1 /* 2 Copyright (c) 2003-2004, Mark Borgerding 3 4 All rights reserved. 5 6 Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 7 8 * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 9 * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 10 * Neither the author nor the names of any contributors may be used to endorse or promote products derived from this software without specific prior written permission. 11 12 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 13 */ 14 15 #ifdef HAVE_CONFIG_H 16 #include "config.h" 17 #endif 18 19 #include "os_support.h" 20 #include "kiss_fftr.h" 21 #include "_kiss_fft_guts.h" 22 23 struct kiss_fftr_state{ 24 kiss_fft_cfg substate; 25 kiss_fft_cpx * tmpbuf; 26 kiss_fft_cpx * super_twiddles; 27 #ifdef USE_SIMD 28 long pad; 29 #endif 30 }; 31 32 kiss_fftr_cfg kiss_fftr_alloc(int nfft,int inverse_fft,void * mem,size_t * lenmem) 33 { 34 int i; 35 kiss_fftr_cfg st = NULL; 36 size_t subsize, memneeded; 37 38 if (nfft & 1) { 39 speex_warning("Real FFT optimization must be even.\n"); 40 return NULL; 41 } 42 nfft >>= 1; 43 44 kiss_fft_alloc (nfft, inverse_fft, NULL, &subsize); 45 memneeded = sizeof(struct kiss_fftr_state) + subsize + sizeof(kiss_fft_cpx) * ( nfft * 2); 46 47 if (lenmem == NULL) { 48 st = (kiss_fftr_cfg) KISS_FFT_MALLOC (memneeded); 49 } else { 50 if (*lenmem >= memneeded) 51 st = (kiss_fftr_cfg) mem; 52 *lenmem = memneeded; 53 } 54 if (!st) 55 return NULL; 56 57 st->substate = (kiss_fft_cfg) (st + 1); /*just beyond kiss_fftr_state struct */ 58 st->tmpbuf = (kiss_fft_cpx *) (((char *) st->substate) + subsize); 59 st->super_twiddles = st->tmpbuf + nfft; 60 kiss_fft_alloc(nfft, inverse_fft, st->substate, &subsize); 61 62 #ifdef FIXED_POINT 63 for (i=0;i<nfft;++i) { 64 spx_word32_t phase = i+(nfft>>1); 65 if (!inverse_fft) 66 phase = -phase; 67 kf_cexp2(st->super_twiddles+i, DIV32(SHL32(phase,16),nfft)); 68 } 69 #else 70 for (i=0;i<nfft;++i) { 71 const double pi=3.14159265358979323846264338327; 72 double phase = pi*(((double)i) /nfft + .5); 73 if (!inverse_fft) 74 phase = -phase; 75 kf_cexp(st->super_twiddles+i, phase ); 76 } 77 #endif 78 return st; 79 } 80 81 void kiss_fftr(kiss_fftr_cfg st,const kiss_fft_scalar *timedata,kiss_fft_cpx *freqdata) 82 { 83 /* input buffer timedata is stored row-wise */ 84 int k,ncfft; 85 kiss_fft_cpx fpnk,fpk,f1k,f2k,tw,tdc; 86 87 if ( st->substate->inverse) { 88 speex_fatal("kiss fft usage error: improper alloc\n"); 89 } 90 91 ncfft = st->substate->nfft; 92 93 /*perform the parallel fft of two real signals packed in real,imag*/ 94 kiss_fft( st->substate , (const kiss_fft_cpx*)timedata, st->tmpbuf ); 95 /* The real part of the DC element of the frequency spectrum in st->tmpbuf 96 * contains the sum of the even-numbered elements of the input time sequence 97 * The imag part is the sum of the odd-numbered elements 98 * 99 * The sum of tdc.r and tdc.i is the sum of the input time sequence. 100 * yielding DC of input time sequence 101 * The difference of tdc.r - tdc.i is the sum of the input (dot product) [1,-1,1,-1... 102 * yielding Nyquist bin of input time sequence 103 */ 104 105 tdc.r = st->tmpbuf[0].r; 106 tdc.i = st->tmpbuf[0].i; 107 C_FIXDIV(tdc,2); 108 CHECK_OVERFLOW_OP(tdc.r ,+, tdc.i); 109 CHECK_OVERFLOW_OP(tdc.r ,-, tdc.i); 110 freqdata[0].r = tdc.r + tdc.i; 111 freqdata[ncfft].r = tdc.r - tdc.i; 112 #ifdef USE_SIMD 113 freqdata[ncfft].i = freqdata[0].i = _mm_set1_ps(0); 114 #else 115 freqdata[ncfft].i = freqdata[0].i = 0; 116 #endif 117 118 for ( k=1;k <= ncfft/2 ; ++k ) { 119 fpk = st->tmpbuf[k]; 120 fpnk.r = st->tmpbuf[ncfft-k].r; 121 fpnk.i = - st->tmpbuf[ncfft-k].i; 122 C_FIXDIV(fpk,2); 123 C_FIXDIV(fpnk,2); 124 125 C_ADD( f1k, fpk , fpnk ); 126 C_SUB( f2k, fpk , fpnk ); 127 C_MUL( tw , f2k , st->super_twiddles[k]); 128 129 freqdata[k].r = HALF_OF(f1k.r + tw.r); 130 freqdata[k].i = HALF_OF(f1k.i + tw.i); 131 freqdata[ncfft-k].r = HALF_OF(f1k.r - tw.r); 132 freqdata[ncfft-k].i = HALF_OF(tw.i - f1k.i); 133 } 134 } 135 136 void kiss_fftri(kiss_fftr_cfg st,const kiss_fft_cpx *freqdata, kiss_fft_scalar *timedata) 137 { 138 /* input buffer timedata is stored row-wise */ 139 int k, ncfft; 140 141 if (st->substate->inverse == 0) { 142 speex_fatal("kiss fft usage error: improper alloc\n"); 143 } 144 145 ncfft = st->substate->nfft; 146 147 st->tmpbuf[0].r = freqdata[0].r + freqdata[ncfft].r; 148 st->tmpbuf[0].i = freqdata[0].r - freqdata[ncfft].r; 149 /*C_FIXDIV(st->tmpbuf[0],2);*/ 150 151 for (k = 1; k <= ncfft / 2; ++k) { 152 kiss_fft_cpx fk, fnkc, fek, fok, tmp; 153 fk = freqdata[k]; 154 fnkc.r = freqdata[ncfft - k].r; 155 fnkc.i = -freqdata[ncfft - k].i; 156 /*C_FIXDIV( fk , 2 ); 157 C_FIXDIV( fnkc , 2 );*/ 158 159 C_ADD (fek, fk, fnkc); 160 C_SUB (tmp, fk, fnkc); 161 C_MUL (fok, tmp, st->super_twiddles[k]); 162 C_ADD (st->tmpbuf[k], fek, fok); 163 C_SUB (st->tmpbuf[ncfft - k], fek, fok); 164 #ifdef USE_SIMD 165 st->tmpbuf[ncfft - k].i *= _mm_set1_ps(-1.0); 166 #else 167 st->tmpbuf[ncfft - k].i *= -1; 168 #endif 169 } 170 kiss_fft (st->substate, st->tmpbuf, (kiss_fft_cpx *) timedata); 171 } 172 173 void kiss_fftr2(kiss_fftr_cfg st,const kiss_fft_scalar *timedata,kiss_fft_scalar *freqdata) 174 { 175 /* input buffer timedata is stored row-wise */ 176 int k,ncfft; 177 kiss_fft_cpx f2k,tdc; 178 spx_word32_t f1kr, f1ki, twr, twi; 179 180 if ( st->substate->inverse) { 181 speex_fatal("kiss fft usage error: improper alloc\n"); 182 } 183 184 ncfft = st->substate->nfft; 185 186 /*perform the parallel fft of two real signals packed in real,imag*/ 187 kiss_fft( st->substate , (const kiss_fft_cpx*)timedata, st->tmpbuf ); 188 /* The real part of the DC element of the frequency spectrum in st->tmpbuf 189 * contains the sum of the even-numbered elements of the input time sequence 190 * The imag part is the sum of the odd-numbered elements 191 * 192 * The sum of tdc.r and tdc.i is the sum of the input time sequence. 193 * yielding DC of input time sequence 194 * The difference of tdc.r - tdc.i is the sum of the input (dot product) [1,-1,1,-1... 195 * yielding Nyquist bin of input time sequence 196 */ 197 198 tdc.r = st->tmpbuf[0].r; 199 tdc.i = st->tmpbuf[0].i; 200 C_FIXDIV(tdc,2); 201 CHECK_OVERFLOW_OP(tdc.r ,+, tdc.i); 202 CHECK_OVERFLOW_OP(tdc.r ,-, tdc.i); 203 freqdata[0] = tdc.r + tdc.i; 204 freqdata[2*ncfft-1] = tdc.r - tdc.i; 205 206 for ( k=1;k <= ncfft/2 ; ++k ) 207 { 208 /*fpk = st->tmpbuf[k]; 209 fpnk.r = st->tmpbuf[ncfft-k].r; 210 fpnk.i = - st->tmpbuf[ncfft-k].i; 211 C_FIXDIV(fpk,2); 212 C_FIXDIV(fpnk,2); 213 214 C_ADD( f1k, fpk , fpnk ); 215 C_SUB( f2k, fpk , fpnk ); 216 217 C_MUL( tw , f2k , st->super_twiddles[k]); 218 219 freqdata[2*k-1] = HALF_OF(f1k.r + tw.r); 220 freqdata[2*k] = HALF_OF(f1k.i + tw.i); 221 freqdata[2*(ncfft-k)-1] = HALF_OF(f1k.r - tw.r); 222 freqdata[2*(ncfft-k)] = HALF_OF(tw.i - f1k.i); 223 */ 224 225 /*f1k.r = PSHR32(ADD32(EXTEND32(st->tmpbuf[k].r), EXTEND32(st->tmpbuf[ncfft-k].r)),1); 226 f1k.i = PSHR32(SUB32(EXTEND32(st->tmpbuf[k].i), EXTEND32(st->tmpbuf[ncfft-k].i)),1); 227 f2k.r = PSHR32(SUB32(EXTEND32(st->tmpbuf[k].r), EXTEND32(st->tmpbuf[ncfft-k].r)),1); 228 f2k.i = SHR32(ADD32(EXTEND32(st->tmpbuf[k].i), EXTEND32(st->tmpbuf[ncfft-k].i)),1); 229 230 C_MUL( tw , f2k , st->super_twiddles[k]); 231 232 freqdata[2*k-1] = HALF_OF(f1k.r + tw.r); 233 freqdata[2*k] = HALF_OF(f1k.i + tw.i); 234 freqdata[2*(ncfft-k)-1] = HALF_OF(f1k.r - tw.r); 235 freqdata[2*(ncfft-k)] = HALF_OF(tw.i - f1k.i); 236 */ 237 f2k.r = SHR32(SUB32(EXTEND32(st->tmpbuf[k].r), EXTEND32(st->tmpbuf[ncfft-k].r)),1); 238 f2k.i = PSHR32(ADD32(EXTEND32(st->tmpbuf[k].i), EXTEND32(st->tmpbuf[ncfft-k].i)),1); 239 240 f1kr = SHL32(ADD32(EXTEND32(st->tmpbuf[k].r), EXTEND32(st->tmpbuf[ncfft-k].r)),13); 241 f1ki = SHL32(SUB32(EXTEND32(st->tmpbuf[k].i), EXTEND32(st->tmpbuf[ncfft-k].i)),13); 242 243 twr = SHR32(SUB32(MULT16_16(f2k.r,st->super_twiddles[k].r),MULT16_16(f2k.i,st->super_twiddles[k].i)), 1); 244 twi = SHR32(ADD32(MULT16_16(f2k.i,st->super_twiddles[k].r),MULT16_16(f2k.r,st->super_twiddles[k].i)), 1); 245 246 #ifdef FIXED_POINT 247 freqdata[2*k-1] = PSHR32(f1kr + twr, 15); 248 freqdata[2*k] = PSHR32(f1ki + twi, 15); 249 freqdata[2*(ncfft-k)-1] = PSHR32(f1kr - twr, 15); 250 freqdata[2*(ncfft-k)] = PSHR32(twi - f1ki, 15); 251 #else 252 freqdata[2*k-1] = .5f*(f1kr + twr); 253 freqdata[2*k] = .5f*(f1ki + twi); 254 freqdata[2*(ncfft-k)-1] = .5f*(f1kr - twr); 255 freqdata[2*(ncfft-k)] = .5f*(twi - f1ki); 256 257 #endif 258 } 259 } 260 261 void kiss_fftri2(kiss_fftr_cfg st,const kiss_fft_scalar *freqdata,kiss_fft_scalar *timedata) 262 { 263 /* input buffer timedata is stored row-wise */ 264 int k, ncfft; 265 266 if (st->substate->inverse == 0) { 267 speex_fatal ("kiss fft usage error: improper alloc\n"); 268 } 269 270 ncfft = st->substate->nfft; 271 272 st->tmpbuf[0].r = freqdata[0] + freqdata[2*ncfft-1]; 273 st->tmpbuf[0].i = freqdata[0] - freqdata[2*ncfft-1]; 274 /*C_FIXDIV(st->tmpbuf[0],2);*/ 275 276 for (k = 1; k <= ncfft / 2; ++k) { 277 kiss_fft_cpx fk, fnkc, fek, fok, tmp; 278 fk.r = freqdata[2*k-1]; 279 fk.i = freqdata[2*k]; 280 fnkc.r = freqdata[2*(ncfft - k)-1]; 281 fnkc.i = -freqdata[2*(ncfft - k)]; 282 /*C_FIXDIV( fk , 2 ); 283 C_FIXDIV( fnkc , 2 );*/ 284 285 C_ADD (fek, fk, fnkc); 286 C_SUB (tmp, fk, fnkc); 287 C_MUL (fok, tmp, st->super_twiddles[k]); 288 C_ADD (st->tmpbuf[k], fek, fok); 289 C_SUB (st->tmpbuf[ncfft - k], fek, fok); 290 #ifdef USE_SIMD 291 st->tmpbuf[ncfft - k].i *= _mm_set1_ps(-1.0); 292 #else 293 st->tmpbuf[ncfft - k].i *= -1; 294 #endif 295 } 296 kiss_fft (st->substate, st->tmpbuf, (kiss_fft_cpx *) timedata); 297 } 298