Home | History | Annotate | Download | only in Core
      1 //===- Calls.cpp - Wrapper for all function and method calls ------*- C++ -*--//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 /// \file This file defines CallEvent and its subclasses, which represent path-
     11 /// sensitive instances of different kinds of function and method calls
     12 /// (C, C++, and Objective-C).
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
     17 #include "clang/AST/ParentMap.h"
     18 #include "clang/Analysis/ProgramPoint.h"
     19 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
     20 #include "llvm/ADT/SmallSet.h"
     21 #include "llvm/ADT/StringExtras.h"
     22 #include "llvm/Support/raw_ostream.h"
     23 
     24 using namespace clang;
     25 using namespace ento;
     26 
     27 QualType CallEvent::getResultType() const {
     28   const Expr *E = getOriginExpr();
     29   assert(E && "Calls without origin expressions do not have results");
     30   QualType ResultTy = E->getType();
     31 
     32   ASTContext &Ctx = getState()->getStateManager().getContext();
     33 
     34   // A function that returns a reference to 'int' will have a result type
     35   // of simply 'int'. Check the origin expr's value kind to recover the
     36   // proper type.
     37   switch (E->getValueKind()) {
     38   case VK_LValue:
     39     ResultTy = Ctx.getLValueReferenceType(ResultTy);
     40     break;
     41   case VK_XValue:
     42     ResultTy = Ctx.getRValueReferenceType(ResultTy);
     43     break;
     44   case VK_RValue:
     45     // No adjustment is necessary.
     46     break;
     47   }
     48 
     49   return ResultTy;
     50 }
     51 
     52 static bool isCallbackArg(SVal V, QualType T) {
     53   // If the parameter is 0, it's harmless.
     54   if (V.isZeroConstant())
     55     return false;
     56 
     57   // If a parameter is a block or a callback, assume it can modify pointer.
     58   if (T->isBlockPointerType() ||
     59       T->isFunctionPointerType() ||
     60       T->isObjCSelType())
     61     return true;
     62 
     63   // Check if a callback is passed inside a struct (for both, struct passed by
     64   // reference and by value). Dig just one level into the struct for now.
     65 
     66   if (T->isAnyPointerType() || T->isReferenceType())
     67     T = T->getPointeeType();
     68 
     69   if (const RecordType *RT = T->getAsStructureType()) {
     70     const RecordDecl *RD = RT->getDecl();
     71     for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
     72          I != E; ++I) {
     73       QualType FieldT = I->getType();
     74       if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
     75         return true;
     76     }
     77   }
     78 
     79   return false;
     80 }
     81 
     82 bool CallEvent::hasNonZeroCallbackArg() const {
     83   unsigned NumOfArgs = getNumArgs();
     84 
     85   // If calling using a function pointer, assume the function does not
     86   // have a callback. TODO: We could check the types of the arguments here.
     87   if (!getDecl())
     88     return false;
     89 
     90   unsigned Idx = 0;
     91   for (CallEvent::param_type_iterator I = param_type_begin(),
     92                                        E = param_type_end();
     93        I != E && Idx < NumOfArgs; ++I, ++Idx) {
     94     if (NumOfArgs <= Idx)
     95       break;
     96 
     97     if (isCallbackArg(getArgSVal(Idx), *I))
     98       return true;
     99   }
    100 
    101   return false;
    102 }
    103 
    104 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
    105   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
    106   if (!FD)
    107     return false;
    108 
    109   return CheckerContext::isCLibraryFunction(FD, FunctionName);
    110 }
    111 
    112 /// \brief Returns true if a type is a pointer-to-const or reference-to-const
    113 /// with no further indirection.
    114 static bool isPointerToConst(QualType Ty) {
    115   QualType PointeeTy = Ty->getPointeeType();
    116   if (PointeeTy == QualType())
    117     return false;
    118   if (!PointeeTy.isConstQualified())
    119     return false;
    120   if (PointeeTy->isAnyPointerType())
    121     return false;
    122   return true;
    123 }
    124 
    125 // Try to retrieve the function declaration and find the function parameter
    126 // types which are pointers/references to a non-pointer const.
    127 // We will not invalidate the corresponding argument regions.
    128 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
    129                                  const CallEvent &Call) {
    130   unsigned Idx = 0;
    131   for (CallEvent::param_type_iterator I = Call.param_type_begin(),
    132                                       E = Call.param_type_end();
    133        I != E; ++I, ++Idx) {
    134     if (isPointerToConst(*I))
    135       PreserveArgs.insert(Idx);
    136   }
    137 }
    138 
    139 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
    140                                              ProgramStateRef Orig) const {
    141   ProgramStateRef Result = (Orig ? Orig : getState());
    142 
    143   SmallVector<SVal, 8> ConstValues;
    144   SmallVector<SVal, 8> ValuesToInvalidate;
    145 
    146   getExtraInvalidatedValues(ValuesToInvalidate);
    147 
    148   // Indexes of arguments whose values will be preserved by the call.
    149   llvm::SmallSet<unsigned, 4> PreserveArgs;
    150   if (!argumentsMayEscape())
    151     findPtrToConstParams(PreserveArgs, *this);
    152 
    153   for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
    154     // Mark this region for invalidation.  We batch invalidate regions
    155     // below for efficiency.
    156     if (PreserveArgs.count(Idx))
    157       ConstValues.push_back(getArgSVal(Idx));
    158     else
    159       ValuesToInvalidate.push_back(getArgSVal(Idx));
    160   }
    161 
    162   // Invalidate designated regions using the batch invalidation API.
    163   // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
    164   //  global variables.
    165   return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
    166                                    BlockCount, getLocationContext(),
    167                                    /*CausedByPointerEscape*/ true,
    168                                    /*Symbols=*/0, this, ConstValues);
    169 }
    170 
    171 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
    172                                         const ProgramPointTag *Tag) const {
    173   if (const Expr *E = getOriginExpr()) {
    174     if (IsPreVisit)
    175       return PreStmt(E, getLocationContext(), Tag);
    176     return PostStmt(E, getLocationContext(), Tag);
    177   }
    178 
    179   const Decl *D = getDecl();
    180   assert(D && "Cannot get a program point without a statement or decl");
    181 
    182   SourceLocation Loc = getSourceRange().getBegin();
    183   if (IsPreVisit)
    184     return PreImplicitCall(D, Loc, getLocationContext(), Tag);
    185   return PostImplicitCall(D, Loc, getLocationContext(), Tag);
    186 }
    187 
    188 SVal CallEvent::getArgSVal(unsigned Index) const {
    189   const Expr *ArgE = getArgExpr(Index);
    190   if (!ArgE)
    191     return UnknownVal();
    192   return getSVal(ArgE);
    193 }
    194 
    195 SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
    196   const Expr *ArgE = getArgExpr(Index);
    197   if (!ArgE)
    198     return SourceRange();
    199   return ArgE->getSourceRange();
    200 }
    201 
    202 SVal CallEvent::getReturnValue() const {
    203   const Expr *E = getOriginExpr();
    204   if (!E)
    205     return UndefinedVal();
    206   return getSVal(E);
    207 }
    208 
    209 void CallEvent::dump() const {
    210   dump(llvm::errs());
    211 }
    212 
    213 void CallEvent::dump(raw_ostream &Out) const {
    214   ASTContext &Ctx = getState()->getStateManager().getContext();
    215   if (const Expr *E = getOriginExpr()) {
    216     E->printPretty(Out, 0, Ctx.getPrintingPolicy());
    217     Out << "\n";
    218     return;
    219   }
    220 
    221   if (const Decl *D = getDecl()) {
    222     Out << "Call to ";
    223     D->print(Out, Ctx.getPrintingPolicy());
    224     return;
    225   }
    226 
    227   // FIXME: a string representation of the kind would be nice.
    228   Out << "Unknown call (type " << getKind() << ")";
    229 }
    230 
    231 
    232 bool CallEvent::isCallStmt(const Stmt *S) {
    233   return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
    234                           || isa<CXXConstructExpr>(S)
    235                           || isa<CXXNewExpr>(S);
    236 }
    237 
    238 QualType CallEvent::getDeclaredResultType(const Decl *D) {
    239   assert(D);
    240   if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(D))
    241     return FD->getResultType();
    242   if (const ObjCMethodDecl* MD = dyn_cast<ObjCMethodDecl>(D))
    243     return MD->getResultType();
    244   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
    245     // Blocks are difficult because the return type may not be stored in the
    246     // BlockDecl itself. The AST should probably be enhanced, but for now we
    247     // just do what we can.
    248     // If the block is declared without an explicit argument list, the
    249     // signature-as-written just includes the return type, not the entire
    250     // function type.
    251     // FIXME: All blocks should have signatures-as-written, even if the return
    252     // type is inferred. (That's signified with a dependent result type.)
    253     if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
    254       QualType Ty = TSI->getType();
    255       if (const FunctionType *FT = Ty->getAs<FunctionType>())
    256         Ty = FT->getResultType();
    257       if (!Ty->isDependentType())
    258         return Ty;
    259     }
    260 
    261     return QualType();
    262   }
    263 
    264   return QualType();
    265 }
    266 
    267 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
    268                                          CallEvent::BindingsTy &Bindings,
    269                                          SValBuilder &SVB,
    270                                          const CallEvent &Call,
    271                                          CallEvent::param_iterator I,
    272                                          CallEvent::param_iterator E) {
    273   MemRegionManager &MRMgr = SVB.getRegionManager();
    274 
    275   // If the function has fewer parameters than the call has arguments, we simply
    276   // do not bind any values to them.
    277   unsigned NumArgs = Call.getNumArgs();
    278   unsigned Idx = 0;
    279   for (; I != E && Idx < NumArgs; ++I, ++Idx) {
    280     const ParmVarDecl *ParamDecl = *I;
    281     assert(ParamDecl && "Formal parameter has no decl?");
    282 
    283     SVal ArgVal = Call.getArgSVal(Idx);
    284     if (!ArgVal.isUnknown()) {
    285       Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx));
    286       Bindings.push_back(std::make_pair(ParamLoc, ArgVal));
    287     }
    288   }
    289 
    290   // FIXME: Variadic arguments are not handled at all right now.
    291 }
    292 
    293 
    294 CallEvent::param_iterator AnyFunctionCall::param_begin() const {
    295   const FunctionDecl *D = getDecl();
    296   if (!D)
    297     return 0;
    298 
    299   return D->param_begin();
    300 }
    301 
    302 CallEvent::param_iterator AnyFunctionCall::param_end() const {
    303   const FunctionDecl *D = getDecl();
    304   if (!D)
    305     return 0;
    306 
    307   return D->param_end();
    308 }
    309 
    310 void AnyFunctionCall::getInitialStackFrameContents(
    311                                         const StackFrameContext *CalleeCtx,
    312                                         BindingsTy &Bindings) const {
    313   const FunctionDecl *D = cast<FunctionDecl>(CalleeCtx->getDecl());
    314   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
    315   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
    316                                D->param_begin(), D->param_end());
    317 }
    318 
    319 bool AnyFunctionCall::argumentsMayEscape() const {
    320   if (hasNonZeroCallbackArg())
    321     return true;
    322 
    323   const FunctionDecl *D = getDecl();
    324   if (!D)
    325     return true;
    326 
    327   const IdentifierInfo *II = D->getIdentifier();
    328   if (!II)
    329     return false;
    330 
    331   // This set of "escaping" APIs is
    332 
    333   // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
    334   //   value into thread local storage. The value can later be retrieved with
    335   //   'void *ptheread_getspecific(pthread_key)'. So even thought the
    336   //   parameter is 'const void *', the region escapes through the call.
    337   if (II->isStr("pthread_setspecific"))
    338     return true;
    339 
    340   // - xpc_connection_set_context stores a value which can be retrieved later
    341   //   with xpc_connection_get_context.
    342   if (II->isStr("xpc_connection_set_context"))
    343     return true;
    344 
    345   // - funopen - sets a buffer for future IO calls.
    346   if (II->isStr("funopen"))
    347     return true;
    348 
    349   StringRef FName = II->getName();
    350 
    351   // - CoreFoundation functions that end with "NoCopy" can free a passed-in
    352   //   buffer even if it is const.
    353   if (FName.endswith("NoCopy"))
    354     return true;
    355 
    356   // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
    357   //   be deallocated by NSMapRemove.
    358   if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
    359     return true;
    360 
    361   // - Many CF containers allow objects to escape through custom
    362   //   allocators/deallocators upon container construction. (PR12101)
    363   if (FName.startswith("CF") || FName.startswith("CG")) {
    364     return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
    365            StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
    366            StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
    367            StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
    368            StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
    369            StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
    370   }
    371 
    372   return false;
    373 }
    374 
    375 
    376 const FunctionDecl *SimpleCall::getDecl() const {
    377   const FunctionDecl *D = getOriginExpr()->getDirectCallee();
    378   if (D)
    379     return D;
    380 
    381   return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
    382 }
    383 
    384 
    385 const FunctionDecl *CXXInstanceCall::getDecl() const {
    386   const CallExpr *CE = cast_or_null<CallExpr>(getOriginExpr());
    387   if (!CE)
    388     return AnyFunctionCall::getDecl();
    389 
    390   const FunctionDecl *D = CE->getDirectCallee();
    391   if (D)
    392     return D;
    393 
    394   return getSVal(CE->getCallee()).getAsFunctionDecl();
    395 }
    396 
    397 void CXXInstanceCall::getExtraInvalidatedValues(ValueList &Values) const {
    398   Values.push_back(getCXXThisVal());
    399 }
    400 
    401 SVal CXXInstanceCall::getCXXThisVal() const {
    402   const Expr *Base = getCXXThisExpr();
    403   // FIXME: This doesn't handle an overloaded ->* operator.
    404   if (!Base)
    405     return UnknownVal();
    406 
    407   SVal ThisVal = getSVal(Base);
    408   assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>());
    409   return ThisVal;
    410 }
    411 
    412 
    413 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
    414   // Do we have a decl at all?
    415   const Decl *D = getDecl();
    416   if (!D)
    417     return RuntimeDefinition();
    418 
    419   // If the method is non-virtual, we know we can inline it.
    420   const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
    421   if (!MD->isVirtual())
    422     return AnyFunctionCall::getRuntimeDefinition();
    423 
    424   // Do we know the implicit 'this' object being called?
    425   const MemRegion *R = getCXXThisVal().getAsRegion();
    426   if (!R)
    427     return RuntimeDefinition();
    428 
    429   // Do we know anything about the type of 'this'?
    430   DynamicTypeInfo DynType = getState()->getDynamicTypeInfo(R);
    431   if (!DynType.isValid())
    432     return RuntimeDefinition();
    433 
    434   // Is the type a C++ class? (This is mostly a defensive check.)
    435   QualType RegionType = DynType.getType()->getPointeeType();
    436   assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
    437 
    438   const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
    439   if (!RD || !RD->hasDefinition())
    440     return RuntimeDefinition();
    441 
    442   // Find the decl for this method in that class.
    443   const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
    444   if (!Result) {
    445     // We might not even get the original statically-resolved method due to
    446     // some particularly nasty casting (e.g. casts to sister classes).
    447     // However, we should at least be able to search up and down our own class
    448     // hierarchy, and some real bugs have been caught by checking this.
    449     assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
    450 
    451     // FIXME: This is checking that our DynamicTypeInfo is at least as good as
    452     // the static type. However, because we currently don't update
    453     // DynamicTypeInfo when an object is cast, we can't actually be sure the
    454     // DynamicTypeInfo is up to date. This assert should be re-enabled once
    455     // this is fixed. <rdar://problem/12287087>
    456     //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
    457 
    458     return RuntimeDefinition();
    459   }
    460 
    461   // Does the decl that we found have an implementation?
    462   const FunctionDecl *Definition;
    463   if (!Result->hasBody(Definition))
    464     return RuntimeDefinition();
    465 
    466   // We found a definition. If we're not sure that this devirtualization is
    467   // actually what will happen at runtime, make sure to provide the region so
    468   // that ExprEngine can decide what to do with it.
    469   if (DynType.canBeASubClass())
    470     return RuntimeDefinition(Definition, R->StripCasts());
    471   return RuntimeDefinition(Definition, /*DispatchRegion=*/0);
    472 }
    473 
    474 void CXXInstanceCall::getInitialStackFrameContents(
    475                                             const StackFrameContext *CalleeCtx,
    476                                             BindingsTy &Bindings) const {
    477   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
    478 
    479   // Handle the binding of 'this' in the new stack frame.
    480   SVal ThisVal = getCXXThisVal();
    481   if (!ThisVal.isUnknown()) {
    482     ProgramStateManager &StateMgr = getState()->getStateManager();
    483     SValBuilder &SVB = StateMgr.getSValBuilder();
    484 
    485     const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
    486     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
    487 
    488     // If we devirtualized to a different member function, we need to make sure
    489     // we have the proper layering of CXXBaseObjectRegions.
    490     if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
    491       ASTContext &Ctx = SVB.getContext();
    492       const CXXRecordDecl *Class = MD->getParent();
    493       QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
    494 
    495       // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
    496       bool Failed;
    497       ThisVal = StateMgr.getStoreManager().evalDynamicCast(ThisVal, Ty, Failed);
    498       assert(!Failed && "Calling an incorrectly devirtualized method");
    499     }
    500 
    501     if (!ThisVal.isUnknown())
    502       Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
    503   }
    504 }
    505 
    506 
    507 
    508 const Expr *CXXMemberCall::getCXXThisExpr() const {
    509   return getOriginExpr()->getImplicitObjectArgument();
    510 }
    511 
    512 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
    513   // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
    514   // id-expression in the class member access expression is a qualified-id,
    515   // that function is called. Otherwise, its final overrider in the dynamic type
    516   // of the object expression is called.
    517   if (const MemberExpr *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
    518     if (ME->hasQualifier())
    519       return AnyFunctionCall::getRuntimeDefinition();
    520 
    521   return CXXInstanceCall::getRuntimeDefinition();
    522 }
    523 
    524 
    525 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
    526   return getOriginExpr()->getArg(0);
    527 }
    528 
    529 
    530 const BlockDataRegion *BlockCall::getBlockRegion() const {
    531   const Expr *Callee = getOriginExpr()->getCallee();
    532   const MemRegion *DataReg = getSVal(Callee).getAsRegion();
    533 
    534   return dyn_cast_or_null<BlockDataRegion>(DataReg);
    535 }
    536 
    537 CallEvent::param_iterator BlockCall::param_begin() const {
    538   const BlockDecl *D = getBlockDecl();
    539   if (!D)
    540     return 0;
    541   return D->param_begin();
    542 }
    543 
    544 CallEvent::param_iterator BlockCall::param_end() const {
    545   const BlockDecl *D = getBlockDecl();
    546   if (!D)
    547     return 0;
    548   return D->param_end();
    549 }
    550 
    551 void BlockCall::getExtraInvalidatedValues(ValueList &Values) const {
    552   // FIXME: This also needs to invalidate captured globals.
    553   if (const MemRegion *R = getBlockRegion())
    554     Values.push_back(loc::MemRegionVal(R));
    555 }
    556 
    557 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
    558                                              BindingsTy &Bindings) const {
    559   const BlockDecl *D = cast<BlockDecl>(CalleeCtx->getDecl());
    560   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
    561   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
    562                                D->param_begin(), D->param_end());
    563 }
    564 
    565 
    566 SVal CXXConstructorCall::getCXXThisVal() const {
    567   if (Data)
    568     return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
    569   return UnknownVal();
    570 }
    571 
    572 void CXXConstructorCall::getExtraInvalidatedValues(ValueList &Values) const {
    573   if (Data)
    574     Values.push_back(loc::MemRegionVal(static_cast<const MemRegion *>(Data)));
    575 }
    576 
    577 void CXXConstructorCall::getInitialStackFrameContents(
    578                                              const StackFrameContext *CalleeCtx,
    579                                              BindingsTy &Bindings) const {
    580   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
    581 
    582   SVal ThisVal = getCXXThisVal();
    583   if (!ThisVal.isUnknown()) {
    584     SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
    585     const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
    586     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
    587     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
    588   }
    589 }
    590 
    591 
    592 
    593 SVal CXXDestructorCall::getCXXThisVal() const {
    594   if (Data)
    595     return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
    596   return UnknownVal();
    597 }
    598 
    599 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
    600   // Base destructors are always called non-virtually.
    601   // Skip CXXInstanceCall's devirtualization logic in this case.
    602   if (isBaseDestructor())
    603     return AnyFunctionCall::getRuntimeDefinition();
    604 
    605   return CXXInstanceCall::getRuntimeDefinition();
    606 }
    607 
    608 
    609 CallEvent::param_iterator ObjCMethodCall::param_begin() const {
    610   const ObjCMethodDecl *D = getDecl();
    611   if (!D)
    612     return 0;
    613 
    614   return D->param_begin();
    615 }
    616 
    617 CallEvent::param_iterator ObjCMethodCall::param_end() const {
    618   const ObjCMethodDecl *D = getDecl();
    619   if (!D)
    620     return 0;
    621 
    622   return D->param_end();
    623 }
    624 
    625 void
    626 ObjCMethodCall::getExtraInvalidatedValues(ValueList &Values) const {
    627   Values.push_back(getReceiverSVal());
    628 }
    629 
    630 SVal ObjCMethodCall::getSelfSVal() const {
    631   const LocationContext *LCtx = getLocationContext();
    632   const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl();
    633   if (!SelfDecl)
    634     return SVal();
    635   return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx));
    636 }
    637 
    638 SVal ObjCMethodCall::getReceiverSVal() const {
    639   // FIXME: Is this the best way to handle class receivers?
    640   if (!isInstanceMessage())
    641     return UnknownVal();
    642 
    643   if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
    644     return getSVal(RecE);
    645 
    646   // An instance message with no expression means we are sending to super.
    647   // In this case the object reference is the same as 'self'.
    648   assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
    649   SVal SelfVal = getSelfSVal();
    650   assert(SelfVal.isValid() && "Calling super but not in ObjC method");
    651   return SelfVal;
    652 }
    653 
    654 bool ObjCMethodCall::isReceiverSelfOrSuper() const {
    655   if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
    656       getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
    657       return true;
    658 
    659   if (!isInstanceMessage())
    660     return false;
    661 
    662   SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
    663 
    664   return (RecVal == getSelfSVal());
    665 }
    666 
    667 SourceRange ObjCMethodCall::getSourceRange() const {
    668   switch (getMessageKind()) {
    669   case OCM_Message:
    670     return getOriginExpr()->getSourceRange();
    671   case OCM_PropertyAccess:
    672   case OCM_Subscript:
    673     return getContainingPseudoObjectExpr()->getSourceRange();
    674   }
    675   llvm_unreachable("unknown message kind");
    676 }
    677 
    678 typedef llvm::PointerIntPair<const PseudoObjectExpr *, 2> ObjCMessageDataTy;
    679 
    680 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
    681   assert(Data != 0 && "Lazy lookup not yet performed.");
    682   assert(getMessageKind() != OCM_Message && "Explicit message send.");
    683   return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
    684 }
    685 
    686 ObjCMessageKind ObjCMethodCall::getMessageKind() const {
    687   if (Data == 0) {
    688     ParentMap &PM = getLocationContext()->getParentMap();
    689     const Stmt *S = PM.getParent(getOriginExpr());
    690     if (const PseudoObjectExpr *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
    691       const Expr *Syntactic = POE->getSyntacticForm();
    692 
    693       // This handles the funny case of assigning to the result of a getter.
    694       // This can happen if the getter returns a non-const reference.
    695       if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Syntactic))
    696         Syntactic = BO->getLHS();
    697 
    698       ObjCMessageKind K;
    699       switch (Syntactic->getStmtClass()) {
    700       case Stmt::ObjCPropertyRefExprClass:
    701         K = OCM_PropertyAccess;
    702         break;
    703       case Stmt::ObjCSubscriptRefExprClass:
    704         K = OCM_Subscript;
    705         break;
    706       default:
    707         // FIXME: Can this ever happen?
    708         K = OCM_Message;
    709         break;
    710       }
    711 
    712       if (K != OCM_Message) {
    713         const_cast<ObjCMethodCall *>(this)->Data
    714           = ObjCMessageDataTy(POE, K).getOpaqueValue();
    715         assert(getMessageKind() == K);
    716         return K;
    717       }
    718     }
    719 
    720     const_cast<ObjCMethodCall *>(this)->Data
    721       = ObjCMessageDataTy(0, 1).getOpaqueValue();
    722     assert(getMessageKind() == OCM_Message);
    723     return OCM_Message;
    724   }
    725 
    726   ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
    727   if (!Info.getPointer())
    728     return OCM_Message;
    729   return static_cast<ObjCMessageKind>(Info.getInt());
    730 }
    731 
    732 
    733 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
    734                                              Selector Sel) const {
    735   assert(IDecl);
    736   const SourceManager &SM =
    737     getState()->getStateManager().getContext().getSourceManager();
    738 
    739   // If the class interface is declared inside the main file, assume it is not
    740   // subcassed.
    741   // TODO: It could actually be subclassed if the subclass is private as well.
    742   // This is probably very rare.
    743   SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
    744   if (InterfLoc.isValid() && SM.isFromMainFile(InterfLoc))
    745     return false;
    746 
    747   // Assume that property accessors are not overridden.
    748   if (getMessageKind() == OCM_PropertyAccess)
    749     return false;
    750 
    751   // We assume that if the method is public (declared outside of main file) or
    752   // has a parent which publicly declares the method, the method could be
    753   // overridden in a subclass.
    754 
    755   // Find the first declaration in the class hierarchy that declares
    756   // the selector.
    757   ObjCMethodDecl *D = 0;
    758   while (true) {
    759     D = IDecl->lookupMethod(Sel, true);
    760 
    761     // Cannot find a public definition.
    762     if (!D)
    763       return false;
    764 
    765     // If outside the main file,
    766     if (D->getLocation().isValid() && !SM.isFromMainFile(D->getLocation()))
    767       return true;
    768 
    769     if (D->isOverriding()) {
    770       // Search in the superclass on the next iteration.
    771       IDecl = D->getClassInterface();
    772       if (!IDecl)
    773         return false;
    774 
    775       IDecl = IDecl->getSuperClass();
    776       if (!IDecl)
    777         return false;
    778 
    779       continue;
    780     }
    781 
    782     return false;
    783   };
    784 
    785   llvm_unreachable("The while loop should always terminate.");
    786 }
    787 
    788 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
    789   const ObjCMessageExpr *E = getOriginExpr();
    790   assert(E);
    791   Selector Sel = E->getSelector();
    792 
    793   if (E->isInstanceMessage()) {
    794 
    795     // Find the the receiver type.
    796     const ObjCObjectPointerType *ReceiverT = 0;
    797     bool CanBeSubClassed = false;
    798     QualType SupersType = E->getSuperType();
    799     const MemRegion *Receiver = 0;
    800 
    801     if (!SupersType.isNull()) {
    802       // Super always means the type of immediate predecessor to the method
    803       // where the call occurs.
    804       ReceiverT = cast<ObjCObjectPointerType>(SupersType);
    805     } else {
    806       Receiver = getReceiverSVal().getAsRegion();
    807       if (!Receiver)
    808         return RuntimeDefinition();
    809 
    810       DynamicTypeInfo DTI = getState()->getDynamicTypeInfo(Receiver);
    811       QualType DynType = DTI.getType();
    812       CanBeSubClassed = DTI.canBeASubClass();
    813       ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType);
    814 
    815       if (ReceiverT && CanBeSubClassed)
    816         if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl())
    817           if (!canBeOverridenInSubclass(IDecl, Sel))
    818             CanBeSubClassed = false;
    819     }
    820 
    821     // Lookup the method implementation.
    822     if (ReceiverT)
    823       if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) {
    824         // Repeatedly calling lookupPrivateMethod() is expensive, especially
    825         // when in many cases it returns null.  We cache the results so
    826         // that repeated queries on the same ObjCIntefaceDecl and Selector
    827         // don't incur the same cost.  On some test cases, we can see the
    828         // same query being issued thousands of times.
    829         //
    830         // NOTE: This cache is essentially a "global" variable, but it
    831         // only gets lazily created when we get here.  The value of the
    832         // cache probably comes from it being global across ExprEngines,
    833         // where the same queries may get issued.  If we are worried about
    834         // concurrency, or possibly loading/unloading ASTs, etc., we may
    835         // need to revisit this someday.  In terms of memory, this table
    836         // stays around until clang quits, which also may be bad if we
    837         // need to release memory.
    838         typedef std::pair<const ObjCInterfaceDecl*, Selector>
    839                 PrivateMethodKey;
    840         typedef llvm::DenseMap<PrivateMethodKey,
    841                                Optional<const ObjCMethodDecl *> >
    842                 PrivateMethodCache;
    843 
    844         static PrivateMethodCache PMC;
    845         Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)];
    846 
    847         // Query lookupPrivateMethod() if the cache does not hit.
    848         if (!Val.hasValue())
    849           Val = IDecl->lookupPrivateMethod(Sel);
    850 
    851         const ObjCMethodDecl *MD = Val.getValue();
    852         if (CanBeSubClassed)
    853           return RuntimeDefinition(MD, Receiver);
    854         else
    855           return RuntimeDefinition(MD, 0);
    856       }
    857 
    858   } else {
    859     // This is a class method.
    860     // If we have type info for the receiver class, we are calling via
    861     // class name.
    862     if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
    863       // Find/Return the method implementation.
    864       return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
    865     }
    866   }
    867 
    868   return RuntimeDefinition();
    869 }
    870 
    871 void ObjCMethodCall::getInitialStackFrameContents(
    872                                              const StackFrameContext *CalleeCtx,
    873                                              BindingsTy &Bindings) const {
    874   const ObjCMethodDecl *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
    875   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
    876   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
    877                                D->param_begin(), D->param_end());
    878 
    879   SVal SelfVal = getReceiverSVal();
    880   if (!SelfVal.isUnknown()) {
    881     const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
    882     MemRegionManager &MRMgr = SVB.getRegionManager();
    883     Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
    884     Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
    885   }
    886 }
    887 
    888 CallEventRef<>
    889 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
    890                                 const LocationContext *LCtx) {
    891   if (const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE))
    892     return create<CXXMemberCall>(MCE, State, LCtx);
    893 
    894   if (const CXXOperatorCallExpr *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
    895     const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
    896     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
    897       if (MD->isInstance())
    898         return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
    899 
    900   } else if (CE->getCallee()->getType()->isBlockPointerType()) {
    901     return create<BlockCall>(CE, State, LCtx);
    902   }
    903 
    904   // Otherwise, it's a normal function call, static member function call, or
    905   // something we can't reason about.
    906   return create<FunctionCall>(CE, State, LCtx);
    907 }
    908 
    909 
    910 CallEventRef<>
    911 CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
    912                             ProgramStateRef State) {
    913   const LocationContext *ParentCtx = CalleeCtx->getParent();
    914   const LocationContext *CallerCtx = ParentCtx->getCurrentStackFrame();
    915   assert(CallerCtx && "This should not be used for top-level stack frames");
    916 
    917   const Stmt *CallSite = CalleeCtx->getCallSite();
    918 
    919   if (CallSite) {
    920     if (const CallExpr *CE = dyn_cast<CallExpr>(CallSite))
    921       return getSimpleCall(CE, State, CallerCtx);
    922 
    923     switch (CallSite->getStmtClass()) {
    924     case Stmt::CXXConstructExprClass:
    925     case Stmt::CXXTemporaryObjectExprClass: {
    926       SValBuilder &SVB = State->getStateManager().getSValBuilder();
    927       const CXXMethodDecl *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
    928       Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
    929       SVal ThisVal = State->getSVal(ThisPtr);
    930 
    931       return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite),
    932                                    ThisVal.getAsRegion(), State, CallerCtx);
    933     }
    934     case Stmt::CXXNewExprClass:
    935       return getCXXAllocatorCall(cast<CXXNewExpr>(CallSite), State, CallerCtx);
    936     case Stmt::ObjCMessageExprClass:
    937       return getObjCMethodCall(cast<ObjCMessageExpr>(CallSite),
    938                                State, CallerCtx);
    939     default:
    940       llvm_unreachable("This is not an inlineable statement.");
    941     }
    942   }
    943 
    944   // Fall back to the CFG. The only thing we haven't handled yet is
    945   // destructors, though this could change in the future.
    946   const CFGBlock *B = CalleeCtx->getCallSiteBlock();
    947   CFGElement E = (*B)[CalleeCtx->getIndex()];
    948   assert(E.getAs<CFGImplicitDtor>() &&
    949          "All other CFG elements should have exprs");
    950   assert(!E.getAs<CFGTemporaryDtor>() && "We don't handle temporaries yet");
    951 
    952   SValBuilder &SVB = State->getStateManager().getSValBuilder();
    953   const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
    954   Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
    955   SVal ThisVal = State->getSVal(ThisPtr);
    956 
    957   const Stmt *Trigger;
    958   if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
    959     Trigger = AutoDtor->getTriggerStmt();
    960   else
    961     Trigger = Dtor->getBody();
    962 
    963   return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
    964                               E.getAs<CFGBaseDtor>().hasValue(), State,
    965                               CallerCtx);
    966 }
    967