1 //==-- llvm/ADT/ilist.h - Intrusive Linked List Template ---------*- C++ -*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines classes to implement an intrusive doubly linked list class 11 // (i.e. each node of the list must contain a next and previous field for the 12 // list. 13 // 14 // The ilist_traits trait class is used to gain access to the next and previous 15 // fields of the node type that the list is instantiated with. If it is not 16 // specialized, the list defaults to using the getPrev(), getNext() method calls 17 // to get the next and previous pointers. 18 // 19 // The ilist class itself, should be a plug in replacement for list, assuming 20 // that the nodes contain next/prev pointers. This list replacement does not 21 // provide a constant time size() method, so be careful to use empty() when you 22 // really want to know if it's empty. 23 // 24 // The ilist class is implemented by allocating a 'tail' node when the list is 25 // created (using ilist_traits<>::createSentinel()). This tail node is 26 // absolutely required because the user must be able to compute end()-1. Because 27 // of this, users of the direct next/prev links will see an extra link on the 28 // end of the list, which should be ignored. 29 // 30 // Requirements for a user of this list: 31 // 32 // 1. The user must provide {g|s}et{Next|Prev} methods, or specialize 33 // ilist_traits to provide an alternate way of getting and setting next and 34 // prev links. 35 // 36 //===----------------------------------------------------------------------===// 37 38 #ifndef LLVM_ADT_ILIST_H 39 #define LLVM_ADT_ILIST_H 40 41 #include "llvm/Support/Compiler.h" 42 #include <algorithm> 43 #include <cassert> 44 #include <cstddef> 45 #include <iterator> 46 47 namespace llvm { 48 49 template<typename NodeTy, typename Traits> class iplist; 50 template<typename NodeTy> class ilist_iterator; 51 52 /// ilist_nextprev_traits - A fragment for template traits for intrusive list 53 /// that provides default next/prev implementations for common operations. 54 /// 55 template<typename NodeTy> 56 struct ilist_nextprev_traits { 57 static NodeTy *getPrev(NodeTy *N) { return N->getPrev(); } 58 static NodeTy *getNext(NodeTy *N) { return N->getNext(); } 59 static const NodeTy *getPrev(const NodeTy *N) { return N->getPrev(); } 60 static const NodeTy *getNext(const NodeTy *N) { return N->getNext(); } 61 62 static void setPrev(NodeTy *N, NodeTy *Prev) { N->setPrev(Prev); } 63 static void setNext(NodeTy *N, NodeTy *Next) { N->setNext(Next); } 64 }; 65 66 template<typename NodeTy> 67 struct ilist_traits; 68 69 /// ilist_sentinel_traits - A fragment for template traits for intrusive list 70 /// that provides default sentinel implementations for common operations. 71 /// 72 /// ilist_sentinel_traits implements a lazy dynamic sentinel allocation 73 /// strategy. The sentinel is stored in the prev field of ilist's Head. 74 /// 75 template<typename NodeTy> 76 struct ilist_sentinel_traits { 77 /// createSentinel - create the dynamic sentinel 78 static NodeTy *createSentinel() { return new NodeTy(); } 79 80 /// destroySentinel - deallocate the dynamic sentinel 81 static void destroySentinel(NodeTy *N) { delete N; } 82 83 /// provideInitialHead - when constructing an ilist, provide a starting 84 /// value for its Head 85 /// @return null node to indicate that it needs to be allocated later 86 static NodeTy *provideInitialHead() { return 0; } 87 88 /// ensureHead - make sure that Head is either already 89 /// initialized or assigned a fresh sentinel 90 /// @return the sentinel 91 static NodeTy *ensureHead(NodeTy *&Head) { 92 if (!Head) { 93 Head = ilist_traits<NodeTy>::createSentinel(); 94 ilist_traits<NodeTy>::noteHead(Head, Head); 95 ilist_traits<NodeTy>::setNext(Head, 0); 96 return Head; 97 } 98 return ilist_traits<NodeTy>::getPrev(Head); 99 } 100 101 /// noteHead - stash the sentinel into its default location 102 static void noteHead(NodeTy *NewHead, NodeTy *Sentinel) { 103 ilist_traits<NodeTy>::setPrev(NewHead, Sentinel); 104 } 105 }; 106 107 /// ilist_node_traits - A fragment for template traits for intrusive list 108 /// that provides default node related operations. 109 /// 110 template<typename NodeTy> 111 struct ilist_node_traits { 112 static NodeTy *createNode(const NodeTy &V) { return new NodeTy(V); } 113 static void deleteNode(NodeTy *V) { delete V; } 114 115 void addNodeToList(NodeTy *) {} 116 void removeNodeFromList(NodeTy *) {} 117 void transferNodesFromList(ilist_node_traits & /*SrcTraits*/, 118 ilist_iterator<NodeTy> /*first*/, 119 ilist_iterator<NodeTy> /*last*/) {} 120 }; 121 122 /// ilist_default_traits - Default template traits for intrusive list. 123 /// By inheriting from this, you can easily use default implementations 124 /// for all common operations. 125 /// 126 template<typename NodeTy> 127 struct ilist_default_traits : public ilist_nextprev_traits<NodeTy>, 128 public ilist_sentinel_traits<NodeTy>, 129 public ilist_node_traits<NodeTy> { 130 }; 131 132 // Template traits for intrusive list. By specializing this template class, you 133 // can change what next/prev fields are used to store the links... 134 template<typename NodeTy> 135 struct ilist_traits : public ilist_default_traits<NodeTy> {}; 136 137 // Const traits are the same as nonconst traits... 138 template<typename Ty> 139 struct ilist_traits<const Ty> : public ilist_traits<Ty> {}; 140 141 //===----------------------------------------------------------------------===// 142 // ilist_iterator<Node> - Iterator for intrusive list. 143 // 144 template<typename NodeTy> 145 class ilist_iterator 146 : public std::iterator<std::bidirectional_iterator_tag, NodeTy, ptrdiff_t> { 147 148 public: 149 typedef ilist_traits<NodeTy> Traits; 150 typedef std::iterator<std::bidirectional_iterator_tag, 151 NodeTy, ptrdiff_t> super; 152 153 typedef typename super::value_type value_type; 154 typedef typename super::difference_type difference_type; 155 typedef typename super::pointer pointer; 156 typedef typename super::reference reference; 157 private: 158 pointer NodePtr; 159 160 // ilist_iterator is not a random-access iterator, but it has an 161 // implicit conversion to pointer-type, which is. Declare (but 162 // don't define) these functions as private to help catch 163 // accidental misuse. 164 void operator[](difference_type) const; 165 void operator+(difference_type) const; 166 void operator-(difference_type) const; 167 void operator+=(difference_type) const; 168 void operator-=(difference_type) const; 169 template<class T> void operator<(T) const; 170 template<class T> void operator<=(T) const; 171 template<class T> void operator>(T) const; 172 template<class T> void operator>=(T) const; 173 template<class T> void operator-(T) const; 174 public: 175 176 ilist_iterator(pointer NP) : NodePtr(NP) {} 177 ilist_iterator(reference NR) : NodePtr(&NR) {} 178 ilist_iterator() : NodePtr(0) {} 179 180 // This is templated so that we can allow constructing a const iterator from 181 // a nonconst iterator... 182 template<class node_ty> 183 ilist_iterator(const ilist_iterator<node_ty> &RHS) 184 : NodePtr(RHS.getNodePtrUnchecked()) {} 185 186 // This is templated so that we can allow assigning to a const iterator from 187 // a nonconst iterator... 188 template<class node_ty> 189 const ilist_iterator &operator=(const ilist_iterator<node_ty> &RHS) { 190 NodePtr = RHS.getNodePtrUnchecked(); 191 return *this; 192 } 193 194 // Accessors... 195 operator pointer() const { 196 return NodePtr; 197 } 198 199 reference operator*() const { 200 return *NodePtr; 201 } 202 pointer operator->() const { return &operator*(); } 203 204 // Comparison operators 205 bool operator==(const ilist_iterator &RHS) const { 206 return NodePtr == RHS.NodePtr; 207 } 208 bool operator!=(const ilist_iterator &RHS) const { 209 return NodePtr != RHS.NodePtr; 210 } 211 212 // Increment and decrement operators... 213 ilist_iterator &operator--() { // predecrement - Back up 214 NodePtr = Traits::getPrev(NodePtr); 215 assert(NodePtr && "--'d off the beginning of an ilist!"); 216 return *this; 217 } 218 ilist_iterator &operator++() { // preincrement - Advance 219 NodePtr = Traits::getNext(NodePtr); 220 return *this; 221 } 222 ilist_iterator operator--(int) { // postdecrement operators... 223 ilist_iterator tmp = *this; 224 --*this; 225 return tmp; 226 } 227 ilist_iterator operator++(int) { // postincrement operators... 228 ilist_iterator tmp = *this; 229 ++*this; 230 return tmp; 231 } 232 233 // Internal interface, do not use... 234 pointer getNodePtrUnchecked() const { return NodePtr; } 235 }; 236 237 // These are to catch errors when people try to use them as random access 238 // iterators. 239 template<typename T> 240 void operator-(int, ilist_iterator<T>) LLVM_DELETED_FUNCTION; 241 template<typename T> 242 void operator-(ilist_iterator<T>,int) LLVM_DELETED_FUNCTION; 243 244 template<typename T> 245 void operator+(int, ilist_iterator<T>) LLVM_DELETED_FUNCTION; 246 template<typename T> 247 void operator+(ilist_iterator<T>,int) LLVM_DELETED_FUNCTION; 248 249 // operator!=/operator== - Allow mixed comparisons without dereferencing 250 // the iterator, which could very likely be pointing to end(). 251 template<typename T> 252 bool operator!=(const T* LHS, const ilist_iterator<const T> &RHS) { 253 return LHS != RHS.getNodePtrUnchecked(); 254 } 255 template<typename T> 256 bool operator==(const T* LHS, const ilist_iterator<const T> &RHS) { 257 return LHS == RHS.getNodePtrUnchecked(); 258 } 259 template<typename T> 260 bool operator!=(T* LHS, const ilist_iterator<T> &RHS) { 261 return LHS != RHS.getNodePtrUnchecked(); 262 } 263 template<typename T> 264 bool operator==(T* LHS, const ilist_iterator<T> &RHS) { 265 return LHS == RHS.getNodePtrUnchecked(); 266 } 267 268 269 // Allow ilist_iterators to convert into pointers to a node automatically when 270 // used by the dyn_cast, cast, isa mechanisms... 271 272 template<typename From> struct simplify_type; 273 274 template<typename NodeTy> struct simplify_type<ilist_iterator<NodeTy> > { 275 typedef NodeTy* SimpleType; 276 277 static SimpleType getSimplifiedValue(ilist_iterator<NodeTy> &Node) { 278 return &*Node; 279 } 280 }; 281 template<typename NodeTy> struct simplify_type<const ilist_iterator<NodeTy> > { 282 typedef /*const*/ NodeTy* SimpleType; 283 284 static SimpleType getSimplifiedValue(const ilist_iterator<NodeTy> &Node) { 285 return &*Node; 286 } 287 }; 288 289 290 //===----------------------------------------------------------------------===// 291 // 292 /// iplist - The subset of list functionality that can safely be used on nodes 293 /// of polymorphic types, i.e. a heterogeneous list with a common base class that 294 /// holds the next/prev pointers. The only state of the list itself is a single 295 /// pointer to the head of the list. 296 /// 297 /// This list can be in one of three interesting states: 298 /// 1. The list may be completely unconstructed. In this case, the head 299 /// pointer is null. When in this form, any query for an iterator (e.g. 300 /// begin() or end()) causes the list to transparently change to state #2. 301 /// 2. The list may be empty, but contain a sentinel for the end iterator. This 302 /// sentinel is created by the Traits::createSentinel method and is a link 303 /// in the list. When the list is empty, the pointer in the iplist points 304 /// to the sentinel. Once the sentinel is constructed, it 305 /// is not destroyed until the list is. 306 /// 3. The list may contain actual objects in it, which are stored as a doubly 307 /// linked list of nodes. One invariant of the list is that the predecessor 308 /// of the first node in the list always points to the last node in the list, 309 /// and the successor pointer for the sentinel (which always stays at the 310 /// end of the list) is always null. 311 /// 312 template<typename NodeTy, typename Traits=ilist_traits<NodeTy> > 313 class iplist : public Traits { 314 mutable NodeTy *Head; 315 316 // Use the prev node pointer of 'head' as the tail pointer. This is really a 317 // circularly linked list where we snip the 'next' link from the sentinel node 318 // back to the first node in the list (to preserve assertions about going off 319 // the end of the list). 320 NodeTy *getTail() { return this->ensureHead(Head); } 321 const NodeTy *getTail() const { return this->ensureHead(Head); } 322 void setTail(NodeTy *N) const { this->noteHead(Head, N); } 323 324 /// CreateLazySentinel - This method verifies whether the sentinel for the 325 /// list has been created and lazily makes it if not. 326 void CreateLazySentinel() const { 327 this->ensureHead(Head); 328 } 329 330 static bool op_less(NodeTy &L, NodeTy &R) { return L < R; } 331 static bool op_equal(NodeTy &L, NodeTy &R) { return L == R; } 332 333 // No fundamental reason why iplist can't be copyable, but the default 334 // copy/copy-assign won't do. 335 iplist(const iplist &) LLVM_DELETED_FUNCTION; 336 void operator=(const iplist &) LLVM_DELETED_FUNCTION; 337 338 public: 339 typedef NodeTy *pointer; 340 typedef const NodeTy *const_pointer; 341 typedef NodeTy &reference; 342 typedef const NodeTy &const_reference; 343 typedef NodeTy value_type; 344 typedef ilist_iterator<NodeTy> iterator; 345 typedef ilist_iterator<const NodeTy> const_iterator; 346 typedef size_t size_type; 347 typedef ptrdiff_t difference_type; 348 typedef std::reverse_iterator<const_iterator> const_reverse_iterator; 349 typedef std::reverse_iterator<iterator> reverse_iterator; 350 351 iplist() : Head(this->provideInitialHead()) {} 352 ~iplist() { 353 if (!Head) return; 354 clear(); 355 Traits::destroySentinel(getTail()); 356 } 357 358 // Iterator creation methods. 359 iterator begin() { 360 CreateLazySentinel(); 361 return iterator(Head); 362 } 363 const_iterator begin() const { 364 CreateLazySentinel(); 365 return const_iterator(Head); 366 } 367 iterator end() { 368 CreateLazySentinel(); 369 return iterator(getTail()); 370 } 371 const_iterator end() const { 372 CreateLazySentinel(); 373 return const_iterator(getTail()); 374 } 375 376 // reverse iterator creation methods. 377 reverse_iterator rbegin() { return reverse_iterator(end()); } 378 const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); } 379 reverse_iterator rend() { return reverse_iterator(begin()); } 380 const_reverse_iterator rend() const { return const_reverse_iterator(begin());} 381 382 383 // Miscellaneous inspection routines. 384 size_type max_size() const { return size_type(-1); } 385 bool empty() const { return Head == 0 || Head == getTail(); } 386 387 // Front and back accessor functions... 388 reference front() { 389 assert(!empty() && "Called front() on empty list!"); 390 return *Head; 391 } 392 const_reference front() const { 393 assert(!empty() && "Called front() on empty list!"); 394 return *Head; 395 } 396 reference back() { 397 assert(!empty() && "Called back() on empty list!"); 398 return *this->getPrev(getTail()); 399 } 400 const_reference back() const { 401 assert(!empty() && "Called back() on empty list!"); 402 return *this->getPrev(getTail()); 403 } 404 405 void swap(iplist &RHS) { 406 assert(0 && "Swap does not use list traits callback correctly yet!"); 407 std::swap(Head, RHS.Head); 408 } 409 410 iterator insert(iterator where, NodeTy *New) { 411 NodeTy *CurNode = where.getNodePtrUnchecked(); 412 NodeTy *PrevNode = this->getPrev(CurNode); 413 this->setNext(New, CurNode); 414 this->setPrev(New, PrevNode); 415 416 if (CurNode != Head) // Is PrevNode off the beginning of the list? 417 this->setNext(PrevNode, New); 418 else 419 Head = New; 420 this->setPrev(CurNode, New); 421 422 this->addNodeToList(New); // Notify traits that we added a node... 423 return New; 424 } 425 426 iterator insertAfter(iterator where, NodeTy *New) { 427 if (empty()) 428 return insert(begin(), New); 429 else 430 return insert(++where, New); 431 } 432 433 NodeTy *remove(iterator &IT) { 434 assert(IT != end() && "Cannot remove end of list!"); 435 NodeTy *Node = &*IT; 436 NodeTy *NextNode = this->getNext(Node); 437 NodeTy *PrevNode = this->getPrev(Node); 438 439 if (Node != Head) // Is PrevNode off the beginning of the list? 440 this->setNext(PrevNode, NextNode); 441 else 442 Head = NextNode; 443 this->setPrev(NextNode, PrevNode); 444 IT = NextNode; 445 this->removeNodeFromList(Node); // Notify traits that we removed a node... 446 447 // Set the next/prev pointers of the current node to null. This isn't 448 // strictly required, but this catches errors where a node is removed from 449 // an ilist (and potentially deleted) with iterators still pointing at it. 450 // When those iterators are incremented or decremented, they will assert on 451 // the null next/prev pointer instead of "usually working". 452 this->setNext(Node, 0); 453 this->setPrev(Node, 0); 454 return Node; 455 } 456 457 NodeTy *remove(const iterator &IT) { 458 iterator MutIt = IT; 459 return remove(MutIt); 460 } 461 462 // erase - remove a node from the controlled sequence... and delete it. 463 iterator erase(iterator where) { 464 this->deleteNode(remove(where)); 465 return where; 466 } 467 468 /// Remove all nodes from the list like clear(), but do not call 469 /// removeNodeFromList() or deleteNode(). 470 /// 471 /// This should only be used immediately before freeing nodes in bulk to 472 /// avoid traversing the list and bringing all the nodes into cache. 473 void clearAndLeakNodesUnsafely() { 474 if (Head) { 475 Head = getTail(); 476 this->setPrev(Head, Head); 477 } 478 } 479 480 private: 481 // transfer - The heart of the splice function. Move linked list nodes from 482 // [first, last) into position. 483 // 484 void transfer(iterator position, iplist &L2, iterator first, iterator last) { 485 assert(first != last && "Should be checked by callers"); 486 // Position cannot be contained in the range to be transferred. 487 // Check for the most common mistake. 488 assert(position != first && 489 "Insertion point can't be one of the transferred nodes"); 490 491 if (position != last) { 492 // Note: we have to be careful about the case when we move the first node 493 // in the list. This node is the list sentinel node and we can't move it. 494 NodeTy *ThisSentinel = getTail(); 495 setTail(0); 496 NodeTy *L2Sentinel = L2.getTail(); 497 L2.setTail(0); 498 499 // Remove [first, last) from its old position. 500 NodeTy *First = &*first, *Prev = this->getPrev(First); 501 NodeTy *Next = last.getNodePtrUnchecked(), *Last = this->getPrev(Next); 502 if (Prev) 503 this->setNext(Prev, Next); 504 else 505 L2.Head = Next; 506 this->setPrev(Next, Prev); 507 508 // Splice [first, last) into its new position. 509 NodeTy *PosNext = position.getNodePtrUnchecked(); 510 NodeTy *PosPrev = this->getPrev(PosNext); 511 512 // Fix head of list... 513 if (PosPrev) 514 this->setNext(PosPrev, First); 515 else 516 Head = First; 517 this->setPrev(First, PosPrev); 518 519 // Fix end of list... 520 this->setNext(Last, PosNext); 521 this->setPrev(PosNext, Last); 522 523 this->transferNodesFromList(L2, First, PosNext); 524 525 // Now that everything is set, restore the pointers to the list sentinels. 526 L2.setTail(L2Sentinel); 527 setTail(ThisSentinel); 528 } 529 } 530 531 public: 532 533 //===----------------------------------------------------------------------=== 534 // Functionality derived from other functions defined above... 535 // 536 537 size_type size() const { 538 if (Head == 0) return 0; // Don't require construction of sentinel if empty. 539 return std::distance(begin(), end()); 540 } 541 542 iterator erase(iterator first, iterator last) { 543 while (first != last) 544 first = erase(first); 545 return last; 546 } 547 548 void clear() { if (Head) erase(begin(), end()); } 549 550 // Front and back inserters... 551 void push_front(NodeTy *val) { insert(begin(), val); } 552 void push_back(NodeTy *val) { insert(end(), val); } 553 void pop_front() { 554 assert(!empty() && "pop_front() on empty list!"); 555 erase(begin()); 556 } 557 void pop_back() { 558 assert(!empty() && "pop_back() on empty list!"); 559 iterator t = end(); erase(--t); 560 } 561 562 // Special forms of insert... 563 template<class InIt> void insert(iterator where, InIt first, InIt last) { 564 for (; first != last; ++first) insert(where, *first); 565 } 566 567 // Splice members - defined in terms of transfer... 568 void splice(iterator where, iplist &L2) { 569 if (!L2.empty()) 570 transfer(where, L2, L2.begin(), L2.end()); 571 } 572 void splice(iterator where, iplist &L2, iterator first) { 573 iterator last = first; ++last; 574 if (where == first || where == last) return; // No change 575 transfer(where, L2, first, last); 576 } 577 void splice(iterator where, iplist &L2, iterator first, iterator last) { 578 if (first != last) transfer(where, L2, first, last); 579 } 580 581 582 583 //===----------------------------------------------------------------------=== 584 // High-Level Functionality that shouldn't really be here, but is part of list 585 // 586 587 // These two functions are actually called remove/remove_if in list<>, but 588 // they actually do the job of erase, rename them accordingly. 589 // 590 void erase(const NodeTy &val) { 591 for (iterator I = begin(), E = end(); I != E; ) { 592 iterator next = I; ++next; 593 if (*I == val) erase(I); 594 I = next; 595 } 596 } 597 template<class Pr1> void erase_if(Pr1 pred) { 598 for (iterator I = begin(), E = end(); I != E; ) { 599 iterator next = I; ++next; 600 if (pred(*I)) erase(I); 601 I = next; 602 } 603 } 604 605 template<class Pr2> void unique(Pr2 pred) { 606 if (empty()) return; 607 for (iterator I = begin(), E = end(), Next = begin(); ++Next != E;) { 608 if (pred(*I)) 609 erase(Next); 610 else 611 I = Next; 612 Next = I; 613 } 614 } 615 void unique() { unique(op_equal); } 616 617 template<class Pr3> void merge(iplist &right, Pr3 pred) { 618 iterator first1 = begin(), last1 = end(); 619 iterator first2 = right.begin(), last2 = right.end(); 620 while (first1 != last1 && first2 != last2) 621 if (pred(*first2, *first1)) { 622 iterator next = first2; 623 transfer(first1, right, first2, ++next); 624 first2 = next; 625 } else { 626 ++first1; 627 } 628 if (first2 != last2) transfer(last1, right, first2, last2); 629 } 630 void merge(iplist &right) { return merge(right, op_less); } 631 632 template<class Pr3> void sort(Pr3 pred); 633 void sort() { sort(op_less); } 634 }; 635 636 637 template<typename NodeTy> 638 struct ilist : public iplist<NodeTy> { 639 typedef typename iplist<NodeTy>::size_type size_type; 640 typedef typename iplist<NodeTy>::iterator iterator; 641 642 ilist() {} 643 ilist(const ilist &right) { 644 insert(this->begin(), right.begin(), right.end()); 645 } 646 explicit ilist(size_type count) { 647 insert(this->begin(), count, NodeTy()); 648 } 649 ilist(size_type count, const NodeTy &val) { 650 insert(this->begin(), count, val); 651 } 652 template<class InIt> ilist(InIt first, InIt last) { 653 insert(this->begin(), first, last); 654 } 655 656 // bring hidden functions into scope 657 using iplist<NodeTy>::insert; 658 using iplist<NodeTy>::push_front; 659 using iplist<NodeTy>::push_back; 660 661 // Main implementation here - Insert for a node passed by value... 662 iterator insert(iterator where, const NodeTy &val) { 663 return insert(where, this->createNode(val)); 664 } 665 666 667 // Front and back inserters... 668 void push_front(const NodeTy &val) { insert(this->begin(), val); } 669 void push_back(const NodeTy &val) { insert(this->end(), val); } 670 671 void insert(iterator where, size_type count, const NodeTy &val) { 672 for (; count != 0; --count) insert(where, val); 673 } 674 675 // Assign special forms... 676 void assign(size_type count, const NodeTy &val) { 677 iterator I = this->begin(); 678 for (; I != this->end() && count != 0; ++I, --count) 679 *I = val; 680 if (count != 0) 681 insert(this->end(), val, val); 682 else 683 erase(I, this->end()); 684 } 685 template<class InIt> void assign(InIt first1, InIt last1) { 686 iterator first2 = this->begin(), last2 = this->end(); 687 for ( ; first1 != last1 && first2 != last2; ++first1, ++first2) 688 *first1 = *first2; 689 if (first2 == last2) 690 erase(first1, last1); 691 else 692 insert(last1, first2, last2); 693 } 694 695 696 // Resize members... 697 void resize(size_type newsize, NodeTy val) { 698 iterator i = this->begin(); 699 size_type len = 0; 700 for ( ; i != this->end() && len < newsize; ++i, ++len) /* empty*/ ; 701 702 if (len == newsize) 703 erase(i, this->end()); 704 else // i == end() 705 insert(this->end(), newsize - len, val); 706 } 707 void resize(size_type newsize) { resize(newsize, NodeTy()); } 708 }; 709 710 } // End llvm namespace 711 712 namespace std { 713 // Ensure that swap uses the fast list swap... 714 template<class Ty> 715 void swap(llvm::iplist<Ty> &Left, llvm::iplist<Ty> &Right) { 716 Left.swap(Right); 717 } 718 } // End 'std' extensions... 719 720 #endif // LLVM_ADT_ILIST_H 721