); 68 } 69 70 /// getSignBit - Return a uint64_t with just the most significant bit set (the 71 /// sign bit, if the value is treated as a signed number). 72 uint64_t getSignBit() const { 73 return 1ULL << (getBitWidth()-1); 74 } 75 76 /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc. 77 /// @returns a bit mask with ones set for all the bits of this type. 78 /// @brief Get a bit mask for this type. 79 APInt getMask() const; 80 81 /// This method determines if the width of this IntegerType is a power-of-2 82 /// in terms of 8 bit bytes. 83 /// @returns true if this is a power-of-2 byte width. 84 /// @brief Is this a power-of-2 byte-width IntegerType ? 85 bool isPowerOf2ByteWidth() const; 86 87 /// Methods for support type inquiry through isa, cast, and dyn_cast. 88 static inline bool classof(const Type *T) { 89 return T->getTypeID() == IntegerTyID; 90 } 91 }; 92 93 94 /// FunctionType - Class to represent function types 95 /// 96 class FunctionType : public Type { 97 FunctionType(const FunctionType &) LLVM_DELETED_FUNCTION; 98 const FunctionType &operator=(const FunctionType &) LLVM_DELETED_FUNCTION; 99 FunctionType(Type *Result, ArrayRef<Type*> Params, bool IsVarArgs); 100 101 public: 102 /// FunctionType::get - This static method is the primary way of constructing 103 /// a FunctionType. 104 /// 105 static FunctionType *get(Type *Result, 106 ArrayRef<Type*> Params, bool isVarArg); 107 108 /// FunctionType::get - Create a FunctionType taking no parameters. 109 /// 110 static FunctionType *get(Type *Result, bool isVarArg); 111 112 /// isValidReturnType - Return true if the specified type is valid as a return 113 /// type. 114 static bool isValidReturnType(Type *RetTy); 115 116 /// isValidArgumentType - Return true if the specified type is valid as an 117 /// argument type. 118 static bool isValidArgumentType(Type *ArgTy); 119 120 bool isVarArg() const { return getSubclassData()!=0; } 121 Type *getReturnType() const { return ContainedTys[0]; } 122 123 typedef Type::subtype_iterator param_iterator; 124 param_iterator param_begin() const { return ContainedTys + 1; } 125 param_iterator param_end() const { return &ContainedTys[NumContainedTys]; } 126 127 /// Parameter type accessors. 128 Type *getParamType(unsigned i) const { return ContainedTys[i+1]; } 129 130 /// getNumParams - Return the number of fixed parameters this function type 131 /// requires. This does not consider varargs. 132 /// 133 unsigned getNumParams() const { return NumContainedTys - 1; } 134 135 /// Methods for support type inquiry through isa, cast, and dyn_cast. 136 static inline bool classof(const Type *T) { 137 return T->getTypeID() == FunctionTyID; 138 } 139 }; 140 141 142 /// CompositeType - Common super class of ArrayType, StructType, PointerType 143 /// and VectorType. 144 class CompositeType : public Type { 145 protected: 146 explicit CompositeType(LLVMContext &C, TypeID tid) : Type(C, tid) { } 147 public: 148 149 /// getTypeAtIndex - Given an index value into the type, return the type of 150 /// the element. 151 /// 152 Type *getTypeAtIndex(const Value *V); 153 Type *getTypeAtIndex(unsigned Idx); 154 bool indexValid(const Value *V) const; 155 bool indexValid(unsigned Idx) const; 156 157 /// Methods for support type inquiry through isa, cast, and dyn_cast. 158 static inline bool classof(const Type *T) { 159 return T->getTypeID() == ArrayTyID || 160 T->getTypeID() == StructTyID || 161 T->getTypeID() == PointerTyID || 162 T->getTypeID() == VectorTyID; 163 } 164 }; 165 166 167 /// StructType - Class to represent struct types. There are two different kinds 168 /// of struct types: Literal structs and Identified structs. 169 /// 170 /// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must 171 /// always have a body when created. You can get one of these by using one of 172 /// the StructType::get() forms. 173 /// 174 /// Identified structs (e.g. %foo or %42) may optionally have a name and are not 175 /// uniqued. The names for identified structs are managed at the LLVMContext 176 /// level, so there can only be a single identified struct with a given name in 177 /// a particular LLVMContext. Identified structs may also optionally be opaque 178 /// (have no body specified). You get one of these by using one of the 179 /// StructType::create() forms. 180 /// 181 /// Independent of what kind of struct you have, the body of a struct type are 182 /// laid out in memory consequtively with the elements directly one after the 183 /// other (if the struct is packed) or (if not packed) with padding between the 184 /// elements as defined by DataLayout (which is required to match what the code 185 /// generator for a target expects). 186 /// 187 class StructType : public CompositeType { 188 StructType(const StructType &) LLVM_DELETED_FUNCTION; 189 const StructType &operator=(const StructType &) LLVM_DELETED_FUNCTION; 190 StructType(LLVMContext &C) 191 : CompositeType(C, StructTyID), SymbolTableEntry(0) {} 192 enum { 193 /// This is the contents of the SubClassData field. 194 SCDB_HasBody = 1, 195 SCDB_Packed = 2, 196 SCDB_IsLiteral = 4, 197 SCDB_IsSized = 8 198 }; 199 200 /// SymbolTableEntry - For a named struct that actually has a name, this is a 201 /// pointer to the symbol table entry (maintained by LLVMContext) for the 202 /// struct. This is null if the type is an literal struct or if it is 203 /// a identified type that has an empty name. 204 /// 205 void *SymbolTableEntry; 206 public: 207 ~StructType() { 208 delete [] ContainedTys; // Delete the body. 209 } 210 211 /// StructType::create - This creates an identified struct. 212 static StructType *create(LLVMContext &Context, StringRef Name); 213 static StructType *create(LLVMContext &Context); 214 215 static StructType *create(ArrayRef<Type*> Elements, 216 StringRef Name, 217 bool isPacked = false); 218 static StructType *create(ArrayRef<Type*> Elements); 219 static StructType *create(LLVMContext &Context, 220 ArrayRef<Type*> Elements, 221 StringRef Name, 222 bool isPacked = false); 223 static StructType *create(LLVMContext &Context, ArrayRef<Type*> Elements); 224 static StructType *create(StringRef Name, Type *elt1, ...) END_WITH_NULL; 225 226 /// StructType::get - This static method is the primary way to create a 227 /// literal StructType. 228 static StructType *get(LLVMContext &Context, ArrayRef<Type*> Elements, 229 bool isPacked = false); 230 231 /// StructType::get - Create an empty structure type. 232 /// 233 static StructType *get(LLVMContext &Context, bool isPacked = false); 234 235 /// StructType::get - This static method is a convenience method for creating 236 /// structure types by specifying the elements as arguments. Note that this 237 /// method always returns a non-packed struct, and requires at least one 238 /// element type. 239 static StructType *get(Type *elt1, ...) END_WITH_NULL; 240 241 bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; } 242 243 /// isLiteral - Return true if this type is uniqued by structural 244 /// equivalence, false if it is a struct definition. 245 bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; } 246 247 /// isOpaque - Return true if this is a type with an identity that has no body 248 /// specified yet. These prints as 'opaque' in .ll files. 249 bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; } 250 251 /// isSized - Return true if this is a sized type. 252 bool isSized() const; 253 254 /// hasName - Return true if this is a named struct that has a non-empty name. 255 bool hasName() const { return SymbolTableEntry != 0; } 256 257 /// getName - Return the name for this struct type if it has an identity. 258 /// This may return an empty string for an unnamed struct type. Do not call 259 /// this on an literal type. 260 StringRef getName() const; 261 262 /// setName - Change the name of this type to the specified name, or to a name 263 /// with a suffix if there is a collision. Do not call this on an literal 264 /// type. 265 void setName(StringRef Name); 266 267 /// setBody - Specify a body for an opaque identified type. 268 void setBody(ArrayRef<Type*> Elements, bool isPacked = false); 269 void setBody(Type *elt1, ...) END_WITH_NULL; 270 271 /// isValidElementType - Return true if the specified type is valid as a 272 /// element type. 273 static bool isValidElementType(Type *ElemTy); 274 275 276 // Iterator access to the elements. 277 typedef Type::subtype_iterator element_iterator; 278 element_iterator element_begin() const { return ContainedTys; } 279 element_iterator element_end() const { return &ContainedTys[NumContainedTys];} 280 281 /// isLayoutIdentical - Return true if this is layout identical to the 282 /// specified struct. 283 bool isLayoutIdentical(StructType *Other) const; 284 285 /// Random access to the elements 286 unsigned getNumElements() const { return NumContainedTys; } 287 Type *getElementType(unsigned N) const { 288 assert(N < NumContainedTys && "Element number out of range!"); 289 return ContainedTys[N]; 290 } 291 292 /// Methods for support type inquiry through isa, cast, and dyn_cast. 293 static inline bool classof(const Type *T) { 294 return T->getTypeID() == StructTyID; 295 } 296 }; 297 298 /// SequentialType - This is the superclass of the array, pointer and vector 299 /// type classes. All of these represent "arrays" in memory. The array type 300 /// represents a specifically sized array, pointer types are unsized/unknown 301 /// size arrays, vector types represent specifically sized arrays that 302 /// allow for use of SIMD instructions. SequentialType holds the common 303 /// features of all, which stem from the fact that all three lay their 304 /// components out in memory identically. 305 /// 306 class SequentialType : public CompositeType { 307 Type *ContainedType; ///< Storage for the single contained type. 308 SequentialType(const SequentialType &) LLVM_DELETED_FUNCTION; 309 const SequentialType &operator=(const SequentialType &) LLVM_DELETED_FUNCTION; 310 311 protected: 312 SequentialType(TypeID TID, Type *ElType) 313 : CompositeType(ElType->getContext(), TID), ContainedType(ElType) { 314 ContainedTys = &ContainedType; 315 NumContainedTys = 1; 316 } 317 318 public: 319 Type *getElementType() const { return ContainedTys[0]; } 320 321 /// Methods for support type inquiry through isa, cast, and dyn_cast. 322 static inline bool classof(const Type *T) { 323 return T->getTypeID() == ArrayTyID || 324 T->getTypeID() == PointerTyID || 325 T->getTypeID() == VectorTyID; 326 } 327 }; 328 329 330 /// ArrayType - Class to represent array types. 331 /// 332 class ArrayType : public SequentialType { 333 uint64_t NumElements; 334 335 ArrayType(const ArrayType &) LLVM_DELETED_FUNCTION; 336 const ArrayType &operator=(const ArrayType &) LLVM_DELETED_FUNCTION; 337 ArrayType(Type *ElType, uint64_t NumEl); 338 public: 339 /// ArrayType::get - This static method is the primary way to construct an 340 /// ArrayType 341 /// 342 static ArrayType *get(Type *ElementType, uint64_t NumElements); 343 344 /// isValidElementType - Return true if the specified type is valid as a 345 /// element type. 346 static bool isValidElementType(Type *ElemTy); 347 348 uint64_t getNumElements() const { return NumElements; } 349 350 /// Methods for support type inquiry through isa, cast, and dyn_cast. 351 static inline bool classof(const Type *T) { 352 return T->getTypeID() == ArrayTyID; 353 } 354 }; 355 356 /// VectorType - Class to represent vector types. 357 /// 358 class VectorType : public SequentialType { 359 unsigned NumElements; 360 361 VectorType(const VectorType &) LLVM_DELETED_FUNCTION; 362 const VectorType &operator=(const VectorType &) LLVM_DELETED_FUNCTION; 363 VectorType(Type *ElType, unsigned NumEl); 364 public: 365 /// VectorType::get - This static method is the primary way to construct an 366 /// VectorType. 367 /// 368 static VectorType *get(Type *ElementType, unsigned NumElements); 369 370 /// VectorType::getInteger - This static method gets a VectorType with the 371 /// same number of elements as the input type, and the element type is an 372 /// integer type of the same width as the input element type. 373 /// 374 static VectorType *getInteger(VectorType *VTy) { 375 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); 376 assert(EltBits && "Element size must be of a non-zero size"); 377 Type *EltTy = IntegerType::get(VTy->getContext(), EltBits); 378 return VectorType::get(EltTy, VTy->getNumElements()); 379 } 380 381 /// VectorType::getExtendedElementVectorType - This static method is like 382 /// getInteger except that the element types are twice as wide as the 383 /// elements in the input type. 384 /// 385 static VectorType *getExtendedElementVectorType(VectorType *VTy) { 386 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); 387 Type *EltTy = IntegerType::get(VTy->getContext(), EltBits * 2); 388 return VectorType::get(EltTy, VTy->getNumElements()); 389 } 390 391 /// VectorType::getTruncatedElementVectorType - This static method is like 392 /// getInteger except that the element types are half as wide as the 393 /// elements in the input type. 394 /// 395 static VectorType *getTruncatedElementVectorType(VectorType *VTy) { 396 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); 397 assert((EltBits & 1) == 0 && 398 "Cannot truncate vector element with odd bit-width"); 399 Type *EltTy = IntegerType::get(VTy->getContext(), EltBits / 2); 400 return VectorType::get(EltTy, VTy->getNumElements()); 401 } 402 403 /// isValidElementType - Return true if the specified type is valid as a 404 /// element type. 405 static bool isValidElementType(Type *ElemTy); 406 407 /// @brief Return the number of elements in the Vector type. 408 unsigned getNumElements() const { return NumElements; } 409 410 /// @brief Return the number of bits in the Vector type. 411 /// Returns zero when the vector is a vector of pointers. 412 unsigned getBitWidth() const { 413 return NumElements * getElementType()->getPrimitiveSizeInBits(); 414 } 415 416 /// Methods for support type inquiry through isa, cast, and dyn_cast. 417 static inline bool classof(const Type *T) { 418 return T->getTypeID() == VectorTyID; 419 } 420 }; 421 422 423 /// PointerType - Class to represent pointers. 424 /// 425 class PointerType : public SequentialType { 426 PointerType(const PointerType &) LLVM_DELETED_FUNCTION; 427 const PointerType &operator=(const PointerType &) LLVM_DELETED_FUNCTION; 428 explicit PointerType(Type *ElType, unsigned AddrSpace); 429 public: 430 /// PointerType::get - This constructs a pointer to an object of the specified 431 /// type in a numbered address space. 432 static PointerType *get(Type *ElementType, unsigned AddressSpace); 433 434 /// PointerType::getUnqual - This constructs a pointer to an object of the 435 /// specified type in the generic address space (address space zero). 436 static PointerType *getUnqual(Type *ElementType) { 437 return PointerType::get(ElementType, 0); 438 } 439 440 /// isValidElementType - Return true if the specified type is valid as a 441 /// element type. 442 static bool isValidElementType(Type *ElemTy); 443 444 /// @brief Return the address space of the Pointer type. 445 inline unsigned getAddressSpace() const { return getSubclassData(); } 446 447 /// Implement support type inquiry through isa, cast, and dyn_cast. 448 static inline bool classof(const Type *T) { 449 return T->getTypeID() == PointerTyID; 450 } 451 }; 452 453 } // End llvm namespace 454 455 #endif 456